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Abstract: This paper proposes a convex quadratic optimization commutation method to raise
the equalization degree of power loss distribution of coil array for magnetic levitation planar
motors. Starting with the modeling of electromagnetic forces/torques and commutation of coil
array, the global power loss and the local power losses of coil array are analyzed, and the power loss
equalizing degree is defined to evaluate the power loss distribution of coil array being commutated
dynamically. Then, in consideration of the fact that the global power loss is the quadratic function
of commutated coil currents, the convex quadratic function optimization with equality constraint
and boundary constraints is applied to commutate the coil array, and the power loss equalizing
degree is raised by decreasing the boundary constraints of optimization. Taking the magnetically
levitated planar motor under investigation as examples and using quadprog routine in Matlab
Optimization Toolbox, which is a dedicated quadratic optimization routine, it is verified that the
power loss equalizing the degree of coil array is raised gradually and the power loss distribution
of coil array becomes more uniform along with decrease of the boundary constraints. The convex
quadratic optimization commutation is verified experimentally on a constructed multi-dimension
force/torque measurement platform. Using the convex quadratic optimization commutation can
not only improve the power loss distribution of coil array of magnetically levitated planar motors,
but also make it possible to select lower capacity power amplifiers to produce the identical desired
electromagnetic forces and torques.

Keywords: commutation; power loss equalizing degree; convex quadratic optimization; boundary
constraint; magnetic levitation; planar motor

1. Introduction

Magnetically levitated planar motors (MLPM) show promising applications in driving advanced
manufacturing equipment (extreme-ultraviolet lithography, nano-imprint lithography, and other
nano/micro manufacturing equipment) that are used in high-vacuum conditions, because these
motors can move without any mechanical friction and wear [1–3]. They are mainly constituted of two
typical parts: stator and mover. The stator and the mover can be collocated in two ways: the mover
consists of a coil array and the stator has a permanent magnet array (MLPM with moving coils) [2–6],
and the mover consists of a permanent magnet array and the stator consists of a coil array (MLPM
with moving magnets) [1,7,8].

No matter how MLPM are configured, they can all be classified as permanent magnet synchronous
motors. For these permanent magnet synchronous motors, either planar or rotary, the commutation
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of windings or coils is always the key link. Once these motors have been physically configured,
the magnetic field distribution cannot be changed; thus, the regulation of coil or winding currents,
i.e., the commutation becomes the only alternative to control these motors [7,9,10]. These coils or
windings have to be commutated to provide adequate energy for six degrees of freedom (DOF)
movements in three-dimension Euclidean space [11]. Moreover, these coils or windings still have to be
accurately commutated so that the six-DOF movements can obtain better decoupling and controlling
performances [12,13]. Figure 1 shows the basic control structure of MLPM, in which qref and q denote
reference input vector and output vector, respectively; Wc and Wd denote control forces/torques and
desired forces/torques, respectively, and i denotes the commutated current vector.
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of them—the clipped l2-norm based commutation (CL2C) method—is proposed to commutate the 
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Different commutation methods will result in different distributions of currents and ohmic
losses (refer to Joule losses or dissipated power of coils, hereinafter named power loss) among all
the coils, although these currents can generate identical electromagnetic forces and torques. In the
literature [10,14], a commutation method called direct wrench-current decoupling was proposed,
which includes smooth switching of coil currents for MLPM with moving magnets. Using this method,
wherein the coil currents are solved by the pseudo inversion of the electromagnetic force/torque
coefficient matrix, the coils are commutated optimally in the sense of minimum power loss of the coil
array. On the other hand, peak current is not taken into account and power loss distribution among
coils usually shows disequilibrium. In page 111 of reference [14], the temperature distribution of
commutated coils in some situations are measured by thermal imaging and the temperature range
from 20 ◦C to 37.6 ◦C is observed among commutated coils. In reference [15], an apparent temperature
distribution difference from 30 ◦C to 75 ◦C is also observed. Reference [16] illustrates a coil current
distribution from 0 A to 3 A when a MLPM with moving magnets is desired to track a designed
rectilinear movement. Reference [17] also illustrates the different temperature distributions from 10 ◦C
to 60 ◦C. These studies indicate the obvious disequilibrium with respect to currents and power loss of
coil array of MLPM.

