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Abstract: Visual–inertial odometry is an effective system for mobile robot navigation. This article
presents an egomotion estimation method for a dual-sensor system consisting of a camera and an
inertial measurement unit (IMU) based on the cubature information filter and H∞ filter. The intensity
of the image was used as the measurement directly. The measurements from the two sensors were
fused with a hybrid information filter in a tightly coupled way. The hybrid filter used the third-degree
spherical-radial cubature rule in the time-update phase and the fifth-degree spherical simplex-radial
cubature rule in the measurement-update phase for numerical stability. The robust H∞ filter was
combined into the measurement-update phase of the cubature information filter framework for
robustness toward non-Gaussian noises in the intensity measurements. The algorithm was evaluated
on a common public dataset and compared to other visual navigation systems in terms of absolute
and relative accuracy.
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1. Introduction

Visual odometry (VO) is the process of estimating the egomotion of an agent with a single
or multiple visual sensors in mobile robot navigation. The aim of VO is to estimate the pose
incrementally. Compared with the simultaneous localization and mapping (SLAM) method seeking
globally consistent estimation, VO is concerned with the local consistency of the pose estimation [1]. As
an inexpensive method independent of external reference systems such as global positioning systems
(GPS) and motion capture systems, VO is widely applied in domains including robotics, automotive,
and wearable computing [2]. In robotic applications, VO is the basis of studies on visual control [3],
obstacle avoidance in robot navigation [4,5], and unmanned aerial vehicle navigation [6].

In practical applications, VO is commonly combined with the inertial measurement units (IMUs)
with the aid of Kalman filters. As the visual–inertial integrated navigation system serves as an
egomotion estimator and is similar to VO functionally, we used the term of visual–inertial odometry
(VIO) in this paper. The IMU generally operates independently of the environmental conditions at
a higher rate than cameras. Therefore, the robustness and accuracy of the visual odometry can be
enhanced by fusing the IMU measurements.

The VO methods are grouped into indirect methods and direct methods, depending on the usage
of the images. The indirect methods preprocess the images of the camera to extract features that are
used for motion estimation with a matching process. Direct methods use the raw measurements of the
visual sensors without feature extraction and matching processes.

Indirect methods have dominated the research field for a long time, and many effective descriptors
of features have been developed as shown in [7]. Guang [8] applied a line-feature extractor in the
pre-processing of images and estimated the attitude error with line features. The IMU measurements
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were fused with the visual measurements loosely with the conventional Kalman filter. Mostafa [9]
constructed a multi-sensor fusion system based on the extended Kalman filter (EKF). An indirect VO
algorithm with speeded up robust features (SURF) was applied to process the visual measurements.
A tightly coupled nonlinear optimization-based indirect VO was applied on the micro aerial vehicle
(MAV) in [10,11]. Forster developed a hybrid approach with a direct method for initial alignment and
an indirect method for joint optimization. Aladem [12] built a light-weight VO using the adaptive
and generic accelerated segment test (AGAST) corner detector and the binary robust independent
elementary features (BRIEF) descriptor.

Recently, direct methods have gained more attention due to their independence of extra feature
extraction and matching processes. Bloesch [13] used the intensity errors of image patches as
measurements and fused the measurements of IMU with the direct VO with EKF. The resulting
VIO method was applied in the navigation of a MAV in [14]. Furthermore, Bloesch used the iterated
EKF method that operates in a recursive form like the Gauss–Newton optimization to reduce the
linearization errors in the regular EKF. A binocular vision system was used to construct a direct VIO
in [15]. Engel designed a direct sparse odometry (DSO) using a monocular camera [16]. The even
sampling and keyframe management methods used in Engle’s DSO contributed to improving the
accuracy and robustness of the photometric-error optimization.

The Jacobian-based EKF method suffers from linearization errors in nonlinear systems. To improve
its accuracy, Arasaratnam designed the cubature Kalman filter (CKF) by applying the third-degree
spherical-radial cubature rule on the nonlinear Bayes filter [17]. The resulting CKF outperformed
the EKF and unscented Kalman filter (UKF) on nonlinear systems. Based on the third-degree CKF,
Jia designed a fifth-degree CKF for higher accuracy [18]. Wang developed another CKF method
with the regular simplex and moment matching method [19]. The developed fifth-degree spherical
simplex-radial cubature Kalman filter (SSRCKF) required fewer cubature points than the fifth-degree
CKF in [18] in high-dimensional applications. Zhang developed an arbitrary degree interpolatory
cubature Kalman filter (ICKF) with additional free parameters [20]. By adjusting the free parameters,
CKF and UKF are special cases of ICKF. An estimator with an online measuring of non-linearity was
developed in [21]. The method adaptively switches between cubature rules with different degrees.
The CKF was used in [22] for a loosely coupled nonlinear attitude estimator. Tseng [23] embedded the
Huber M-estimation method with CKF in [17] to deal with the outliers and non-Gaussian noises in
the measurements.

As an equivalent description of the Kalman filter, the information filter has also been extended
with the cubature rules for nonlinear systems. Pakki directly applied the technique used in [17]
on the information filter and obtained a third-degree spherical-radial cubature rule-based cubature
information filter (CIF). Jia applied the fifth-degree spherical-radial cubature rule on the information
filter for multi-sensor fusion [24,25]. Yin developed the third-degree spherical simplex-radial cubature
information filter. CIFs with different cubature rules have been used in the state estimation for
the biased nonlinear system [26], bearing-only tracking with multi sensors [27], and the trajectory
estimation for the ballistic missile [28].

