
applied
sciences

Article

Algorithm for Base Action Set Generation Focusing
on Undiscovered Sensor Values

Sho Yamauchi 1,* and Keiji Suzuki 2

1 Department of Computer Science, Kitami Institute of Technology, 165 Koencho, Kitami,
Hokkaido 090-8507, Japan

2 Department of Complex and Intelligent Systems, Future university hakodate, 116-2, Kameda-Nakanocho,
Hakodate 041-8655, Japan; kjsuzuki@fun.ac.jp

* Correspondence: sho-yama@mail.kitami-it.ac.jp

Received: 26 November 2018; Accepted: 29 December 2018; Published: 4 January 2019
����������
�������

Abstract: Previous machine learning algorithms use a given base action set designed by hand or
enable locomotion for a complicated task through trial and error processes with a sophisticated
reward function. These generated actions are designed for a specific task, which makes it difficult to
apply them to other tasks. This paper proposes an algorithm to obtain a base action set that does not
depend on specific tasks and that is usable universally. The proposed algorithm enables as much
interoperability among multiple tasks and machine learning methods as possible. A base action set
that effectively changes the external environment was chosen as a candidate. The algorithm obtains
this base action set on the basis of the hypothesis that an action to effectively change the external
environment can be found by observing events to find undiscovered sensor values. The process
of obtaining a base action set was validated through a simulation experiment with a differential
wheeled robot.

Keywords: action generation; robot motion; undiscovered sensor values; differential wheeled robot

1. Introduction

Previous machine learning algorithms [1,2] such as Q-learning use a given base action set
and choose an action from the set repeatedly [3–7]. Pre-defined action sets are commonly used
in reinforcement learning, where a robot will choose one action from the set and then use it to execute
one action. An action sequence of the robot is generated by repeating this cycle [8,9]. Conventional
reinforcement learning methods use a pre-defined action set or acquire actions that depend on the
specific task through trial and error processes. Pre-defined actions are designed by hand and there is
no clear evidence that these actions are the optimal ones for robots.

Neural networks have been used to obtain actions for achieving specific tasks [10–12]. With this
approach, neural networks are given an evaluation function and they decide actions in accordance with
this function when a correct teacher signal is unknown. A base action set is also given in such cases.

The base action set and their elements are designed by hand. However, many actuators are used
in constructing robots, so its possible actions can become more complicated, which makes it difficult to
determine and split ino a suitable number of actions. For these reasons, we propose an algorithm to
obtain an action set suitable for the external environment and the robot body. The proposed algorithm
obtains a base action set that does not depend on specific tasks and is usable universally. It enables as
much interoperability among multiple tasks and machine learning methods as possible and obtains
a base action set that effectively changes the external environment.

Appl. Sci. 2019, 9, 161; doi:10.3390/app9010161 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/1/161?type=check_update&version=1
http://dx.doi.org/10.3390/app9010161
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 161 2 of 14

Many methods to enable locomotion for a complicated task through trial and error processes using
reinforcement learning have been proposed [13–19]. Also, a modular self-reconfigurable robot that
learns actions for its current configuration and a specific task using multi-agent reinforcement learning
method has been reported [20]. The reward function required sophisticated design and acquired
actions were only for the specific tasks in these cases, so the aims of this study to get a universal base
action set were different.

Although some deep learning methods for complicated tasks have been reported in recent years,
the fundamental mechanisms underlying them, such as neural networks and reinforcement learning
methods, are still the same. Specifically, these behaviors use a pre-defined action set or acquire actions
depending only on specific tasks [21–23].

Emotional behavior generation has also been effective in variation of robot action [24–27]. Several
studies have demonstrated richness in variation and mutually independent actions corresponding
to human responses. However, they focused on emotional behavior and not on generating effective
actions to change the external environment.

The purpose of our research is to develop an action generation algorithm that does not depend
on the specific task and to clarify the characteristics of the parameters used in the algorithm.
Also, we identify which parameter values are suitable for robot action generation before applying the
proposed algorithm to a real robot.

We hypothesize that an action to effectively change the external environment can be found by
observing events to find undiscovered sensor values. Thus, we developed an algorithm to obtain
a base action set to change the external environment capably.