When the power loss distribution of coil array is under a state of imbalance for a relatively long
term, it may result in serious MLPM control problems. One or more coils could break down or even
burn out too early because of frequent overheating and thermal shock. It could also cause irreversible
demagnetization of the permanent magnets. Thus, the commutation and control precision of the motor
could deteriorate or go out of control. In addition, the power loss disequilibrium of the coil array will
confuse the capacity selection of the coil power amplifiers. For these reasons, in the literature [18],
three norm-based commutation methods are compared and one of them—the clipped l2-norm based
commutation (CL2C) method—is proposed to commutate the ironless, over-actuated electromagnetic
actuators with moving magnets. The realized algorithm of CL2C method, which is based on iteration,
offers the advantage of fast calculation time over quadratic programming. However, this heuristic
algorithm is not inevitable to obtain the optimal solution of commutated currents.

In this paper, the distribution of currents and power loss of coil arrays take into account coils
commutation, and a convex quadratic optimization commutation method is proposed to improve
it. The global power loss, local power loss, and power loss equalizing degree (PLED) of coil array
are defined to evaluate the power loss distribution. The approach to raising PLED is validated by
giving a lower boundary constraint in the convex quadratic optimization commutation, which is
implemented by using the convex optimization routine with an active-set algorithm, quadprog
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in Matlab Optimization Toolbox. It is also verified by measuring real electromagnetic forces and
torques on the constructed force/torque measurement platform. The convex quadratic optimization
commutation can obtain the optimal currents solution in the sense that power loss distribution in
all the coils is balanced. In the meantime, the lower boundary constraint in the convex quadratic
optimization commutation can be used to select DC (direct current) power amplifiers with lower
capacities and costs.

2. Commutation and Power Loss Equalizing Degree of Coil Array

For MLPM with moving coils, its activated coils are invariant. Yet for MLPM with moving
magnets, its activated coils are always varying because these coils have to be switched smoothly along
with the movement of the mover. Their electromagnetic forces and torques both originate from the
interactions between the current-carrying coils and the magnetic field of permanent magnets, i.e.,
Lorenz forces. Thus, hereafter, a being-studied MLPM with moving coils [11,12,19,20] is taken as an
example to set up the commutation method. This MLPM is composed of a large area planar stator and
a long x-y travel mover. It is initially designed such that the mover of 1 kg mass can obtain acceleration
of 1g in x or y direction at a maximum gap of 2 mm; enough energy can be provided for the real-time
control of all DOF motions. Figure 2a,b show the configurations and design parameters of the stator
and mover, respectively. The designed parameters and their final dimensions after being manufactured
are shown in Table 1.

As Figure 2a shows, the stator of MLPM is a Halbach permanent magnet array whose magnetic
energy is concentrated on one side of the stator. Its magnetic flux density distribution in 3-dimension
Euclidean space as a whole can be set up as a harmonic model. As Figure 2b shows, the mover of
MLPM consists of four forcers arranged in a centrosymmetric order; each forcer contains five ironless
coils. Twenty coils of coil array are activated respectively by 20 DC power amplifiers. The force
generated from each activated coil located in the permanent magnetic field can be calculated by the
Lorenz volume integral method. The two forces of each forcer generated are the summation forces of
five coils generated. The three forces and three torques of the mover generated are the summation
forces and torques of four forcers generated.
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Figure 2. Configurations and parameters of MLPM (magnetically levitated planar motor) under
investigation: (a) Halbach permanent magnet array; (b) coil array.

Table 1. Related parameters and dimensions of MLPM (magnetically levitated planar motor)
under investigation.

Parts Parameters Symbol Unit Value

Permanent magnet
array stage

Permanent magnet surface residual magnetism M0 Tesla 1.23
Permanent magnet array manufacture pole pitch τ mm 15.0

Permanent magnet array motion pole pitch τn mm 10.6
Permanent magnet array length Lm mm 200.0

Permanent magnet length bm1 mm 10.0
Permanent magnet width bm2 mm 5.0

Permanent magnet thickness hm mm 10.0

Coil array stage

Coil array stage mass M kg 1.02
Number of coils N 4 × 5

Number of coil turns N 52 ± 1
Coil array length Lc mm 144.0 ± 2.0

Coil length lc mm 63.6 ± 1.0
Coil width wc mm 8.4 ± 0.2

Coil turn width bc mm 6.0 ± 0.2
Coil thickness hc mm 5.3 ± 0.2

Coil resistance (Room temperature) R Ω 0.6 ± 0.05
Coil inductance (AC 1kHz) L mH 0.1 ± 0.01

Coil specified current (an hour, <90 ◦C) Is A 3.15
Coil specified voltage (DC) Us V ±24

