Further Investigation on Damage Model of Eco-Friendly Basalt Fiber Modified Asphalt Mixture under Freeze-Thaw Cycles
Abstract
:1. Introduction
2. Raw Materials, Experimental Methods and Theory Background
2.1. Raw Materials and Specimen Preparation
2.1.1. Raw Materials
2.1.2. Specimen Preparation
- Step (1): the pre-heated aggregates and basalt fiber were mixed together in a mixing pot for 90 s in order to make basalt fiber uniformly dispersed in aggregates.
- Step (2): the pre-heated asphalt AH-90 was weighted and poured into the mixing pot and the mixture was blended for 90 s.
- Step (3): the pre-weighted limestone powder was added into the mixing pot and then blended for 90 s.
- Step (4): Marshall specimens of AC-13 with a diameter of 101.6 mm and a height of 63.5 mm were prepared by compacting 75 blows on each side.
2.2. Freeze-Thaw Cycle Procedure
2.3. Damage Characteristics Indicators
2.3.1. Air Voids
2.3.2. Splitting Tensile Strength
2.3.3. Indirect Tensile Stiffness Modulus
2.4. Theory Background of Damage Model and Prediction Model
2.4.1. Logistic Damage Model
2.4.2. Multi-Variable Grey Model Represented by GM (1,N)
3. Results and Discussion
3.1. Logistic Damage Model of Asphalt Mixtures under Freeze-Thaw Cycles
3.2. Freeze-Thaw Damage Prediction Model Based on Grey Model by GM (1,N)
3.2.1. Two-Variable Grey Model GM (1,2)
3.2.2. Three-Variable Grey Model GM (1,3)
4. Conclusions
- Freeze-thaw cycles habr a negative effect on the volume and mechanical properties of an asphalt mixture. From air voids, splitting tensile strength, and indirect tensile stiffness modulus, the addition of basalt fiber can significantly improve the freeze-thaw resistance and mechanical performance of an asphalt mixture, leading to a reinforcement mechanism.
- The logistic damage model can quantificationally demonstrate that adding basalt fiber could significantly reduce the damage degree of asphalt mixtures by about 25%, and slow down the damage grow rate by about 45% compared to a control group.
- The ninth freeze-thaw cycle may be the turning point of damage variation of an asphalt mixture, after which the expansion and formation of air voids became slower.
- Results demonstrated that the established multi-variable grey models can accurately predict the variation trend of damage characteristics of asphalt mixtures. GM (1,3) was proven to perform better in prediction accuracy compared to GM (1,2) under the same data. GM (1,3) is an effective prediction model for reflecting the evolution of freeze-thaw damage for asphalt mixtures.
- Appropriate basalt fiber content is recommended for modifying an asphalt mixture. It is necessary to check the dispersion of basalt fibers in an asphalt mixture to ensure the dispersion of basalt fiber. Compared to ordinary asphalt mixtures, the predicted cost is mainly reliant on the basalt fibers.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, M.Z.; Lin, J.T.; Wu, S.P. Potential of recycled fine aggregates powder as filler in asphalt mixture. Constr. Build. Mater. 2011, 25, 3909–3914. [Google Scholar] [CrossRef]