The H∞ filter was developed for minimizing the estimation errors in the presence of unsatisfactory
noises. Yang developed a solution of the H∞ filter in the form of the regular Kalman filter [29]. Chandra
directly embedded Yang’s H∞ filter in the CKF and CIF according to the computational procedures of
the filters [30,31] to improve the CKF and CIF in the presence of non-Gaussian noises.

In this paper, motivated by the recently developed cubature information filters for nonlinear
systems, a mixed-degree cubature H∞ information filter-based VIO (MCH∞IF-VIO) was designed by
fusing the measurements of IMU and intensity errors in a tightly coupled manner. Unlike previous
studies that have focused on refining the feature descriptions, we developed the MCH∞IF-VIO system
according to the system characteristics and used a simple frame-to-frame alignment model. The
proposed VIO method mainly focuses on the nonlinearity and non-Gaussian noises in the VIO system,
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and is suitable for the camera-IMU system consisting of an IMU and an RGBD camera. The main
contributions of this paper are as follows.

1. A mixed-degree nonlinear filter framework was proposed for fusing the IMU measurements and
the intensity measurements of the camera. The proposed filter applied two cubature rules with
different degrees to guarantee numerical stability with high accuracy.

2. The H∞ filter was used in the measurement update phase for robustness toward the non-Gaussian
noises in intensity errors.

The remainder of this paper is organized as follows. The model of the visual–inertial odometry
is presented in Section 2. The VIO system based on a mixed-order cubature H∞ information filter is
detailed in Section 3. The test results with a public dataset are presented in Section 4. The conclusions
are presented in Section 5.

2. Model of Visual–Inertial Odometry

In this section, we present the model of a keyframe-based VIO system consisting of the motion
model, the keyframe management, and the measurement model. The motion model was formulated
in form of classical rigid-body kinematics with the modified Rodrigues parameter representing
the attitude. The keyframe management was mainly inspired by Engle’s DSO system with some
simplifications. The measurement model was formulated in the form of the simple frame-to-frame
alignment with the intensity as the measurement.

2.1. Coordinate Systems

Two moving coordinate systems connected with the sensors were used in this paper: (1) The IMU
coordinate system (ICS) with its origin at the center of the IMU, where the linear accelerations and
angular rates are measured; and (2) The camera coordinate system (CCS) with its origin at the optical
center of the camera and the z-axis aligned with the optical axis of the lens.

Another two reference coordinate systems were defined correspondingly: The static IMU
coordinate system (SICS) with the same origin and axes as the ICS at the time of constructing the
current keyframe; and the static camera coordinate system (SCCS) with the same origin and axes as
the CCS at the time of constructing the current keyframe. The SICS and SCCS were static relative to
the inertial space in the egomotion estimation.

In this paper, the superscript at the top-left corner of a vector represents the coordinate system
the vector is expressed in. Specifically, Ip represents the vector p in the ICS, Cp represents the vector p
in the CCS, SIp represents the vector p in the SICS, and SCp represents the vector p in the SCCS.

2.2. Motion Model of Camera-IMU System

A 9-dimension system was built to represent the motion of the camera–IMU system. The state
vector is defined as follows:

x =
[

I
SIρ

T SIpT SIvT
]T

(1)

where I
SIρ is the modified Rodrigues parameter (MRP) representing the rotation of the ICS relative to

the SICS; SIp is the position of the origin of the ICS in the SICS; and SIv is the velocity of the origin of
the ICS relative to the SICS. A discrete motion model was constructed according to the six degrees of
the freedom kinematic model of a rigid body as follows:

xk = Fxk−1 + G(xk−1)uk−1 + C (2)

where uk−1 =
[

IωT
k−1

IaT
k−1

]T
is the input vector of the navigation system; Iωk−1 and Iak−1 are the

measurements of the gyroscope and the accelerator at time k− 1, respectively; C =
[

01×6 ∆tSIgT
]T
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is a constant vector; ∆t is the sampling period; SIg = SI
E REg is the gravity acceleration vector in the

SICS; SI
E R is the transformation matrix from the earth-fixed coordinate system to the SICS, of which

initial value determined by a simple attitude and heading reference system (AHRS) [32]; and F and
G(xk−1) are the state-transition matrix and input matrix, respectively, formulated as follows:

F =

 I3 03 03

03 I3 ∆tI3

03 03 I3


G(xk−1) =

 A
(I

SIρk−1
)

03

03 03

03
I
SIR
(I

SIρk−1
)T


(3)

where I3 is the three-dimensional identity matrix; and 03 is the three-dimensional zero matrix.
A
(I

SIρk−1
)

and I
SIR
(I

SIρk−1
)

are formulated as follows. The right subscript k − 1, left subscript ‘SI’
and left prescript ‘I’ in the right side of the equations are neglected to simplify the description

A
(

I
SIρk−1

)
=

1
4

 ρ2
1 − ρ2

2 − ρ2
3 + 1 2(ρ1ρ2 − ρ3) 2(ρ1ρ3 + ρ2)

2(ρ1ρ2 + ρ3) ρ2
2 − ρ2

1 − ρ2
3 + 1 2(ρ2ρ3 − ρ1)

2(ρ1ρ3 − ρ2) 2(ρ2ρ3 + ρ1) ρ2
3 − ρ2

1 − ρ2
2 + 1

 (4)

I
SIR
(

I
SIρk−1

)
=


1− 8(ρ2

2+ρ2
3)

(|ρ|2+1)
2 − 4(|ρ|2ρ3−2ρ1ρ2−ρ3)

(|ρ|2+1)
2

4(|ρ|2ρ2+2ρ1ρ3−ρ2)

(|ρ|2+1)
2

4(|ρ|2ρ3+2ρ1ρ2−ρ3)

(|ρ|2+1)
2 1− 8(ρ2

1+ρ2
3)

(|ρ|2+1)
2 − 4(|ρ|2ρ1−2ρ2ρ3−ρ1)

(|ρ|2+1)
2

− 4(|ρ|2ρ2−2ρ1ρ3−ρ2)

(|ρ|2+1)
2

4(|ρ|2ρ1+2ρ2ρ3−ρ1)

(|ρ|2+1)
2 1− 8(ρ2

1+ρ2
2)

(|ρ|2+1)
2

 (5)

In fact, I
SIR
(I

SIρk−1
)

is the direct cosine matrix representing the rotation of the IMU coordinate
system relative to the static IMU coordinate system.