Coil specified power Ps Watt 75.6

2.1. Commutation of Coil Array

The commutation of MLPM starts with the modeling of the electromagnetic forces and torques.
As Figure 3 shows, there are two coordinate systems. One is the fixed coordinate system O-XYZ and is
defined on the surface of the permanent magnet array. In this coordinate system, the three-dimension
magnetic flux density distribution of the permanent magnet field can be represented analytically.
The other one is the moving coordinate system o-xyz and is set up at the bottom plane of the coil array.
In this coordinate system, each coil is defined. Two coordinate systems are parallel.
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Thus, the position and attitude that the mover locates in the stator can be denoted by q:

q = [x, y, z, 0, 0, 0]T (1)

and the position and attitude that coil Cj locates in the moving coordinate system o-xyz can be denoted
by qcj:

qcj = [xcj, ycj, zcj]
T (2)

Given that the coil Cj is commutated by unit current, 1A, the x-, y-direction propulsion force
Fxj (q), Fyj (q), z-direction levitation force Fzj (q), and x-, y-, z-axis torques Txj (q), Tyj (q), Tzj (q),
can be integrated by using the Lorenz force volume integral method [7]. These forces and torques are
denoted by:

Wj(q) = [Fxj(q), Fyj(q), Fzj(q), Txj(q), Tyj(q), Tzj(q)]
T (3)

then the electromagnetic forces and torques generated from all coils of n number, which is commutated
by unit current, respectively, can be listed as a matrix of 6 × n dimensions. This matrix is denoted
by K (q):

K(q) =



Fx1(q) Fx2(q) . . . Fxn(q)
Fy1(q) Fy2((q) . . . Fyn(q)
Fz1(q) Fz2(q) . . . Fzn(q)
Tx1(q) Tx2(q) . . . Txn(q)
Ty1(q) Ty2(q) . . . Tyn(q)
Tz1(q) Tz2(q) . . . Tzn(q)


(4)

It can be seen from (4) that K(q) is a matrix of 6×n dimension and its six elements of each column
represent three forces and three torques, respectively, when the coil Cj is commutated by unit current



Appl. Sci. 2019, 9, 79 6 of 19

(1A). This matrixcharacterizes the force/torque coeficients of MLPM between the coil currents and
the electromagnetice forces/torques, just as the torque constant of the rotating motor. However,
this coeficient matrix is not a constant matrix and it is still dependent on the position and attitude
vector q that the moving coordinate system o-xyz locates in the fixed coordinate system O-XYZ. Herein
assuming coils of n number are commutated by current vector i:

i = (i1, i2, . . . , in)
T (5)

and the mover consisting of coils of n number as a rigid body, the x-, y-, and z-direction forces Fx (q), Fy

(q), and Fz (q) and x-, y-, z-axis torques Tx (q), Ty (q), and Tz (q), which act on the mover, can be added
up by using the superposition principle as:

W(q) = [Fx(q), Fy(q), Fz(q), Tx(q), Ty(q), Tz(q)]
T = K(q) i (6)

Conversely, if the desired electromagnetic forces and torques of the real-time movements in
position and attitude q are:

Wd = (Fxd, Fyd, Fzd, Txd, Tyd, Tzd)
T (7)

then the commutated coil currents ic should satisfy

Wd = K(q)ic (8)

In light of Equation (8), the commutated coil currents ic can be derived by:

ic = [K(q)]−Wd (9)

where [K(q)]− represents an inverse computation about force/torque coeficient matrix K(q), because
MLPM is usually over-actuated so as to provide adequate energy for moving in six-DOF, which implies
the number of coils n is larger than the number of DOF: n > 6, K(q) is a rectangular matrix. Hence,
[K(q)]− can be solved analytically by the pseudo inverse of K(q):

[K(q)]− = [K(q)]T
[
K(q)[K(q)]T

]−1
(10)

and the uniquely analytical solution of commutated coil currents ic can be solved by

ic = [K(q)]T
[
K(q)[K(q)]T

]−1
Wd (11)

Equation (11) implies that the coil currents are commutated in sense of the minimum square sum
of all coil currents, but that does not mean that the current squares are evenly distributed among
all coils [11,19].