2. Base Action Set Generation Algorithm Focusing on Undiscovered Sensor Values

2.1. Definition of an Action Fragment

Our intent was to construct an algorithm to acquire a robot’s base action set that does not
depend on a specific task. Also, we wanted to make this base action set usable in many situations
(i.e., universal). We chose a base action set that effectively causes changes in the external environment
as a candidate. We hypothesized that an action to effectively change the external environment can
be observed indirectly through events to find undiscovered sensor values. Discovering sensor values
means situations that have never happened before occurred in the external environment. In other
words, a robot can be considered to have caused some changes to it.

On the basis of the above, our intent is to generate effective actions that cause changes in the
external environment dynamically by generating actuator output signals without using pre-defined
actions. Therefore, we define a unit that combines sensor input signals and actuator output signals for
analyzing relationships between them. The “action fragment” is defined as a set of sensor input and
actuator output signals for a specific period of time.

The number of sensors and actuators are denoted as m and n, respectively. The action fragment
of m sensors and n actuators is denoted as F and the data length of the action fragment F is denoted
as l. F contains each of the sensor input values and actuator output signals. The ith sensor input
signal is denoted as si, and the jth actuator output signal is denoted as aj. These are expressed as
Equations (1)–(3).

F = [s1, · · · , sm|a1, · · · , an]
T (1)

si = [si(0), si(1), · · · , si(t), · · · , si(l − 1)] (2)

aj =
[
aj(0), aj(1), · · · , ai(t), · · · , aj(l − 1)

]
(3)

The action fragment is designed as a part of the robot’s behavior. Thus, the actuator output
signals are generated first, and the robot moves according to the signals when we use the action
fragment. Then, the robot’s sensor input signals are recorded, and they are combined with the actuator
output signals as an action fragment. For example, if we use a differential wheeled robot equipped

Appl. Sci. 2019, 9, 161 3 of 14

with two speed-controllable wheels and a forward distance sensor, two actuator output signals are
generated and input to the wheels. Then, the sensor input signals are recorded and combined to form
the action fragment.

2.2. Action Fragment Operations

Here, we define the union of action fragments. Action fragment FA is defined as
Equations (4), (6) and (7) and action fragment FB is defined as Equations (5), (8) and (9). Then, action
fragment FC, constructed by combining FA and FB, is defined as Equations (10)–(12), where lA and lB
are the data length of FA and FB, respectively. The number of actuators and sensors of FA and FB is the
same.

FA = [sA1, · · · , sAm|aA1, · · · , aAn]
T (4)

FB = [sB1, · · · , sBm|aB1, · · · , aBn]
T (5)

sAi = [sAi(0), sAi(1), · · · , sAi(lA − 1)] (6)

aAj =
[
aAj(0), aAj(1), · · · , aAj(lA − 1)

]
(7)

sBi = [sBi(0), sBi(1), · · · , sBi(lB − 1)] (8)

aBj =
[
aBj(0), aBj(1), · · · , aBj(lB − 1)

]
(9)

FC = FA + FB (10)

sCi = [sAi(0), sAi(1), · · · , sAi(lA − 1),

sBi(0), sBi(1), · · · , sBi(lB − 1)]
(11)

aCj = [aAj(0), aAj(1), · · · , aAj(lA − 1),

aBj(0), aBj(1), · · · , aBj(lB − 1)]
(12)

Also, the extracted part of action fragment F from t = ts to t = te is defined as a sub action
fragment and denoted as Equation (13).

F [ts : te] (13)

2.3. Random Motion Generation Algorithm for Comparison

We define a random motion generation algorithm for comparison before explaining the proposed
algorithm. The use of a simple random number as actuator output signals does not work for robot
motion in most cases. Therefore, we use a Fourier series to generate random actuator output signals by
determining the Fourier coefficients using uniform random numbers. A variety of waves are generated
in this way. The jth actuator output signal is determined as Equation (14).

aj(t) = b(j) +
nk

∑
k=1

(
c(j)

k cos(kt) + d(j)
k sin(kt)

)
(14)

The operation to generate a random action fragment of length l using this method is denoted as
frnd(l). Coefficients b(j), c(j)

k , d(j)
k are reset using uniform random numbers each time frnd(l) is used.

The random motion generation algorithm for comparison is referred to as “Algorithm Random”
in this paper, and Algorithm Random uses frnd(l) multiple times to generate actuator output signals
of necessary length (Figure 1).