2.3. Keyframe Management

A keyframe consisting of a RGB image and a depth image represents the reference for the
egomotion estimation. The very first RGB image and depth image are used to set up the first keyframe.
A point set is sampled from the images of the keyframe together with the intensity. Unlike the indirect
VO, no extraction or matching process of the distinct features is needed in the direct VO. As a result,
the direct VO is generally faster than the indirect VO. However, the accuracy and robustness are hard
to ensure without carefully designed features. To ensure the accurate estimation, the point sampling
in the direct VO should follow two basic criteria: (1) The sampled points are distributed as evenly
as possible in the image; and (2) The absolute intensity gradient at the sampled point is significantly
higher than its neighbors. The absolute intensity gradient g at point j with the pixel coordinate of[

upj
, vpj

]
can be evaluated with the intensity differences as follows:

g =

√√√√√ I
(

upj
+ 1, vpj

)
− I
(

upj
− 1, vpj

)
2

2

+

 I
(

upj
, vpj

+ 1
)
− I
(

upj
, vpj
− 1
)

2

2

(6)

where I(·) is the intensity at the corresponding pixel coordinate. For even sampling, the RGB image in
the keyframe is divided into patches with the size of b× b. The pixel with the highest absolute intensity
gradient among the pixels with valid depth measurements in each patch is chosen as a candidate. If
the absolute intensity gradient of a candidate is no less than a predesigned threshold gthres, the 3D
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coordinate of the candidate pixel is constructed. We used a simple pin-hole camera model for the
3D construction.

SCppj
=


SCxpj
SCypj
SCzpj

 = d
(

upj
, vpj

)
upj−cx

fx
vpj−cy

fy

1

 (7)

where d
(

upj
, vpj

)
is the depth measurement of corresponding point; and fx, fy, cx, and cy are the

intrinsic parameters of the RGB camera. To simplify the measurement function, the constructed points
were transformed into static IMU coordinate system. The transformed 3-dimensional coordinate was
added into the point set of the keyframe.

SCppj
= C

I RT
(

SCppj
− Cp

)
(8)

where C
I R and Cp represent the transformation between the ICS and the CCS. We assumed that the

two sensors were mounted on a rigid body so that the transformation did not change over time.
The camera–IMU transformation and the intrinsic parameters were calibrated in advance and the
calibration methods are not included in this paper.

The absolute intensity gradient threshold gthres was designed according to the intensity
characteristic of each patch and evaluated adaptively online. We treated gthres as the sum of two parts:

gthres = g + gb (9)

where g is the average intensity of the image patch and gb is a positive value to ensure that the absolute
intensity gradient of the candidate is sufficiently high. It is easy to understand that the absolute
intensity gradient of the candidate should exceed more pixels in a larger patch, which means that gthres
is higher with a larger patch and gb has a positive correlation with the patch size b. We used a simple
linear function to represent the positive correlation and formulated the lower-bound constraint of the
absolute intensity gradient as follows:

g ≥ g + λ(b− 1), λ > 0 (10)

where λ is a positive constant. Particularly in the case of b = 1, i.e., only one pixel exits in each patch,
the above lower bound constraint degrades into g ≥ g, which means that all points with valid depth
measurements are constructed. Figure 1 shows an example of point sampling on a 640 × 480 image.
In the example, the above method was able to sample points not only from the edges of the objects, but
also from regions with weak intensity variations such as the computer screen and the floor. The points
were distributed more densely with a smaller patch. The numbers of sampled points with different
patch sizes in this example are shown in Table 1.

Table 1. The number of sampled points with different patch sizes.

b Number of Sampled Points

2 55752
4 14445
8 3707

16 964
32 242
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Figure 1. Example of point sampling on a 640 × 480 image with different patch sizes. The green points
represent the sampled points. (a) The original image; (b) The result of point sampling with b = 2; (c) The
result of point sampling with b = 4; (d) The result of point sampling with b = 8; (e) The result of point
sampling with b = 16; and (f) The result of point sampling with b = 32.

The above point sampling method adjusts the number of the points by tuning b and guarantees
evenly distributed points. The usage of images approximated the dense visual odometry with a small b.
The usage of images approximated the sparse visual odometry with a large b. The keyframe may not
sufficient to estimate the egomotion as the camera moves, so we used two judging criteria to change
the keyframe:

1. A new keyframe is needed if there are not enough points in the current view. This is measured
via the ratio of points in the current view.

2. Observing the same area from different locations far from each other is likely to lead to large
differences in occlusion and illumination. In such cases, new keyframes are needed even if
enough points are in the current view. This criterion is quantified with the mean square optical

flow ignoring rotational motion f =

√
1
m ∑m

i=1

(
(ui,0 − ui,t)

2 + (vi,0 − vi,t)
2
)

. [ui,0, vi,0] is the pixel

coordinate of point i in the keyframe, and [ui,t, vi,t] is the pixel coordinate transformed only by
the translational motion.

A new keyframe is constructed with the current RGBD images if any of the two criteria are
satisfied. After a new keyframe is constructed, the previous keyframe will be replaced by the new
one, and the reference coordinate systems are changed in turn. The estimations of SIv and SI

E R are
transformed with I

SIρ. Then, the estimations of I
SIρ and SIp are set to 0.