2.2. Power Loss Equalizing Degree and the Approach to Raise It

For the sake of derivation convenience, the commutated coil currents and the equivalent
resistances of each coil are respectively denoted by icj (j = 1, 2, . . . , n) and Rj (j = 1, 2, . . . , n). Then the
power loss summation of all commutated coils, which is named as the global power loss, can be
calculated and denoted by Pg:

Pg =
n

∑
j=1

i2cjRj (12)

and the power loss of every coil, which is named as the local power loss, is denoted by Pj:

Pj = i2cjRj, (j = 1, 2, · · · , n) (13)
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Then, defining an index, namely power loss equalizing degree (PLED) and denoted by Ep:

Ep =
Pg/n

max(Pj)
=

n
∑

j=1
i2cjRj

n ·max(i2cjRj)
(14)

This indicates the ratio of the average to the maximum of all the local power losses.
Furthermore, letting the maximal square of commutated coil currents be denoted by Sjm

Sjm = max(i2cj), (j = 1, 2, · · · , n ) (15)

and the square sum of commutated coil currents be denoted by Sg

Sg =
n

∑
j=1

i2cj (16)

and then supposing the equivalent resistances of each coil are equal, PLED can be derived as:

Ep =

n
∑

j=1
i2cj

n ·max(i2cj)
=

Sg

n · Sjm
(17)

It can be deduced from Equation (14) and Equation (17) that PLED varies between 0 to 1 and it
is a dimensionless quantity; therefore, it can be identified as a normalization index to evaluate the
power loss distribution of commutated coil array. The higher this normalization index is, the nearer
the average and the maximum of all the local power losses are, and the more well-distributed the local
power losses are.

It can also be observed from Equation (17) that there are three possible selections to raise PLED.
The first one is to increase the square sum of the commutated coil currents, Sg. This is obviously
inadvisable, because doing so will increase global power loss, Pg. The second selection is to decrease
the coil number n. Confined to the high energy requirement and the precision motion requirement of
MLPM, this selection is also inadvisable. Consequently, the only feasible selection is the third one, i.e.,
raising PLED by decreasing the maximal square of commutated coil currents, Sjm. In order to decrease
Sjm, the maximal amplitude of commutated coil currents, max|icj| (j = 1, 2, . . . , n), should be reduced.
Actually, this maximal amplitude is the infinite norm of commutated coil current vector:

||ic||∞ = max (
∣∣ic1
∣∣, ∣∣ ic2

∣∣, · · · ,
∣∣icn
∣∣) = max

∣∣icj
∣∣, (j = 1, 2, . . . , n

)
(18)

Thus, the PLED can be raised by decreasing the infinite norm of commutated coil current
vector ||ic||∞.

2.3. Raising Power Loss Equalizing Degree by Convex Quadratic Optimisation Commutation

Considering the commutated coil current vector ic

ic = (ic1, ic2, · · · , icn)
T (19)

its each element, icj (j = 1, 2, . . . , n), is a scalar and denotes the commutated coil current value, i.e.,
DC or AC RMS (alternative current root mean square). This means that the set of ic is in the real
domain: ic ε Rn. Since Rn is a convex set, ic is a convex set, too [21].
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Further condidering the quadratic function f (ic):

f (ic) =
n

∑
j=1

i2cj = i2c1 + i2c2 + · · ·+ i2cn = iT
c ic (20)

its defining domain, i.e., the value domain of ic, is a convex set and it is twice differentiable on its
defining domain. The Hessian matrix of f (ic), ∇2

ic f (ic), can be twice differentiated as

∇2
ic

f (ic) = 2In (21)

where In is a n-dimensional unit matrix. As a result of In being a positive definite matrix, the Hessian
matrix of f (ic), ∇2

ic
f (ic), is also a positive definite matrix. In light of the second order condition for

function convexity [21], f (ic) is a strictly convex quadratic function.
In order to generate the desired electromagnetic forces and torques, the commutated coil currents

ic must first satisfy:
K(q)ic = Wd (22)

In addition, for the purpose of reducing the infinite norm of commutated coil current vector,
||ic||∞, the absolute values of each element of ic an upper bound Im can be given:

|ic1|≤ Im, | ic2|≤ Im, · · · , |icn|≤ Im (23)

where Im is a positive real number. When this upper bound Im is reduced, the infinite norm ||ic||∞

is to be decreased and PLED can be raised according to (18).
As a result of the discussions above, the problem of raising PLED by commutation can be

summerized and abstracted as a convex quadratic optimisation problem:

minimize
ic

f (ic) = iT
c ic, subject to



K(q)ic = Wd
−Im ≤ ic1 ≤ Im

−Im ≤ ic2 ≤ Im

· · · · · ·
−Im ≤ icn ≤ Im

(24)

in which the optimisation variables are the commutated coil currents, ic=(ic1, ic2, . . . , icn)T;
the optimisation objective is to minimize the quadratic function f (ic) = iT

c ic; and the optimisation is
subject to two constraint conditions: one is the linear equlity constraint as shown in Equation (22),
and another is the boundary constraint, shown in Equation (23).