Appl. Sci. 2019, 9, 161 4 of 14

Figure 1. Overview of random motion generation.

2.4. Base Action Set Generation Algorithm to Extract Actions That Cause Changes Effectively in the External
Environment and to Combine Those Actions

We developed a base action set generation algorithm focusing on finding processes of
undiscovered sensor values.

First, when a robot finds undiscovered sensor values, we assume that some of the actions that
effectively change the external environment are generated around that time. Then, the algorithm
extracts a part of the actuator output signals before the undiscovered sensor values are found.
These extracted parts are used to generate new actuator output signals by combining them. The newly
generated signals should effectively change the external environment and enable finding undiscovered
sensor values.

A discovery of new sensor values is defined as follows. First, we divide the m-dimensional
sensor space of a robot that has m sensors into several parts and assume each part as a bin of
a histogram. This histogram is denoted as Dm. Each bin of the m-dimensional histogram Dm is denoted
as b(i1, i2, ..., im), and the number of data in each bin is denoted as nb(i1, i2, ..., im). The m-dimensional
histogram Dm at time t is denoted as Dm(t). The sensor value at time t s(t) is allocated to the
corresponding bin. We assume that the corresponding bin of sensor value s(t) is b(i1, i2, ..., im).
If nb(i1, i2, ..., im) = 0 in Dm(t− 1), the sensor value s(t) is an undiscovered sensor value.

Next, we explain the operations to extract the part of the actuator output signals that have
contributed to finding undiscovered sensor values. When a sensor value at time t s(t) is an
undiscovered sensor value, this operation extracts a part of the actuator output signals from time
t− lu to time t as a contributed part to find new sensor values. This part is constructed as a sub action
fragment of F that records all actuator output signals from time t = 0. This sub action fragment Ii is
defined as Ii = F[t− lu : t] (Figure 2a). Ii is added to extracted action fragment set UI . The part of
the actuator output signals that contributed to finding undiscovered sensor values is extracted and
maintained using these operations and used to generate new actuator output signals.

This algorithm uses elements of extracted action fragment set UI when an actuator output signal
is newly generated. Now, we describe generating action fragment Fp of length l. Fp is generated
according to Equation (15)–(17), where n(UI) is the number of elements of extracted action fragment
set UI and lg is a uniform random number in [lmin : lmax].

F ′p = ∑
j

g(j) (15)

Fp = F ′p[0 : l] (16)

g(j) =

Ik

(
Ik ∈ UI , probability (1−rr)

n(UI)

)
frnd(lg) (probability rr)

(17)

Appl. Sci. 2019, 9, 161 5 of 14

Therefore, this algorithm generates random actuator output signals according to probability rr,
chooses an extracted action fragment according to probability 1− rr, and combines these parts to
generate new actuator output signals. The details are shown in Figure 2b.

(a) (b)

Figure 2. Motion extraction and motion generation. (a) Method to extract effective motion for finding
undiscovered sensor values; (b) Motion generation using extracted effective motion.

2.5. Discard of Extracted Action Fragments

The length of used Ii is denoted as ui and the length of the contributed parts of Ii to find the
undiscovered sensor values is denoted as vi among all the generated actuator output signals. The parts
of Ii that contributed to finding the undiscovered sensor values are the parts of Ii between time t− lu
to time t, where the new sensor value is found at time t. Therefore, vi is equal to the summation length
of the contained parts of action fragment Ii among all the generated action fragments.

Here, we introduce a mechanism that evaluates each action fragment Ii to identify and discard
any fragment that has not contributed to finding new sensor values. We define discard criterion wi for
action fragment Ii as

wi =
vi
ui

(18)

Action fragment Ii that satisfies wi < w is discarded from extracted action fragment set UI ,
where constant w is a discard criterion threshold.

The meaning of this operation is explained as follows. Discard criterion wi can be transformed
as Equation (19)

wi =
vi
ui

=
vi
l′
ui
l′

=
P(Ii ∩ A)

P(Ii)
= P(A|Ii), (19)

where l′ is a length of the whole generated actuator output signals. These probabilistic formulations
have the following meanings.