The above keyframe and point sampling method mainly refers to Engel’s DSO method, except for
several simplifications as follows:

• Only one keyframe is maintained for the sake of complexity.
• The depth measurements are generated with an RGBD camera instead of being estimated in the

optimization scheme.
• The gradient constraint in the sampling points is evaluated according to the patch size.
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2.4. Measurement Model

A direct VO was used as the measurement model where the intensity was used as the
measurement directly without feature extraction and matching processes. The position of each point j
was transformed from the SICS into the CCS by the motion state as follows:

Cppj
= C

I RI
SIR
(

I
SIρ
)(

SIppj
− SIp

)
+ Cp (11)

The pixel coordinate of point j in the current view was evaluated according to the pin-hole
camera model. [

upj

vpj

]
= π

(
Cppj

)
=

 Cxpj

fx
Czpj

+ cx

Cypj

fy
Czpj

+ cy

 (12)

The intensity Ik

(
upj

, vpj

)
of point j in the RGB image at time k was used as the measurement

zj,k = Ik

(
upj

, vpj

)
+ nj,k (13)

where nj,k is the measurement noise and assumed to obey a Gaussian distribution with covariance Rj,k.
Combining Equations (11)–(13), one can obtain the following measurement equation.

zk = h
(

I
SIρk, SIpk

)
(14)

3. Mixed-Degree Cubature H∞ Information Filter-Based VIO

The above keyframe management method and measurement model of intensity led to a
simple frame-to-frame alignment-based egomotion estimator. However, the simple estimator with
linearization-based solvers such as the Gaussian–Newton optimization and EKF performed poorly
as the models were highly nonlinear and the measurement noises vary dramatically. The linear
approximations and Gaussian assumptions used in the solvers were not valid practically. For a robust
estimator, the previous studies on VO generally maintained a slide window of multiple keyframes or
a local map. In this section, we present a nonlinear filter-based VIO method for the frame-to-frame
alignment problem. The designed hybrid cubature H∞ information filter used two cubature rules with
different degrees to reduce the linearization error in a numerically stable way and the H∞ filter to
estimate the states in the presence of non-Gaussian noises.

3.1. Bayes Filter for Nonlinear Visual–Inertial Navigation System

Consider the following nonlinear system

xk = f(xk−1) + wk−1
zk = h(xk) + nk

(15)

where f(·) and h(·) are arbitrary nonlinear functions and wk−1 and nk are the process noise and
the measurement noise, respectively. Under the Gaussian assumption of noises, the Bayes filter for
nonlinear system described by the information vector and information matrix was formulated as an
iterated process of a time-update phase and a measurement-update phase.
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(1) Time-update phase

x̂k|k−1 =
∫
Rn f (x)N

(
x; x̂k−1|k−1, Pk−1|k−1

)
dx

Pk|k−1 =
∫
Rn f (x) f T(x)N

(
x; x̂k−1|k−1, Pk−1|k−1

)
dx− x̂k|k−1x̂T

k|k−1

Yk|k−1 = P−1
k|k−1

yk|k−1 = Yk|k−1x̂k|k−1

(16)

(2) Measurement-update phase

ẑk|k−1 =
∫
Rn h(x)N

(
x; x̂k|k−1, Pk|k−1

)
dx

Pxz =
∫
Rn xhT(x)N

(
x; x̂k|k−1, Pk|k−1

)
dx− x̂k|k−1ẑT

k|k−1

Hk =
(

Yk|k−1Pxz

)T

ŷk|k = ŷk|k−1 + HT
k R−1

k

(
zk − x̂k|k−1

)
+ Hkx̂k|k−1

Yk|k = Yk|k−1 + HT
k R−1

k Hk

(17)

The state estimation could be recovered from the information state

Pk|k = Y−1
k|k

x̂k|k = Pk|kŷk|k
(18)

According to the measurement model in Equation (14), only a part of the state vector appeared
explicitly in the measurement equation. We defined the state vector explicitly shown in the
measurement model as follows:

x1 =

[
I
SIρ
SIp

]
∈ Rn1 (19)

where n1 = 6. The rest state vector is
x2 = SIv ∈ Rn2 . (20)

Correspondingly, the covariance matrix P of the state vector is composed of four blocks as follows:

P =

[
P11 P12

P21 P22

]
(21)

Applying the above partition of the state vector to the evaluation of the predicted measurements
(the first equation in Equation (17)), one can obtain.

ẑk|k−1 =
∫
Rn h(x)N

(
x; x̂k|k−1, Pk−1|k−1

)
dx

=
∫
Rn1 h(x)N

(
x1; x̂1,k|k−1, P11,k|k−1

)
dx1

(22)

As shown by Equation (22), the original 9-dimensional integral is simplified to a 6-dimensional
integral. The evaluation of the cross-covariance matrix (the second equation in Equation (17)) can also
be simplified in a similar way.