3. Implementation of Raising Power Loss Equalizing Degree (PLED) by Convex
Optimization Commutation

3.1. Algorithms of Convex Quadratic Optimization Commutation

As Figure 1 shows, the commutation algorithm must unite with the controllers in real-time.
Since the focus of this paper is to raise PLED by convex optimization commutation instead of the
real-time control, thereinafter all commutations are implemented using quadprog routine with an
active-set algorithm on Matlab R2012b, Lenovo-PC with Intel(R) Core(TM) i5-3230M CPU @ 2.60 GHz.

The quadprog routine in Matlab Optimization Toolbox [22] is specifically programmed to solve
the quadratic objective optimization problems with equality, inequality, and boundary constraints,
in spite of these problems being convex or non-convex. This routine also facilitates users to select a few
different algorithms—active-set, interior-point, and trust-region-reflective algorithms among others.
These algorithms, searching for the optimal solution in the feasible region, can still converge fast and
operate efficiently on a dedicated high-speed microprocessor [23–26].
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3.2. Implementation of Raising PLED by Convex Quadratic Optimization Commutation

The commutated coil currents depend upon the desired electromagnetic forces and torques
determined by the motion profile of MLPM. A most likely motion profile is that the coil array stage is
levitated above the permanent magnet array stage and moves straight from one point to another in the
horizontal direction. Supposing the coil array stage is levitated above the permanent magnet array
stage at the air gap of 1 mm (the working air gap of the MLPM under investigation), and moves at
the acceleration of 1g in x-direction ranging from −10.61 mm to 10.61 mm (y = 10.61 mm), the desired
electromagnetic force/torque vector Wd can be calculated as:

Wd = (Fxd, Fyd, Fzd, Txd, Tyd, Tzd)
T = (10N, 0, 10N, 0, 0, 0)T (25)

While the coil currents are calculated according to Equation (9), i.e., the coils are commutated
according to the optimization commutation as shown in Equation (24), without any boundary
constraints, the commutated currents of four forcers are as shown in Figure 4. From this figure,
it can be observed that the commutated currents are seriously imbalanced. The current amplitudes
of forcer I and forcer III are relatively higher, the current amplitudes of forcer II and forcer IV are
relatively lower, and the maximum and minimum amplitudes of commutated currents are 3.0 A and
0.18 A, respectively. Due to these unbalanced current amplitudes, the power loss distribution among
the four forcers as well as among all coils will be seriously imbalanced.
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Figure 4. Coil currents of (a) Forcer I, (b) Forcer II, (c) Forcer III, and (d) Forcer IV by optimization 
commutation without boundary constraint Im. 
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Figure 4. Coil currents of (a) Forcer I, (b) Forcer II, (c) Forcer III, and (d) Forcer IV by optimization
commutation without boundary constraint Im.

While the coils are commutated by the optimization commutation with boundary constraint
Im = 2.0 A, the commutated currents of four forcers are as shown in Figure 5. It can be observed
from this figure that the maximum current amplitudes of four forcers are limited within 2.0 A and all
commutated currents of the four forcers are inclined towards a more equalizing trend.
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Figure 5. Coil currents of (a) Forcer I, (b) Forcer II, (c) Forcer III, and (d) Forcer IV by optimization 
commutation with boundary constraint Im = 2.0 A  
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Figure 6. Power loss equalizing degree when the commutations are optimized without boundary
constraint Im, with boundary constraint Im = 2.6 A, 2.4 A, 2.2 A, and 2.0 A, respectively.

When the maximum current amplitude is limited by the optimization commutation, the maximum
local power loss is reduced and thus, the PLED is raised. Figure 6 shows the PLED curves when
commutations are optimized without boundary constraint Im and with boundary constraint Im = 2.6 A,
2.4 A, 2.2 A, 2.0 A, respectively. It can be seen from Figure 6 that PLED is raised in whole x-direction
ranging from -10.61mm to 10.61mm, along with decrease of boundary constraint Im.