• P(Ii) : probability to use action fragment Ii in a process of actuator output signal generation.
• P(Ii ∩ A) : probability that a robot both uses Ii in a process of actuator output signal generation

and finds undiscovered sensor values.
• P(A|Ii) : probability that a robot finds undiscovered sensor values when it uses action fragment

Ii in a process of actuator output signal generation.

Hence, wi expresses the probability that a robot finds undiscovered sensor values when it uses
action fragment Ii in a process of actuator output signal generation. This operation discards actions
fragments when the probability P(A|Ii) is below the discard criteria threshold w.

A flowchart of the proposed algorithm is shown in Figure 3.

Appl. Sci. 2019, 9, 161 6 of 14

Figure 3. Flowchart of proposed algorithm.

3. Validation of Base Action Set Generation Process Using the Proposed Algorithm through
Experiments with a Differential Wheeled Robot

3.1. Experiment Using a Differential Wheeled Robot

We validated the process of base action set generation using the algorithm in a simulation
experiment with a differential wheeled robot. The experimental environment is shown in Figure 4a.
The experimental field of 10 m × 10 m was surrounded by four walls, and the robot was placed in
the center. It had two drive wheels and one caster wheel. The robot weighed 10 kg, and each drive
wheel could generate 10 Nm torque at maximum. Boxes of 1 kg were placed around it. The boxes were
moved by robot locomotion. The field was divided into the nine spaces shown in Figure 4b, and the
regions in which each box was present were calculated. The robot received this information as a sensor
input value. For example, it received sensor value s(t) = {4, 7, 2} at time t when Box 1, 2, and 3 were
present in regions 4, 7, and 2, respectively. The corresponding bin of s(t) was b(4, 7, 2) and s(t) was
an undiscovered sensor value if nb(4, 7, 2) = 0 at time t− 1. The idea here is to have the algorithm
determine which actions will change the external environment and then use them repeatedly to find
undiscovered sensor values. A screenshot of the simulation experiment is shown in Figure 5.

Appl. Sci. 2019, 9, 161 7 of 14

(a) (b)

Figure 4. Experiment settings. (a) Experimental environment (Unit: meters); (b) Sensor division area
of boxes.

Figure 5. Screenshot of experiment.

1 step of the physics simulation was 0.02 s in this experiment. It is too difficult for the robot
to maneuver when boxes are near a wall, so the positions of the boxes and robot were reset to their
initial ones every 50,000 step = 50,000 * 0.02 s = 1000 s. Each trial in this experiment was conducted
until 200 position resets. We compared three algorithms: A random motion generation algorithm
(Algorithm Random), our proposed algorithm(Algorithm A) and Algorithm A without the mechanism
for discarding action fragments defined in Section 2.5 (Algorithm A’). Ten trials were executed for each
algorithm. In this case, Algorithm Random was the same as Algorithm A without the action fragment
extraction and combination mechanism; in other words, Algorithm A maintained its initial state.
A three dimensional histogram was prepared for sensor values in Algorithm A and A’. Each dimension
of this histogram was divided into nine regions, as shown in Figure 4b, and each sensor value was
allocated to a corresponding bin. Thus, this histogram had 93 = 729 bins.

Appl. Sci. 2019, 9, 161 8 of 14

3.2. Viewpoints of the Experiment

We focused on the sensor cover rate and distribution of the robot’s motion vectors in
this experiment.

3.2.1. Sensor Cover Rate

The sensor cover rate was defined to observe how many variations in sensor value were
discovered. The number of bins satisfying nb(i1, i2, ..., im) > 0 in m-dimensional histogram Dm of sensor
values was denoted as nd, and the number of all bins of Dm was denoted as nbin. Then, sensor cover
rate rs was defined as Equation (20).

rs =
nd

nbin
(20)

The time shift of sensor cover rate rs was observed in this experiment.

3.2.2. Distribution of the Robot’s Motion Vectors

The motion vectors of the robot at time t ~q(t) were calculated from its position ~p(t), ~p(t− t′),
~p(t− 2t′) at regular time interval t′ as shown in Figure 6.

~q(t) = ~p(t)− ~p(t− t′) (21)

A magnitude of ~q(t) and an angle θ(t) between ~q(t) and ~q(t − t′) were calculated, and the
distribution of these values was expressed as a heat map. We determined the actual motion patterns
that the robot generated using these results.