Pxz =
∫
Rn xhT(x)N

(
x; x̂k−1|k−1, Pk−1|k−1

)
dx− x̂k|k−1ẑT

k|k−1

=
∫
Rn1

∫
Rn2

[
x1

x2

]
hT(x1)p(x1x2)dx2dx1 − x̂k|k−1ẑT

k|k−1

(23)
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where p(x1, x2) is the joint probability density function of two random vectors x1 and x2 i.e., the
probability density function of the Gaussian distribution. Based on the formula of conditional
probability, one can obtain

p(x1, x2) = p(x2|x1)p(x1) (24)

Substituting Equation (24) into Equation (23) yields

Pxz =
∫
Rn1

∫
Rn2

[
x1

x2

]
hT(x1)p(x2|x1)dx2 p(x1)dx1 − x̂k|k−1ẑT

k|k−1 (25)

With the Gaussian assumption of the state vector, the distribution of x2 conditional on x1 is a
multivariate Gaussian with the mean value of x̂2 + P21P−1

11 (x1 − x̂1) and the covariance matrix of
P22 − P21P−1

11 P12. Thus, the inner integral in Equation (25) is solved as

∫
Rn2

[
x1

x2

]
hT(x1)p(x2|x1)dx2 =

[
x1

x̂2 + P21P−1
11 (x1 − x̂1)

]
hT(x1). (26)

The cross-covariance matrix is evaluated as follows:

Pxz =
∫
Rn1

[
x1

x̂2,k|k−1 + P21,k|k−1P−1
11,k|k−1

(
x1 − x̂1,k|k−1

) ]hT(x1)p(x1)dx1 − x̂k|k−1ẑT
k|k−1

=

[ ∫
Rn1 x1hT(x1)p(x1)dx1∫
Rn1

(
x̂2,k|k−1 + P21,k|k−1P−1

11,k|k−1

(
x1 − x̂1,k|k−1

))
hT(x1)p(x1)dx1

]
− x̂k|k−1ẑT

k|k−1

=

[ ∫
Rn1 x1hT(x1)p(x1)dx1 − x̂1,k|k−1ẑT

k|k−1

P21,k|k−1P−1
11,k|k−1

(∫
Rn1 x1hT(x1)p(x1)dx1 − x̂1,k|k−1ẑT

k|k−1

) ]
(27)

In this way, the integrals in 9-dimensional space are simplified into integrals in 6-dimensional
space. This is practically useful when applying high-degree cubature rules and will be discussed later.

3.2. Mixed-Degree Cubature Information Filter

In general, the four integrals in Equations (16) and (17) cannot be solved directly. A group of
numerical integration-based approximation methods named by cubature rules are used for the filter
process and the resulting filters are called cubature filters. Using a cubature rule, a Gaussian weighted
integral of a nonlinear function g(x) is approximated with a weighted sum as follows:

∫
Rn

g(x)N
(

x; x̂k−1|k−1, Pk−1|k−1

)
dx ≈

Np

∑
j=1

wjg
(
Xj
)

(28)

where Xj represents the cubature points; wj is the corresponding weight that satisfies
Np

∑
j=1

wj = 1; and Np

is the number of the cubature points. The formulations of the cubature points and weights are different
in different cubature rules. The spherical-radial (SR) cubature rules use the spherical-radial coordinates
to transform the original integral into a double integral and select the cubature points on the spherical
coordinate and the radial coordinate respectively. Based on the SR rules, the spherical simplex-radial
(SSR) cubature rules use the n-simplex to evaluate the cubature points on the spherical coordinate.

The degree of a cubature rule is defined based on the degree of used monomials in the Tayler
polynomial of the nonlinear function. A p-degree cubature rule integrates all of the monomials in
the Tayler polynomial of g(x) up to degree p exactly but not exactly for some monomials of degree
p + 1. In general, the cubature rule with a higher degree achieves higher accuracy, but suffers from
more computation with more cubature points and worse numerical stability with potential negative
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weights. Practically, third-degree cubature rules and fifth-degree cubature rules are commonly used in
the Bayes filter. The numbers of cubature points of the four cubature rules are listed in Table 2.

Table 2. Number of cubature points of different rules.

Cubature rules Np

3rd-degree spherical-radial cubature rule (3-SR) 2n
5th-degree spherical-radial cubature rule (5-SR) 2n2 + 1

3rd-degree spherical simplex-radial cubature rule (3-SSR) 2n + 2
5th-degree spherical simplex-radial cubature rule (5-SSR) n2 + 3n + 3

A cubature rule with all weights being positive is more desirable than one with both positive and
negative weights for the sake of numerical stability. A stability parameter was defined in [33] as the
sum of absolute values of the weights:

Θ =
Np

∑
i=0
|wi| (29)

When Θ is larger than 1, the truncation error will decrease the accuracy of the numerical
integration. The curves of Θ with respect to n for different cubature rules are shown in Figure 2.
The stability parameters of 3-SR and 3-SSR were maintained at 1, while the stability parameter of 5-SR
increased since n > 4, and the stability parameter of 5-SSR increased since n > 7.
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According to the previous motion and measurement models, the time-update phase involves
Gaussian-weighted integrals in 9-dimensional space while the measurement-update phase involves
Gaussian-weighted integrals in 6-dimensional space. To obtain high precision and numerical stability
with as few cubature points as possible, we applied the 3-SR rule in the time-update phase and the
5-SSR rule in the measurement-update phase. Substituting the chosen cubature rules, we formulated
the VIO process based on the mixed-degree cubature information filter as follows.

(1) Time-update phase
Evaluate the cubature points based on the 3-SR rule:

ξk−1|k−1,j = Sk−1|k−1γSR3
j + x̂k−1|k−1, 1 ≤ j ≤ 2n (30)

where Sk−1|k−1 is the square root of the covariance matrix Pk−1|k−1 so that Pk−1|k−1 = Sk−1|k−1ST
k−1|k−1

and could be evaluated using the Cholesky decomposition; and γSR3
j is formulated as follows:
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γSR3
j =

{
aj , 1 ≤ j ≤ n
−aj−n , n + 1 ≤ j ≤ 2n

(31)

aj =
[
aj,1, aj,2, · · · , aj,n

]T
aj,i =

{ √
9 , i = j

0 , i 6= j
1 ≤ i ≤ n, 1 ≤ j ≤ n

(32)