- Zhang, R.; Dai, Q.L.; You, Z.P.; Wang, H.N.; Peng, C. Rheological Performance of Bio-Char Modified Asphalt with Different Particle Sizes. Appl. Sci. 2018, 8, 1665. [Google Scholar] [CrossRef]
- Gao, J.F.; Wang, H.N.; Bu, Y.; You, Z.P.; Hasan, M.R.M.; Irfan, M. Effects of coarse aggregate angularity on the microstructure of asphalt mixture. Constr. Build. Mater. 2018, 183, 472–484. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, H.; You, Z.P.; Xu, F.; Jiang, G.S.; Lv, S.T.; Zhang, R.; Yang, H. Preparation and anti-icing properties of a superhydrophobic silicone coating on asphalt mixture. Constr. Build. Mater. 2018, 189, 227–235. [Google Scholar] [CrossRef]
- Wang, W.S.; Cheng, Y.C.; Tan, G.J.; Tao, J.L. Analysis of Aggregate Morphological Characteristics for Viscoelastic Properties of Asphalt Mixes Using Simplex Lattice Design. Materials 2018, 11, 1908. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.L.; Bian, Y.S.; Li, L.L.; Jiao, Y.B.; Tao, J.L.; Xiang, C.X. Stereo logical estimation of aggregate gradation using digital image of asphalt mixture. Constr. Build. Mater. 2015, 94, 458–466. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.P.; Hiller, J.; Watkins, D. Correlation Analysis between Temperature Indices and Flexible Pavement Distress Predictions Using Mechanistic-Empirical Design. J. Cold Reg. Eng. 2017, 31, 04017009. [Google Scholar] [CrossRef]
- Lv, S.T.; Liu, C.C.; Zheng, J.L.; You, Z.P.; You, L.Y. Viscoelastic Fatigue Damage Properties of Asphalt Mixture with Different Aging Degrees. KSCE J. Civ. Eng. 2018, 22, 2073–2081. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.N.; Yang, X.; You, Z.P. A Combinational Prediction Model for Transverse Crack of Asphalt Pavement. KSCE J. Civ. Eng. 2018, 22, 2109–2117. [Google Scholar] [CrossRef]
- Feng, D.C.; Yi, J.Y.; Wang, D.S.; Chen, L.L. Impact of salt and freeze-thaw cycles on performance of asphalt mixtures in coastal frozen region of China. Cold. Reg. Sci. Technol. 2010, 62, 34–41. [Google Scholar] [CrossRef]
- Pan, P.; Wu, S.P.; Hu, X.D.; Wang, P.; Liu, Q.T. Effect of freezing-thawing and ageing on thermal characteristics and mechanical properties of conductive asphalt concrete. Constr. Build. Mater. 2017, 140, 239–247. [Google Scholar] [CrossRef]
- Badeli, S.; Carter, A.; Dore, G.; Saliani, S. Evaluation of the durability and the performance of an asphalt mix involving Aramid Pulp Fiber (APF): Complex modulus before and after freeze-thaw cycles, fatigue, and TSRST tests. Constr. Build. Mater. 2018, 174, 60–71. [Google Scholar] [CrossRef]
- Zheng, Y.X.; Cai, Y.C.; Zhang, G.H.; Fang, H.Y. Fatigue Property of Basalt Fiber-Modified Asphalt Mixture under Complicated Environment. J. Wuhan. Univ. Technol. 2014, 29, 996–1004. [Google Scholar] [CrossRef]
- Xu, H.N.; Guo, W.; Tan, Y.Q. Internal structure evolution of asphalt mixtures during freeze-thaw cycles. Mater. Des. 2015, 86, 436–446. [Google Scholar] [CrossRef]
- Xu, H.N.; Li, H.Z.; Tan, Y.Q.; Wang, L.B.; Hou, Y. A Micro-Scale Investigation on the Behaviors of Asphalt Mixtures under Freeze-Thaw Cycles Using Entropy Theory and a Computerized Tomography Scanning Technique. Entropy 2018, 20, 68. [Google Scholar] [CrossRef]