Figure 6. Motion vectors of a robot.

3.3. Parameters Settings

The parameter values used in these experiments are enumerated in Table 1.

Table 1. Experiment parameters.

Action fragment extraction length lu = 50
Action generation random rate rr = 0.3

Discard criterion threshold w = 0
Time interval of motion vectors t′ = 50

Minimum length of random motion generation lmin = 10
Maximum length of random motion generation lmax = 50

Appl. Sci. 2019, 9, 161 9 of 14

4. Experimental Results

First, we show our comparison of the time shift of sensor cover rate for each algorithm.
The experimental results are shown in Figure 7. Figure 7 shows the average results of ten trials.
The sensor cover rate is

AlgorithmA > A′ > Random (22)

for the entire time and differences among algorithms increased over time. In particular, the difference
between Algorithm A and Algorithm Random at the last time (Time = 200(103 s)) was 0.092 = 9.2%.
The number of all possible sensor value patterns was 93 = 729, so Algorithm A found 0.092 ∗ 729 ' 67
more patterns than Algorithm Random.

Figure 7. Sensor cover rate of each algorithm

The standard deviations of the final sensor cover rate for each algorithm are listed in Table 2.
The maximum standard deviation is seen in the results of Algorithm A’, which did not discard
the extracted action fragment, and the minimum standard deviation is seen in the results of
Algorithm Random.

Table 2. Final standard deviation of each algorithm.

Algorithm Standard Deviation

Algorithm A 0.0261
Algorithm A’ 0.1443

Algorithm Random 0.0102

4.1. Visualization of Robot’s Motion Vectors

Next, we enumerated heat maps of the robot’s motion vectors at a regular time interval for each
algorithm. The motion vectors were calculated once every 50 steps; in other words, 50 * 0.02 s = 1 s.
The horizontal axis in these maps denotes the relative angle θ(t) and the vertical axis denotes the
magnitude |~q(t)|. The results of Algorithms A, A’, and Random are shown in Figure 8. These results
show all the vectors of ten trials for each algorithm.

Appl. Sci. 2019, 9, 161 10 of 14

(a) (b)

(c)

Figure 8. Motion vector heat map of each algorithm. (a) Algorithm A; (b) Algorithm A’; (c) Algorithm Random.

In the results for Algorithm A (Figure 8a), strong responses were shown in four sections:
“Go forward” (1 in Figure 8a), “Go backward” (2 in Figure 8a), “Turn 90 degrees right” (3 in Figure 8a),
and “Turn 90 degrees left” (4 in Figure 8a). This means the robot used these four locomotions frequently.
These locomotion selections were comparable to typical wheeled robot locomotions. However, strong
responses were observed evenly from turning 90 degrees right to 90 degrees left except for “Go
forward” and “Go backward” (6 in Figure 8c) in the results of Algorithm Random (5 in Figure 8c).
This means that the robot could only find about 10% fewer box allocation patterns even though
Algorithm Random made more locomotion patterns than Algorithm A. All the heat maps of the ten
trials for each algorithm are shown in Figure 9. The distributions of the ten trials were almost the same
in Algorithms A and Random. However, the distributions were unstable and variable in Algorithm A’.
These results show that discarding action fragments was executed correctly in Algorithm A. Therefore,
Algorithm A could determine effective base actions to find undiscovered sensor values. Moreover,
Algorithm A discarded actions that did not contribute to finding new sensor values correctly and
stabilized its performance.

Next, we divided experiment time tmax(=200(103 s)) into four parts and enumerated heat maps of
the robot’s motion vectors at each part. The four heat maps of Algorithm A with rr = 0.3, which are
the results of ten trials, are shown in Figure 10.

Appl. Sci. 2019, 9, 161 11 of 14

As shown in Figure 10, a heat map in the early phase ([0, tmax/4]) showed strong responses
only near the “Go forward” and “Go backward” areas. However, strong responses near “Turn right
90 degrees” and “Turn left 90 degrees” appeared from the second part ([tmax/4, tmax/2]) and remained
almost the same from the third part ([tmax/2, 3tmax/4]). These results mean that actions of strong
responses in the heat maps were used repeatedly. Therefore, Algorithm A finished extracting the
appropriate action fragments until ([tmax/2, 3tmax/4]) and then maintained.