Evaluate the predicted state and the covariance matrix:

x̂k|k−1 = 1
2n

2n
∑

j=1

(
Fξ j + G

(
ξ j
)
uk−1 + c

)
Pk|k−1 = 1

2n

2n
∑

j=1

(
Fξ j + G

(
ξ j
)
uk−1 + c− x̂k|k−1

)(
Fξ j + G

(
ξ j
)
uk−1 + c− x̂k|k−1

)T
+ Q

(33)

Evaluate the information matrix and the information vector:

Yk|k−1 = P−1
k|k−1

ŷk|k−1 = Yk|k−1x̂k|k−1
(34)

(2) Measurement-update phase
Evaluate the cubature points based on the 5-SSR rule

ξm
k|k−1,j = S1,k|k−1γSSR5

j + x̂1,k|k−1 (35)

where γSSR5
j is formulated as follows:

γSSR5
j =



[
0 · · · 0

]T
, j = 0

√
n1 + 2cj , j = 1, 2, · · · , n1 + 1

−
√

n1 + 2cj−(n1+1) , j = n1 + 2, · · · , 2(n1 + 1)√
n1 + 2bj−2(n1+1) , j = 2n1 + 3, · · · ,

(
n2

1 + 5n1 + 4
)
/2

−
√

n1 + 2bj−(n2
1+5n1+4)/2 , j =

(
n2

1 + 5n1 + 6
)
/2, · · · , n2

1 + 3n1 + 2

(36)

where
{

cj
}

are the vertexes of the n1-simplex, and

cj =
[
cj,1, cj,2, · · · , cj,n1

]T
cj,i =


−
√

n1+1
n1(n1−i+2)(n1−i+1) , i < j√
(n1+1)(n1−j+1)

n1(n1−j+2) , i = j

0 , i > j

1 ≤ i ≤ n1, 1 ≤ j ≤ n1 + 1
(37)

{bi} are the projections of the midpoints of the edges constructed by
{

cj
}

.

{bi} =
{√

n1

2(n1 − 1)
(cl + cm) : l < m, 1 ≤ l ≤ n1 + 1, 1 ≤ m ≤ n1 + 1

}
(38)

The weights for the 5-SSR rule are as follows:

wj =


2

n1+2 , j = 0
(7−n1)n2

1
2(n1+1)2(n1+2)2 , j = 1, · · · , 2(n1 + 1)

2(n1−1)2

(n1+1)2(n1+2)2 , j = 2n1 + 3, · · · , n2
1 + 3n1 + 2

(39)
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Evaluate the predicted measurement ẑk|k−1 and the cross-covariance matrix Pxz:

ẑk|k−1 =
n2

1+3n1+3
∑

j=1
wjh

(
ξm

k|k−1,j

)

Pxz =


n2

1+3n1+3
∑

j=1
wjξ

m
k|k−1,jh

(
ξm

k|k−1,j

)T
− x̂1,k|k−1ẑT

k|k−1

P21,k|k−1P−1
11,k|k−1

(
n2

1+3n1+3
∑

j=1
wjξ

m
k|k−1,jh

(
ξm

k|k−1,j

)T
− x̂1,k|k−1ẑT

k|k−1

)


(40)

As the dimension of the measurement vector is generally large, the inversion of the matrix in
Equation (17) is very time-consuming. To omit the inversion, we assumed that the m measurements
were independent of each other, and the covariance matrix was a diagonal matrix with diagonal
elements of Rj,k(j = 1, . . . , m). Further assuming that Rj,k was invariant with time and equal to the
other diagonal elements, Rj,k was treated as a constant R. Thus, the inverse of the m × m matrix R was
replaced by the division of the scalar R, and the measurement update of the information vector and
matrix was obtained as follows.

ŷk|k = ŷk|k−1 + R−1HT
k

(
zk − h

(
x̂1,k|k−1

)
+ Hkx̂k|k−1

)
Yk|k = Yk|k−1 + R−1HT

k Hk
(41)

Finally, the estimated state vector and covariance matrix were recovered based on Equation (18).

3.3. Robust H∞ Filter

The aim of the H∞ filter is to obtain the state estimation minimizing the following cost
function [34].

J∞ =
∑N−1

k=0 ‖xk − x̂k‖2
Mk

‖x0 − x̂0‖2
Y0

+ ∑N−1
k=0

(
‖wk‖2

Qk
+ ‖nk‖2

Rk

) (42)

Based on game theory, the design of the H∞ filter is a game between the filter designer and
nature. Nature’s goal is to maximize the estimation error by properly choosing x0, wk, and nk. The
cost function is defined in a fractional form to create a fair game by preventing nature using extremely
large noises.

The above optimization problem is difficult to solve directly. An alternative strategy is to choose
an upper bound and estimate the state satisfying the following constraint.

J∞ < γ2 (43)

where γ is the performance bound to be designed. According to the above equation, a new cost
function is defined as follows:

J = −1
θ
‖x0 − x̂0‖2

Y0
+

N−1

∑
k=0

(
‖xk − x̂k‖2

Mk
− 1

θ

(
‖wk‖2

Qk
+ ‖nk‖2

Rk

))
< 1 (44)

Therefore, the original optimization problem is transformed into the following minimax problem.