When the commutations are optimized without boundary constraint Im and with boundary
constraint Im = 2.6 A, 2.4 A, 2.2 A, 2.0 A, respectively, the local power loss distributions in position x =
−6.896 mm and x = −4.774 mm, which are the maximum and minimum PLED positions, are as shown
in Figure 7, respectively. It can be seen from Figure 7 that the maximum local power loss is gradually
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reduced and the local power loss distribution becomes more and more uniform, along with decrease
of boundary constraint Im.
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Figure 7. Local power loss distribution in position (a) x = −6.896 mm and (b) x = −4.774 mm when 
commutations are optimized without boundary constraint Im, with boundary constraint Im = 2.6 A, 
2.4 A, 2.2 A, and 2.0 A, respectively 

When MPLM runs in real time, all the six-DOF movements of the mover have to be controlled 
completely. Therefore, efforts taken to control the six-DOF movements should be taken into 
account. Supposing the mover is levitated above the stator at air gap of 1 mm, and moves at 
acceleration of 1g in the x-direction, ranging from -10.61 mm to 10.61 mm, the desired 
electromagnetic force/torque vector including control efforts, Wd, is: 
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Figure 7. Local power loss distribution in position (a) x = −6.896 mm and (b) x = −4.774 mm when
commutations are optimized without boundary constraint Im, with boundary constraint Im = 2.6 A,
2.4 A, 2.2 A, and 2.0 A, respectively.

When MPLM runs in real time, all the six-DOF movements of the mover have to be controlled
completely. Therefore, efforts taken to control the six-DOF movements should be taken into account.
Supposing the mover is levitated above the stator at air gap of 1 mm, and moves at acceleration of
1g in the x-direction, ranging from -10.61 mm to 10.61 mm, the desired electromagnetic force/torque
vector including control efforts, Wd, is:

Wd = (Fxd, Fyd, Fzd, Txd, Tyd, Tzd)
T = (11N, 1N, 11N, 10N ·mm, 10N ·mm, 10N ·mm)T (26)

When the commutations are optimized without boundary constraint Im, with boundary constraint
Im = 2.9 A, 2.6 A, 2.3 A, and 2.0 A, respectively, the PLED curves are as shown in Figure 8. As observed
from this figure, along with the decrease of the boundary constraint Im, the PLED is gradually raised
in the x-direction, ranging from −10.61 mm to 10.61 mm (y = 10.61 mm).

Likewise, when the commutations are optimized without boundary constraint Im, with boundary
constraint Im = 2.9 A, 2.6 A, 2.3 A, and 2.0 A, respectively, the local power loss distributions in position
x = −4.244 mm and x = 4.244 mm, which are the maximum and minimum PLED positions, are as
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shown in Figure 9, respectively. It can be seen from Figure 9, along with the decrease of the boundary
constraint Im, the maximum local power loss is gradually reduced and the local power loss distribution
becomes more uniform.Appl. Sci. 2019, 9, x 12 of 19 
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Figure 9. Local power loss distribution in position (a) x = −4.244 mm and (b) x= 4.244 mm when 
commutations are optimized without boundary constraint Im, with boundary constraint Im = 2.9 A, 
2.6 A, 2.3 A, and 2.0 A, respectively. 
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Figure 9. Local power loss distribution in position (a) x = −4.244 mm and (b) x= 4.244 mm when
commutations are optimized without boundary constraint Im, with boundary constraint Im = 2.9 A,
2.6 A, 2.3 A, and 2.0 A, respectively.
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From the results of Figures 6 and 8, it can be concluded that PLED of coil array can be gradually
raised by decreasing the boundary constraint of convex quadratic objective optimization. While PLED
is being raised, the local power loss distribution of coil array becomes more uniform, as is shown in
Figures 7 and 9.

Figure 10 shows the varying trends of PLED while the boundary constraint Im is being decreased
gradually from 3.2 A to 2.0 A, in which the x-direction positions are corresponding to Figures 7 and 9,
i.e., x = −6.896 mm, −4.774 mm, −4.244 mm, 4.244 mm, respectively. From Figure 10, it can still be
observed that the lower the boundary constraint Im, the faster PLED grows, and that the higher the
boundary constraint Im, the slowly PLED grows.
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4. Experimental Verification of Convex Quadratic Optimization Commutation

4.1. Configuration of Comprehensive Measurement Platform (System)

In order to verify the electromagnetic force/torque model and the commutation algorithm of
MLPM, a comprehensive measurement platform (system) was set up. Figures 11 and 12 show the
photograph and the configuration of the measurement platform, respectively. The key device of
the measurement platform is a multi-dimension force/torque sensor, which has its own graphical
user interface (SMART300, manufactured by Hefei Sunsor Technology Co. Ltd., Hefei, China).
This sensor works on the basis of the stress-strain theory and its measurement is seldom affected
by magnetic hysteresis. This sensor can simultaneously measure three force components and three
torque components in a three-dimension Euclidean space. Measured data of electromagnetic forces
and torques are pre-processed by the multi-dimension force/torque sensor itself and then transmitted
to the host computer, where it can be displayed and analysed.