(a) (b)

(c)

Figure 9. Motion Vector heat map of each trial. (a) Algorithm A; (b) Algorithm A’; (c) Algorithm Random.

Figure 10. Motion vector heat map of each time section of Algorithm A with rr = 0.3.

Next, we changed the action generation random rate rr and evaluated its effect on acquiring the
appropriate action set in Algorithm A. Average sensor cover rates of Algorithm A with various rr are
given in Figure 11, which includes the average results of ten trials. Average sensor cover rate increased
for the entire time in accordance with the decrease of rr from 0.7 to 0.3. In contrast, they remained
almost the same when rr decreased from 0.3 to 0.1. Heat maps of the robot’s motion vectors for each rr

value are shown in Figure 12. Here, as the action generation random rate increases, the results show
distributions similar to the result of Algorithm Random (rr = 1.0) that distributed between angle
θ = −π/2 to θ = π/2 uniformly. However, the heat maps of rr = 0.1 and 0.3 are almost the same and
showed strong responses in all four areas, as in Figure 8a.

Finally, we changed the interval time t′ of the robot’s motion vectors and show the heat maps
of each case in Figure 13. All motion vectors of ten trials by Algorithm A with rr = 0.3 are shown in
Figure 13. The result of t′ = 50 was the same as the result in Figure 8a and all four areas showed strong
responses. However, distributions were located on the specific area and distributed uniformly inside
the area when t′ = 20, 100, and 150. Thus, no specific strong response was observed in those cases.
This is because the action fragment extraction length was lu = 50, and generated action sequences
have meaning only when lu = t′.

Appl. Sci. 2019, 9, 161 12 of 14

Figure 11. Sensor cover rate of various rr values.

Figure 12. Motion vector heat map of various rr values.

Figure 13. Motion vector heat map of various time intervals.

4.2. Discussion

We found that our proposed algorithm, which features action extraction and combination
mechanisms of contributed action fragments, can find more undiscovered sensor values than a random
action generation algorithm that is equal to the initial state of the proposed algorithm. Also, appropriate
extraction of action fragments in Algorithm A was observed from the results of Figure 10. Four actions
showing strong responses were repeatedly used and maintained in Figure 10, and the sensor cover
rate of Algorithm A was the highest in Figure 7. Therefore, undiscovered sensor values were found by
using those four extracted actions repeatedly, i.e., they were not discarded.

Thus, the action discarding mechanism is effective for removing action fragments that do not
contribute to finding undiscovered sensor values and helps stabilize the performance. Algorithm A
with the smaller action generation random rate rr had a better sensor cover rate in Figure 11. This result
demonstrates that undiscovered sensor values could be found effectively by using the action generation
method that combines extracted action fragments in Algorithm A. However, sensor cover rates were
almost the same when rr ≤ 0.3 and its effectiveness in finding undiscovered sensor values peaked
around rr = 0.3. Thus, rr should be around 0.3 when we use this algorithm. The robot found

Appl. Sci. 2019, 9, 161 13 of 14

undiscovered sensor values effectively, meaning the extracted actions the robot used repeatedly
changed the external environment capably and generated new situations. Four types of actions—“Go
forward”, “Go backward”, “Turn right 90 degrees”, and “Turn left 90 degrees”—were extracted and
used frequently as the base actions of a differential wheeled robot in this experiment. These base actions
differ depending on changes in the environment and the robot body. Base actions can easily be set by
hand if both the environment and robot body are simple—like they were in this experiment. However,
this would not be possible for a complicated robot body and/or a constantly changing environment.
In such cases, the algorithm can obtain a base action set to change the external environment capably.

Finally, from the results of Figure 13, generated actions depending on action fragment extraction
length lu and biased distribution of robot action could be observed when t′ = lu. This means that lu
should be larger if longer action is needed. Thus, if the robot needs actions of various time scales,
lu should be changed in accordance with the situation. This issue will be addressed in future work.