- Xu, H.N.; Guo, W.; Tan, Y.Q. Permeability of asphalt mixtures exposed to freeze-thaw cycles. Cold. Reg. Sci. Technol. 2016, 123, 99–106. [Google Scholar] [CrossRef]
- Yan, K.Z.; Ge, D.D.; You, L.Y.; Wang, X.L. Laboratory investigation of the characteristics of SMA mixtures under freeze-thaw cycles. Cold Reg. Sci. Technol. 2015, 119, 68–74. [Google Scholar] [CrossRef]
- Badeli, S.; Carter, A.; Dore, G. Complex Modulus and Fatigue Analysis of Asphalt Mix after Daily Rapid Freeze-Thaw Cycles. J. Mater. Civ. Eng. 2018, 30, 04018056. [Google Scholar] [CrossRef]
- Liu, F.; You, Z.P.; Yang, X.; Wang, H.N. Macro-micro degradation process of fly ash concrete under alternation of freeze-thaw cycles subjected to sulfate and carbonation. Constr. Build. Mater. 2018, 181, 369–380. [Google Scholar] [CrossRef]
- You, L.Y.; You, Z.P.; Dai, Q.L.; Guo, S.C.; Wang, J.Q.; Schultz, M. Characteristics of Water-Foamed Asphalt Mixture under Multiple Freeze-Thaw Cycles: Laboratory Evaluation. J. Mater. Civ. Eng. 2018, 30, 04018270. [Google Scholar] [CrossRef]
- Huang, T.; Qi, S.; Yang, M.; Lv, S.T.; Liu, H.F.; Zheng, J.L. Strength Criterion of Asphalt Mixtures in Three-Dimensional Stress States under Freeze-Thaw Conditions. Appl. Sci. 2018, 8, 1302. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Zhao, L.D.; Lan, B.W.; Meng, L. Research on Freeze-thaw Damage Model and Life Prediction of Asphalt Mixture. J. Highw. Transport. Res. Dev. 2011, 6, 1–7. (In Chinese) [Google Scholar]
- Yi, J.Y.; Shen, S.H.; Muhunthan, B.; Feng, D.C. Viscoelastic-plastic damage model for porous asphalt mixtures: Application to uniaxial compression and freeze-thaw damage. Mech. Mater. 2014, 70, 67–75. [Google Scholar] [CrossRef]
- Zhang, P. Research on Characteristics and Detection Methods of Asphalt Mixture Damage Induced by Water-Temperature-Radiation. Ph.D. Thesis, Jilin University, Changchun, China, June 2015. [Google Scholar]
- Ye, Q.S.; Wu, S.P.; Li, N. Investigation of the dynamic and fatigue properties of fiber-modified asphalt mixtures. Int. J. Fatigu. 2009, 31, 1598–1602. [Google Scholar] [CrossRef]
- Wu, S.P.; Ye, Q.S.; Li, N. Investigation of rheological and fatigue properties of asphalt mixtures containing polyester fibers. Constr. Build. Mater. 2008, 22, 2111–2115. [Google Scholar] [CrossRef]
- Tayfur, S.; Ozen, H.; Aksoy, A. Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Constr. Build. Mater. 2007, 21, 328–337. [Google Scholar] [CrossRef]
- Xiong, R.; Fang, J.H.; Xu, A.H.; Guan, B.W.; Liu, Z.Z. Laboratory investigation on the brucite fiber reinforced asphalt binder and asphalt concrete. Constr. Build. Mater. 2015, 83, 44–52. [Google Scholar] [CrossRef]
- Imaninasab, R. Effect of granular polymers on rutting performance of SMA with respect to modification process. Constr. Build. Mater. 2017, 130, 64–72. [Google Scholar] [CrossRef]
- Wang, Y.H.; Chong, D.; Wen, Y. Quality verification of polymer-modified asphalt binder used in hot-mix asphalt pavement construction. Constr. Build. Mater. 2017, 150, 157–166. [Google Scholar] [CrossRef]
- Hajikarimi, P.; Tehrani, F.F.; Nejad, F.M.; Absi, J.; Rahi, M.; Khodaii, A.; Petit, C. Mechanical Behavior of Polymer-Modified Bituminous Mastics. I: Experimental Approach. J. Mater. Civ. Eng. 2019, 31, 04018337. [Google Scholar] [CrossRef]