Permanent magnets are fixed on one base to constitute the permanent magnet array stage.
The surface of the permanent magnet array is coated with epoxy resin adhesive to keep the planeness
of the array. Twenty coils are fixed on one base to constitute the coil array stage and its surface is also
coated with epoxy resin adhesive to guarantee the planeness. These two coatings take into account the
gap between the coil array and the permanent magnet array. Twenty coils of the coil array stage are
actuated respectively by 20 DC power amplifiers. The output currents of all amplifiers are controlled
by the host computer via a D/A converter.

As is shown in Figures 11 and 12, the multi-dimension force/torque sensor is mounted on a beam
via an upper mounting rack. The coil array stage is connected with the sensor via the lower mounting
rack. An adjustable mechanism adjusts the sensor’s height so that the gap between the two arrays
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can be changed. The permanent magnet array stage is mounted on an X-Y plane motion mechanism,
which is driven by two controlled step motors and thus the relative position of two stages in the
horizontal direction can be controlled by its graphical user interface on the host computer. To eliminate
disturbance of the coil cable, the permanent magnet array stage instead of the coil array stage moves
relatively; the coil array stage and the sensor are always stationary. This does not change the relative
motion relationship between the two stages.
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After the measurement platform is accurately calibrated, the position precision can attain a µm
order. The current precision of power amplifier can attain an mA order. The real force and torque
resolutions of the multi-dimension force/torque sensor are ± 0.5 N and ± 50 N·mm, respectively.

4.2. Verification Schem and Measurement Results

As the motion of MLPM under investigation has not been controlled in real time, the static
measurement scheme is adopted to verify the proposed convex quadratic optimization commutation
method. This scheme has five steps: 1) Using the adjustable mechanism, ensure the gap between two
stages to be z = 1 mm; 2) using the X-Y plane motion mechanism, adjust and ensure the relative position
of two stages in the horizontal direction; 3) using the Matlab routine quadprog on the host computer,
calculate the coil currents that can generate the desired electromagnetic forces/torques in present
position; 4) using the D/A converter and power amplifiers, give the just-calculated currents to the coils
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and ensure the coils are actuated; 5) using the multi-dimension force/torque sensor, the generated
electromagnetic forces and torques are measured in present position and under present coil currents.
Sampling frequency of measurement data of the sensor is at 250 Hz and the measurement time of each
point is 2 seconds at least.

Figure 13 shows the measured results of one point electromagnetic forces and torques. It can be
observed that the force precision is about ± 0.5 N and torque precision is less than ±60 N·mm. Table 2
shows the coil currents solved by the convex quadratic optimization commutation method when the
desired electromagnetic forces and torques are Wd = (Fxd, Fyd, Fzd, Txd, Tyd, Tzd)T = (10N, 0, 10N, 0, 0,
0)T, supposing the air gap z = 1 mm and the coil array stage, respectively, locates in 17 positions in the
x-direction, ranging from −10.61 mm to 10.61 mm (y = 10.61 mm). These coil currents are solved on
the host computer by the Matlab routine quadprog, where the current boundary constraints are given
as Im = 2.0 A.
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Figure 14 shows the measured results of electromagnetic forces and torques of 17 different points
in the x-direction, ranging from −10.61 mm to 10.61 mm (y = 10.61 mm) when the coils are actuated
according to the currents as shown in Table 2. It can be observed from Figure 14 that the desired
electromagnetic forces and torques are generated when the coils are actuated by the currents calculated
by the proposed convex quadratic optimization commutation algorithm. The force ripples are within
± 0.5 N and the torque ripples are about ± 50 N·mm. These ripples result from measurement errors of
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the multi-dimension force/torque sensor, the current errors, and the position errors between the coil
array and the permanent magnet array.
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Figure 14. Results of 17 measured points of electromagnetic forces and torques when the desired 
electromagnetic forces/torques are Wd = (Fxd, Fyd, Fzd, Txd, Tyd, Tzd)T = (10 N, 0, 10 N, 0, 0, 0)T 
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X-Y plane. These measured results indicate that the proposed convex quadratic optimization 
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electromagnetic forces/torques are Wd = (Fxd, Fyd, Fzd, Txd, Tyd, Tzd)T = (10 N, 0, 10 N, 0, 0, 0)T.