J∗ = min
x̂k

max
x0,wk ,nk

J (45)

Yang [29] solved the minimax problem and proposed an extended H∞ filter (EH∞F) for the
nonlinear system, which was similar to EKF in form.
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xk|k−1 = f
(

xk−1|k−1

)
Pk|k−1 = ∇fPk−1|k−1∇fT + Q

(46)

Kk = Pk|k−1∇hT
(
∇hPk|k−1∇hT + Rk

)−1

xk|k = xk|k−1 + Kk

(
zk − h

(
xk−1|k−1

))
P−1

k|k = P−1
k|k−1 +∇hTR−1

k ∇h− γ−2In

(47)

where In is the n-dimension identity matrix. The EH∞F is a Jacobian-based filter, and can be extended
with cubature rules for higher precision in nonlinear systems as Chandra did in [30]. The time-update
phase of the cubature H∞ filter (CH∞F) is the same as the CKF and expressed as the equation. Therefore,
we only provided the measurement-update equations as follows:

Pzz = HkPk|k−1HT
k + Rk

Kk = PxzP−1
zz

x̂k|k = x̂k|k−1 + Kk

(
zk − h

(
x̂k|k−1

))
P−1

k|k = P−1
k|k−1 + HT

k R−1
k Hk − γ−2In

(48)

where the cross-covariance matrix Pxz and the measurement matrix Hk are evaluated using a cubature
rule. It can be seen from Equations (47) and (48) that the main difference between the EH∞F and
the Kalman filter was the formula to update the covariance matrix Pk|k. In this way, the EH∞F acts
to reduce the confidence of the state estimation in case the unexpected noises negatively impact the
performance. Applying the information-description of the Kalman filter on the above CH∞F, a cubature
H∞ information filter (CH∞IF) can be formulated as follows:

Pzz = HkPk|k−1HT
k + Rk

ik = HT
k R−1

k

(
zk − h

(
x̂k|k−1

)
+ Hkx̂k|k−1

)
− γ−2

(
x̂k|k−1 + PxzP−1

zz

(
zk − h

(
x̂k|k−1

)))
ŷk|k = ŷk|k−1 + ik

Yk|k = Yk|k−1 + HT
k R−1

k Hk − γ−2In

(49)

where the covariance matrix of measurement error vector Pzz is an m-dimension matrix. As previously
stated, m is generally large in direct VO, which means that the inversion of Pzz in the above equation is
not practical. We used the expressions of the gain matrix in the Kalman filter to simplify the inversion.
In this way, the measurement-update phase in CH∞IF was divided into two steps as follows:

(1) Evaluate the measurement matrix Hk with a cubature rule and update the information matrix
using the information filter.

Yk
′ = Yk|k−1 + HT

k R−1
k Hk (50)

(2) Evaluate the gain matrix K∞ and execute the measurement update of the H∞ filter.

K∞ = Yk
′−1HT

k R−1
k

ik = HT
k R−1

k

(
zk − h

(
x̂k|k−1

)
+ Hkx̂k|k−1

)
− γ−2

(
x̂k|k−1 + K∞

(
zk − h

(
x̂k|k−1

)))
ŷk|k = ŷk|k−1 + ik

Yk|k = Yk
′ − γ−2In

(51)

It is easy to prove that the above two-step measurement-update process is equal to Equation (49).
The inversion of the m-dimension matrix is replaced by the inversion of a 9-dimensional matrix Yk

′.
It is worth noting that the measurement-update phase of the proposed CH∞IF was different

to the one with the same abbreviation that Chandra derived in [31]. Compared with Equation (49),
Chandra’s method omitted the second term of ik when using the technique to analyze the estimation
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error in [35,36]. The error transition function of the measurement-update phase of our method is
as follows:

x̃k|k = x̃k|k−1 −Kk
~
zk (52)

Kk = Pk|k

(
HT

k R−1
k − γ−2K∞

)
(53)

where
~
zk is the predicted error of the measurement zk, and formulated as follows:

~
zk = zk − h

(
x̂k|k−1

)
(54)

While the error transition function of the measurement-update phase of Chandra’s method is
related to the predicted mean value of the state vector x̂k|k−1 as follows:

x̃k|k = x̃k|k−1 − Pk|kHT
k R−1

k
~
zk − γ−2Pk|kx̂k|k−1 (55)

This goes against the convergence of the filter. In contrast, the error transition function of our
method is in the form of a weighted error function as used in [35,36], which makes a convergent filter.

3.4. Summary of MCH∞IF-Based VIO

Combining the above methods, a mixed-order cubature H∞ information filter (MOCH∞IF) was
designed for the nonlinear non-Gaussian VIO system. The time-update phase was the same as
Equations (30)–(34). The measurement-update phase was performed in the following steps.

• Evaluate cubature points based on the 5-SSR rule with the time complexity of O
(

Np
)

ξm
k|k−1,j = S1,k|k−1γSSR5

j + x̂1,k|k−1 (56)

• Evaluate the predicted measurements ẑk|k−1 and the cross-covariance matrix Pxz with the time
complexity of O

(
mNp

)
ẑk|k−1 =

n2
1+3n1+3

∑
j=1

wjh
(

ξm
k|k−1,j

)

Pxz =


n2

1+3n1+3
∑

j=1
wjξ

m
k|k−1,jh

(
ξm

k|k−1,j

)T
− x̂1,k|k−1ẑT

k|k−1

P21,k|k−1P−1
11,k|k−1

(
n2

1+3n1+3
∑

j=1
wjξ

m
k|k−1,jh

(
ξm

k|k−1,j

)T
− x̂1,k|k−1ẑT

k|k−1

)


(57)

• Evaluate the measurement matrix Hk with the third equation in Equation (17) and update the
information matrix using the information filter with the time complexity of O(m)

Yk
′ = Yk|k−1 + R−1HT

k Hk (58)

• Evaluate the gain matrix K∞ and execute the measurement update of the H∞ filter with the time
complexity of O(m)

K∞ = R−1Yk
′−1HT

k

ik = R−1HT
k

(
zk − h

(
x̂k|k−1

)
+ Hkx̂k|k−1

)
− γ−2

(
x̂k|k−1 + K∞

(
zk − h

(
x̂k|k−1

)))
ŷk|k = ŷk|k−1 + ik

Yk|k = Yk
′ − γ−2In

(59)
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In conclusion, the time complexity of the measurement-update phase of MOCH∞IF is O
(
mNp

)
.