5. Conclusions

We demonstrated that the proposed algorithm is capable of effectively obtaining a base action
set to change the external environment, and that the actions in the base action set contribute to
finding undiscovered sensor values. Also, we showed that the algorithm stabilizes its performance
by discarding actions that do not contribute to finding undiscovered sensor values. We examined
the effects and characteristics of the parameters in the proposed algorithm and clarified the suitable
value range of parameters for robot applications. Applying a flexible time scale for extracting action
fragments is left for future work. We also intend to investigate the effect of using the action set
acquired by the proposed algorithm in conventional learning methods as a base action set. We assume
that an action set acquired by the proposed algorithm is both universal and effective. Thus, we will
investigate whether the action set acquired by the proposed algorithm can improve the performance
of conventional machine learning methods such as reinforcement learning. Also, we will construct
a method to share learning data among different tasks by using the universal action set acquired by
the proposed algorithm in such cases.

Author Contributions: Investigation, S.Y.; Project administration, K.S.; Writing—original draft, S.Y.;
Writing—review and editing, K.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lungarella, M.; Metta, G.; Pfeifer, R.; Sandini, G. Developmental robotics: A survey. Connect. Sci. 2003, 15, 151–190.
[CrossRef]

2. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285.
[CrossRef]

3. Scheier, C.; Pfeifer, R. Classification as sensory-motor coordination. In Proceedings of the Third European
Conference on Artificial Life, Granada, Spain, 4–6 June 1995; Springer: Berlin, Germany, 1995; pp. 657–667.

4. Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J.J.; Gupta, A.; Li, F.F.; Farhadi, A. Target-driven visual navigation in
indoor scenes using deep reinforcement learning. In Proceedings of the 2017 IEEE International Conference
on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3357–3364.

5. Qureshi, A.H.; Nakamura, Y.; Yoshikawa, Y.; Ishiguro, H. Robot gains social intelligence through multimodal
deep reinforcement learning. In Proceedings of the 2016 IEEE-RAS 16th International Conference on
Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016; pp. 745–751.

6. Lei, T.; Ming, L. A robot exploration strategy based on q-learning network. In Proceedings of the
IEEE International Conference on Real-time Computing and Robotics (RCAR), Angkor Wat, Cambodia,
6–10 June 2016; pp. 57–62.

7. Riedmiller, M.; Gabel, T.; Hafner, R.; Lange, S. Reinforcement learning for robot soccer. Auton. Robot. 2009, 27, 55–73.
[CrossRef]

http://dx.doi.org/10.1080/09540090310001655110
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1007/s10514-009-9120-4

Appl. Sci. 2019, 9, 161 14 of 14

8. Matarić, M.J. Reinforcement Learning in the Multi-robot Domain. Auton. Robot. 1997, 4, 73–83. [CrossRef]
9. Sutton, R.S.; Barto, A.G.; Barto, A.G.; Bach, F. Reinforcement Learning: An Introduction; MIT Press:

Cambridge, MA, USA, 1998.
10. Mitchell, T.M.; Thrun, S.B. Explanation-based neural network learning for robot control. In Proceedings

of the 5th International Conference on Neural Information Processing Systems, Denver, CO, USA,
30 November–3 December 1992; pp. 287–294.

11. Pfeiffer, M.; Nessler, B.; Douglas, R.J.; Maass, W. Reward-modulated hebbian learning of decision making.
Neural Comput. 2010, 22, 1399–1444. [CrossRef] [PubMed]

12. Hafner, R.; Riedmiller, M. Neural reinforcement learning controllers for a real robot application.
In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy,
10–14 April 2007; pp. 2098–2103.

13. Kormushev, P.; Calinon, S.; Caldwell, D.G. Reinforcement learning in robotics: Applications and real-world
challenges. Robotics 2013, 2, 122–148. [CrossRef]

14. Kober, J.; Peters, J.R. Policy search for motor primitives in robotics. In Advances in Neural Information
Processing Systems; Curran Associates: Vancouver, BC, Canada, 2009; pp. 849–856.

15. Shen, H.; Yosinski, J.; Kormushev, P.; Caldwell, D.G.; Lipson, H. Learning fast quadruped robot gaits with
the RL power spline parameterization. Cybern. Inf. Technol. 2012, 12, 66–75. [CrossRef]

16. Ijspeert, A.J.; Nakanishi, J.; Schaal, S. Learning attractor landscapes for learning motor primitives. In Advances
in Neural Information Processing Systems; Curran Associates: Vancouver, BC, Canada, 2003; pp. 1547–1554.