- Hajikarimi, P.; Tehrani, F.F.; Nejad, F.M.; Absi, J.; Khodaii, A.; Rahi, M.; Petit, C. Mechanical Behavior of Polymer-Modified Bituminous Mastics. II: Numerical Approach. J. Mater. Civ. Eng. 2019, 31, 04018338. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Wang, W.S.; Gong, Y.F.; Wang, S.R.; Yang, S.T.; Sun, X. Comparative Study on the Damage Characteristics of Asphalt Mixtures Reinforced with an Eco-Friendly Basalt Fiber under Freeze-thaw Cycles. Materials 2018, 11, 2488. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, L.B.; Gu, X.Y.; Zhou, G.Q. Effect of Basalt Fiber on the Asphalt Binder and Mastic at Low Temperature. J. Mater. Civ. Eng. 2013, 25, 355–364. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.B.; Christian, D.; Zhou, G.Q. Fatigue Properties of Asphalt Materials at Low In-Service Temperatures. J. Mater. Civil. Eng. 2013, 25, 1220–1227. [Google Scholar] [CrossRef]
- Gu, X.Y.; Xu, T.T.; Ni, F.J. Rheological behavior of basalt fiber reinforced asphalt mastic. J. Wuhan. Univ. Technol. 2014, 29, 950–955. [Google Scholar] [CrossRef]
- Qin, X.; Shen, A.Q.; Guo, Y.C.; Li, Z.N.; Lv, Z.H. Characterization of asphalt mastics reinforced with basalt fibers. Constr. Build. Mater. 2018, 159, 508–516. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gu, X.Y.; Lv, J.X.; Zhu, Z.K.; Ni, F.J. Mechanism and behavior of fiber-reinforced asphalt mastic at high temperature. Int. J. Pavement Eng. 2018, 19, 407–415. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gu, X.Y.; Lv, J.X.; Zhu, Z.K.; Zou, X.Y. Numerical analysis of the rheological behaviors of basalt fiber reinforced asphalt mortar using ABAQUS. Constr. Build. Mater. 2017, 157, 392–401. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gu, X.Y.; Lv, J.X. Effect of basalt fiber distribution on the flexural–tensile rheological performance of asphalt mortar. Constr. Build. Mater. 2018, 179, 307–314. [Google Scholar] [CrossRef]
- Wang, W.S.; Cheng, Y.C.; Tan, G.J. Design Optimization of SBS-Modified Asphalt Mixture Reinforced with Eco-Friendly Basalt Fiber Based on Response Surface Methodology. Materials 2018, 11, 1311. [Google Scholar] [CrossRef]
- Cui, P.D.; Xiao, Y.; Fang, M.J.; Chen, Z.W.; Yi, M.W.; Li, M.L. Residual Fatigue Properties of Asphalt Pavement after Long-Term Field Servic. Materials 2018, 11, 892. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.S.; Cheng, Y.C.; Tan, G.J.; Shi, C.L. Pavement Performance Evaluation of Asphalt Mixtures Containing Oil Shale Waste. Road. Mater. Pavement 2018, 1–22. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Wang, W.S.; Tan, G.J.; Shi, C.L. Assessing High- and Low-Temperature Properties of Asphalt Pavements Incorporating Waste Oil Shale as an Alternative Material in Jilin Province, China. Sustainability 2018, 10, 2179. [Google Scholar] [CrossRef]
- JTG E20-2011. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering; Ministry of Transport of the People’s Republic of China: Beijing, China, 2011. (In Chinese)