In the case of n1 = 6, we have Np = 57. Generally, the number of measurements is much larger than that
i.e., m� Np. Thus, the above measurement-update phase is a linear algorithm. In addition, the process
of the measurement-update phase is highly parallelizable except for the Cholesky decomposition and
the inverse of Yk

′ as it mainly consists of matrix additions and multiplications.

4. Evaluation Results

As analyzed in the previous section, the measurement-update phase with operations of large
matrixes is the bottleneck for real-time applications. However, the measurement-update phase of an
information-based filter is parallelizable and can be implemented on a parallel processor. We used
a laptop with the Geforce 940M GPU (NVIDIA, Santa Clara, CA, USA) and the i7-5600U CPU (Intel,
Santa Clara, CA, USA) to test the proposed MOCH∞IF-VIO system. We implemented our method with
CUDA (in Supplementary Materials) (Version 8.0, NVIDIA, Santa Clara, CA, USA, 2016) language.
The time-update phase was executed on the CPU and the measurement-update phase was executed
on the GPU. We used the Technical University of Munich (TUM) RGBD dataset [37] for evaluation.
The TUM RGBD dataset contains multiple sequences of videos collected using an RGBD camera under
different environmental conditions. The RGB images and depth images are collected at the rate of
30 Hz with a resolution of 640 × 480. The TUM dataset does not contain IMU measurements, we
simply used the differential and quadratic differential of the ground truth with the addition of random
noises as the simulated IMU measurements.

We compared the proposed MCH∞IF-VIO method with RGBDSLAM v2.0 in [38] and the
lightweight visual tracking (LVT) in [12]. The results of RGBDSLAM were calculated with the
corresponding ROS package, and the results of the LVT were directly obtained from the original
paper. We conducted the evaluation for MCH∞IF-VIO with five different patch sizes: 2, 4, 8, 16, and
32. The numbers were selected as powers of two for the convenience of CUDA implementation. The
absolute trajectory (ATE) and relative pose error (RPE) defined in [37] were used as error metrics.
The ATE measures the global consistency of the estimated trajectory and is suitable for visual SLAM
methods. On the other hand, the RPE measures the local accuracy of the trajectory over a fixed time
interval and is suited for visual odometry methods. We used five sequences in the TUM dataset for
testing the three methods. The basic parameters of the five sequences are shown in Table 3. The test
results are shown in Figures 3–7. In these figures, MCH∞IF-VIO(n) represents the MCH∞IF-VIO with
a patch size of n.

Table 3. Parameters of the used sequences.

Sequence Duration (s) Trajectory length (m)

fr1_desk 23.40 9.263
fr1_desk2 24.86 10.161
fr1_room 48.90 15.989
fr1_xyz 30.09 7.112
f3_office 87.09 21.455

The RPE of MCH∞IF-VIO increased along with the patch size in all of the tests. The change in
the ATE of MCH∞IF-VIO was similar to RPE with some exceptions. This is in line with the common
knowledge that more measurements lead to better accuracy in visual navigation. The MCH∞IF-VIO in
this paper and LVT are dead-reckoning algorithms, while RGBDSLAM is a compete SLAM algorithm
with joint optimization and loop-closure. Therefore, RGBDSLAM is more consistent globally than
MCH∞IF-VIO and LVT according to the ATE results. In our tests, MCH∞IF-VIO achieved a smaller
ATE than LVT with only one exception, where the ATE of MCH∞IF-VIO(32) was larger than LVT in the
test on fr1_room. MCH∞IF-VIO(2) had the smallest RPE in all of the tests. The estimation errors caused
by the IMU measurement noises increased over time. Moreover, the simple frame-to-frame alignment
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used in the measurement-update phase was less robust than the optimization with the global and local
map used in RGBDSLAM and LVT. Therefore, the performance of MCH∞IF-VIO in the test with long
duration such as fr3_office was less distinctive.
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5. Conclusions

In this paper, we presented our visual–inertial navigation system called MCH∞IF-VIO, which
uses a raw intensity-based measurement model. By analyzing the integrated navigation system,
we constructed a numerically stable mixed-degree cubature information filter scheme for the state
estimation problem. The H∞ filter was combined for the non-Gaussian noises in the intensity
measurements. The proposed VIO system was suitable for the RGBD camera–IMU system. The system
was evaluated on the TUM RGBD dataset and compared with the RGBDSLAM and LVT systems.

Given the raw visual measurement model with intensities directly used as measurements in
frame-to-frame alignment, the proposed MCH∞IF-VIO system with consideration of the system
nonlinearity and non-Gaussian measurement noises was shown to achieve good performance in
our tests. Though the method prefers short durations, the implementation with a patch size of two
outperformed the RGBDSLAM and LVT in the long-duration test. With the aid of adjustable patch size,
the proposed method could be tuned from an accurate-dense algorithm to a fast-sparse algorithm.

This paper aimed to build a robust state-estimation framework according to the fundamental
characteristics of the visual–inertial navigation system. The camera measurements were used in a raw
and direct way without heuristics in selecting the feature descriptors or tracking a sliding window.
Other well-designed intensity-based and feature-based measurement models can be applied in this
hybrid filter-based framework.

Supplementary Materials: The CUDA code used in the evaluations is available online at https://1drv.ms/f/s!
ApzqIuEnpaPHiDMOyneS8UV2KO6N.

https://1drv.ms/f/s!ApzqIuEnpaPHiDMOyneS8UV2KO6N
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