17. Kimura, H.; Yamashita, T.; Kobayashi, S. Reinforcement learning of walking behavior for a four-legged
robot. IEEJ Trans. Electron. Inf. Syst. 2002, 122, 330–337.

18. Shibata, K.; Okabe, Y.; Ito, K. Direct-Vision-Based Reinforcement Learning Using a Layered Neural Network.
Trans. Soc. Instrum. Control Eng. 2001, 37, 168–177. [CrossRef]

19. Goto, Y.; Shibata, K. Emergence of higher exploration in reinforcement learning using a chaotic
neural network. In Proceedings of the International Conference on Neural Information Processing,
Siem Reap, Cambodia, 13–16 December 2018; Springer: Berlin, Germany, 2016; pp. 40–48.

20. Dutta, A.; Dasgupta, P.; Nelson, C. Adaptive locomotion learning in modular self-reconfigurable robots:
A game theoretic approach. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 3556–3561.[CrossRef]

21. Lample, G.; Chaplot, D.S. Playing FPS Games with Deep Reinforcement Learning. In Proceedings of the
Conference on Artificial Intelligence AAAI, San Francisco, CA, USA, 4–9 February 2017; pp. 2140–2146.

22. Sallab, A.E.; Abdou, M.; Perot, E.; Yogamani, S. Deep reinforcement learning framework for autonomous
driving. Electron. Imaging 2017, 2017, 70–76. [CrossRef]

23. Ran, L.; Zhang, Y.; Zhang, Q.; Yang, T. Convolutional neural network-based robot navigation using
uncalibrated spherical images. Sensors 2017, 17, 1341. [CrossRef] [PubMed]

24. Taki, R.; Maeda, Y.; Takahashi, Y. Generation Method of Mixed Emotional Behavior by Self-Organizing Maps
in Interactive Emotion Communication. J. Jpn. Soc. Fuzzy Theory Intell. Inform. 2012, 24, 933–943. [CrossRef]

25. Gotoh, M.; Kanoh, M.; Kato, S.; Kunitachi, T.; Itoh, H. Face Generation Using Emotional Regions for
Sensibility Robot. Trans. Jpn. Soc. Artif. Intell. 2006, 21, 55–62. [CrossRef]

26. Matsui, Y.; Kanoh, M.; Kato, S.; Nakamura, T.; Itoh, H. A Model for Generating Facial Expressions Using
Virtual Emotion Based on Simple Recurrent Network. JACIII 2010, 14, 453–463. [CrossRef]

27. Yano, Y.; Yamaguchi, A.; Doki, S.; Okuma, S. Emotional Motion Generation Using Emotion Representation
Rules Modeled for Human Affection. J. Jpn. Soc. Fuzzy Theory Intell. Inform. 2010, 22, 39–51. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1008819414322
http://dx.doi.org/10.1162/neco.2010.03-09-980
http://www.ncbi.nlm.nih.gov/pubmed/20141476
http://dx.doi.org/10.3390/robotics2030122
http://dx.doi.org/10.2478/cait-2012-0022
http://dx.doi.org/10.9746/sicetr1965.37.168
http://dx.doi.org/10.1109/IROS.2017.8206200
http://dx.doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
http://dx.doi.org/10.3390/s17061341
http://www.ncbi.nlm.nih.gov/pubmed/28604624
http://dx.doi.org/10.3156/jsoft.24.933
http://dx.doi.org/10.1527/tjsai.21.55
http://dx.doi.org/10.20965/jaciii.2010.p0453
http://dx.doi.org/10.3156/jsoft.22.39
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Base Action Set Generation Algorithm Focusing on Undiscovered Sensor Values
	Definition of an Action Fragment
	Action Fragment Operations
	Random Motion Generation Algorithm for Comparison
	Base Action Set Generation Algorithm to Extract Actions That Cause Changes Effectively in the External Environment and to Combine Those Actions
	Discard of Extracted Action Fragments

	Validation of Base Action Set Generation Process Using the Proposed Algorithm through Experiments with a Differential Wheeled Robot
	Experiment Using a Differential Wheeled Robot
	Viewpoints of the Experiment
	Sensor Cover Rate
	Distribution of the Robot’s Motion Vectors

	Parameters Settings

	Experimental Results
	Visualization of Robot’s Motion Vectors
	Discussion

	Conclusions
	References