- Ma, T.; Ding, X.H.; Wang, H.; Zhang, W.G. Experimental Study of High-Performance Deicing Asphalt Mixture for Mechanical Performance and Anti-Icing Effectiveness. J. Mater. Civ. Eng. 2018, 30, 04018180. [Google Scholar] [CrossRef]
- Ma, T.; Wang, H.; He, L.; Zhao, Y.L.; Huang, X.M.; Chen, J. Property Characterization of Asphalt Binders and Mixtures Modified by Different Crumb Rubbers. J. Mater. Civ. Eng. 2017, 29, 04017036. [Google Scholar] [CrossRef]
- Guo, Q.L.; Li, L.L.; Cheng, Y.C.; Jiao, Y.B.; Xu, C. Laboratory evaluation on performance of diatomite and glass fiber compound modified asphalt mixture. Mater. Des. 2015, 66, 51–59. [Google Scholar] [CrossRef]
- Zeng, B.; Luo, C.M.; Liu, S.F.; Bai, Y.; Li, C. Development of an optimization method for the GM(1,N) model. Eng. Appl. Artif. Intell. 2016, 55, 353–362. [Google Scholar] [CrossRef]
- Ren, J.Z. GM(1,N) method for the prediction of anaerobic digestion system and sensitivity analysis of influential factors. Bioresour. Technol. 2018, 247, 1258–1261. [Google Scholar] [CrossRef]
- Ren, J.Z.; Gao, S.Z.; Tan, S.Y.; Dong, L.C. Prediction of the yield of biohydrogen under scanty data conditions based on GM(1,N). Int. J. Hydrogen Energy 2013, 38, 13198–13203. [Google Scholar] [CrossRef]
Properties | Measurement | Technical Criterion |
---|---|---|
Penetration @ 25 °C, 100 g, 5 s (0.1 mm) | 88 | 80~100 |
Softening point (°C) | 47 | ≥44 |
Ductility @ 10 °C, 5 cm/min (cm) | 43.5 | ≥30 |
Solubility (trichloroethylene, %) | 99.8 | ≥99.5 |
Density @ 15 °C (g/cm3) | 1.05 | − |
RTFOT | ||
Mass loss (%) | 0.22 | ±0.8 |
Penetration ratio @ 25 °C (%) | 66 | ≥57 |
Ductility @ 10 °C, 5 cm/min (cm) | 28 | ≥8 |
Damage Characteristics | Mixture Type | Logistic Damage Model (D = (A1 − A2)/[1 + (x/x0)p] + A2) | Adj. R-Squared |
---|---|---|---|
VA | AM | D = (0.08 − 4.55)/[1 + (x/6.37)1.39] + 4.55 | 0.9824 |
BFAM | D = (0.07 − 2.68)/[1 + (x/5.87)1.58] + 2.68 | 0.9834 | |
STS | AM | D = (0.23 − 395.54)/[1 + (x/360.86)0.50] + 395.54 | 0.9721 |
BFAM | D = (0.35 − 271.72)/[1 + (x/92.51)0.65] + 271.72 | 0.9717 | |
ITSM | AM | D = (1.02 − 97.95)/[1 + (x/11.67)1.00] + 97.95 | 0.9714 |
BFAM | D = (1.63 − 54.53)/[1 + (x/6.96)1.70] + 54.53 | 0.9746 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Cheng, Y.; Ma, G.; Tan, G.; Sun, X.; Yang, S. Further Investigation on Damage Model of Eco-Friendly Basalt Fiber Modified Asphalt Mixture under Freeze-Thaw Cycles. Appl. Sci. 2019, 9, 60. https://doi.org/10.3390/app9010060
Wang W, Cheng Y, Ma G, Tan G, Sun X, Yang S. Further Investigation on Damage Model of Eco-Friendly Basalt Fiber Modified Asphalt Mixture under Freeze-Thaw Cycles. Applied Sciences. 2019; 9(1):60. https://doi.org/10.3390/app9010060
Chicago/Turabian StyleWang, Wensheng, Yongchun Cheng, Guirong Ma, Guojin Tan, Xun Sun, and Shuting Yang. 2019. "Further Investigation on Damage Model of Eco-Friendly Basalt Fiber Modified Asphalt Mixture under Freeze-Thaw Cycles" Applied Sciences 9, no. 1: 60. https://doi.org/10.3390/app9010060
APA StyleWang, W., Cheng, Y., Ma, G., Tan, G., Sun, X., & Yang, S. (2019). Further Investigation on Damage Model of Eco-Friendly Basalt Fiber Modified Asphalt Mixture under Freeze-Thaw Cycles. Applied Sciences, 9(1), 60. https://doi.org/10.3390/app9010060