More measurements like the ones above are taken in other positions, wherein the coil array stage
is located in different y-direction positions relative to the permanent magnet array stage at the X-Y
plane. These measured results indicate that the proposed convex quadratic optimization commutation
method is feasible and effective. In addition, these measurement results also imply that coil power
amplifiers with lower capacities can be selected to actuate the coils and generate the identical desired
electromagnetic forces and torques.

5. Further Discussion about Raising PLED by Convex Quadratic Optimization Commutation

Although the decrease of boundary constraint Im of optimization commutation can raise PLED,
this decrease is not boundless and PLED cannot be raised unlimitedly. Figure 15 shows the commutated
currents of four forcers by optimization commutation with the boundary constraint Im = 1.95 A,
which are expected to generate electromagnetic forces and torques Wd = (11 N, 1 N, 11 N, 10 N·mm,
10 N·mm, 10 N·mm)T. As observed from this figure, the commutated currents of many coils in position
x = −6.896 mm and x = 3.713 mm are zero, so they cannot produce any desired electromagnetic force
or torque. Figure 16 shows the electromagnetic forces and torques generated from the optimization
commutation currents with boundary constraint Im = 1.95 A.

It can be seen from Figures 15 and 16 that the optimization cannot obtain a feasible solution when
the boundary constraint Im is less than 1.95 A. This indicates that the boundary constraint Im should
have the lowest bound, which can guarantee the generation of desired electromagnetic forces and
torques. This lowest bound, of course, depends upon the desired electromagnetic forces and torques.
As far as two examples in this paper are concerned, the lowest bound of boundary constraint is 1.95 A.
It is about 65% of 3.0 A, which is the maximum amplitude current when the commutation is optimized
without the boundary constraint.

On one hand, the existence of the lowest bound limits further increase of the PLED. On the
other hand, when the lowest bound of boundary constraint is determined, the capacity of coil power
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amplifiers can be consequently selected. In the two examples given in Section 3.2, the coil power
amplifier capacity can be selected as 2.0 A. If not, it has to be 3 A at least, and this will greatly increase
costs, because 20 coil power amplifiers of the same capacity are required.
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Figure 15. Coil currents of (a) Forcer I, (b) Forcer II, (c) Forcer III, and (d) Forcer IV by optimization 
commutation with boundary constraint Im = 1.95 A. 
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Figure 15. Coil currents of (a) Forcer I, (b) Forcer II, (c) Forcer III, and (d) Forcer IV by optimization
commutation with boundary constraint Im = 1.95 A.
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Figure 15. Coil currents of (a) Forcer I, (b) Forcer II, (c) Forcer III, and (d) Forcer IV by optimization 
commutation with boundary constraint Im = 1.95 A. 
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6. Conclusions

This paper focuses on studying the power loss distribution of coil array and raising the uniformity
of the power loss distribution among all the coils by convex quadratic optimization commutation
for magnetic levitation planar motors. The commutated coil currents not only determine the
electromagnetic forces and torques but also the local power loss distribution of coil array. For the sake of
quantificational evaluation of the power loss distribution of coil array, the power loss equalizing degree
(PLED) index is abstracted and defined at first. In order to raise the PLED, the coil array is commutated
by an optimization method, which is an object optimization problem with equality constraint and
boundary constraint for convex quadratic functions. When the optimization commutation is given a
lower boundary constraint, the power losses of some coils are limited within a lower value; when the
power losses of some other coils are increased, the PLED of all the coils is raised. This optimization
commutation is implemented on Matlab by convex quadratic optimization with active-set algorithm,
quadprog, and is validated on the multi-dimension force/torque sensor-centric measurement platform.
Simulation examples indicate that PLED is raised gradually and the power loss distribution of coil
array becomes more uniform, along with decrease in the boundary constraint of convex quadratic
optimization. However, further discussions indicate that the power loss equalizing degree cannot be
raised unboundedly and there exists a lowest bound of boundary constraint. This lowest bound is still
dependent upon the desired electromagnetic forces and torques and can be used to select the capacity
of coil power amplifiers. Further study will focus on configuring the real-time motion control platform
and verifying the optimization commutation method in a real-time motion control system.
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