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Abstract: An improved symbolic analysis procedure to enhance the analytic efficiency of the reported
symbolic nodal analysis is presented. Two techniques are adopted in the proposed method to
reduce the order of the system of equations when performing symbolic analysis. The first one
uses voltage signal sources directly to perform symbolic analysis without replacing them with their
nullor equivalences. The second one uses the nullor, grounded mirror, and floating mirror elements to
model the active devices that involve differential or multiple single-ended signals. Practical examples
are given which demonstrate the feasibility of the proposed methods.

Keywords: pathological element; floating mirror; symbolic nodal analysis

1. Introduction

Nullor and mirror pathological elements have been proven to be very valuable components for
network analysis, synthesis and design [1–13]. The main reasons for the popularity of the nullor
elements are their ability to model active circuits independently of the particular realization of the
active devices. The symbolic circuit analysis can be carried out by only applying nodal analysis (NA).
The pathological grounded voltage mirror (VM) and current mirror (CM) were defined in 1999 [14].
They can be used to represent active devices with current or voltage reversing properties in concise
circuit structures compared to their nullor-equivalent counterparts. The grounded mirror (GM)
elements have been further extended to include the floating mirror (FM) elements [15]. The FM
elements were used to derive pathological sections to ideally represent various popular analog signal
processing properties that involve differential or multiple single-ended signals. Therefore, many new
active devices with such characteristics can be modeled using nullor-grounded mirror-floating
mirror (NGMFM) elements in more compact forms compared with their grounded pathological
equivalences [15–21].

The symbolic NA using RLC-grounded pathological equivalences instead of their RLC-nullor
representations of circuits was presented in [20] and computational algorithm was reported in
reference [21]. With a smaller number of nodal equations compared to previous method [22], it achieves
a considerable reduction in the order of the system of equations and in the generation of nonzero
coefficients into the nodal admittance matrix. As a result, the computational complexity during the
solution of the system of equations is reduced. However, a limitation of the formulation methods in
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references [20,21] is that the floating pathological elements cannot be included into the formulation
process. Thus the compact NGMFM equivalent circuits cannot be used for NA. Some attention had
been paid to the finding of nullor-grounded mirror (NGM) equivalences of the popular active devices
with differential or multiple single-ended signal properties [23] and the addition of extra equations
during performing symbolic NA [24]. Nevertheless, both approaches incur the increment on the order
of the built nodal admittance matrices which complicate their solution process. Besides, in all of the
symbolic NA articles in literature, the voltage signal sources are replaced by their nullor equivalences
before applying NA.

In this paper, a systematic analytical procedure is proposed that performs efficient NA by using
lower-complexity RLC-NGMFM networks. This proposed method makes good use of the compactness
of floating mirror models and treats input voltage signal source as a grounded norator to avoid using
its equivalent circuit. The effect on the reduction of the order of the system of equations matrix when
performing symbolic NA is demonstrated by practical examples.

2. Pathological Section-Based Active Device Model

The definition of nullor, GM, and FM elements are shown in Figure 1. Despite the GMs being
two-port network elements, they can be used as two terminal bi-directional elements with the reference
node unused [10]. The GM elements in Figure 1c,e are respectively the special cases of their floating
counterparts in Figure 1d,g. It can also be found that the grounded and floating two-output CMs in
Figure 1f,h are simple extensions of the structures in Figure 1e,g, respectively. Figure 2 shows some
pathological FM sections which represent analog signal processing properties involving differential
or multiple single-ended signals. Figure 2a–d have been reported in reference [15]. The structure in
Figure 2e is constructed by the floating two-output CM in Figure 1h for modeling the active devices
with more current outputs. The sections in Figure 2a,b are called “floating VM sections” for the
remainder of this article. The modelling of active devices using NGMFM elements was proposed
in references [15–17]. In comparison with their representations using only nullor elements [18] or
NGM elements [20,21,23], the NGMFM representations which have a smaller node count are more
concise. In references [15–17], additional dummy pathological elements are added to the pathological
representations of the balanced output second generation current conveyor (BOCCII), balanced output
inverting second generation current conveyor (BOICCII), fully differential second generation current
conveyor (FDCCII), double output CCII with two Z− outputs (DOCCII−), differential voltage current
conveyor with a Z+ output terminal (DVCC+) and differential voltage current conveyor with a Z−
output terminal (DVCC−) to constitute complete sets of pathological pairs. However, the dummy
pathological elements are not needed since each unknown terminal voltage (or branch current) can
be obtained from other known terminal voltage(s) (or branch current(s)) according to the element
properties. Figure 3 shows the modified NGMFM models of some aforementioned active devices and
differential difference current conveyor (DDCC). All voltages and currents of the terminals of the
active models in Figure 3 are still uniquely and definitely determined when performing NA since they
result in the same number of removed unknown variables and nodal equations by using the proposed
symbolic NA method in Section 3.
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Figure 3. Symbol and NGMFM models of some active devices.
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3. Symbolic NA of RLC-NGMFM Network

To perform symbolic NA on the RLC–NGMFM networks, the analytic steps in reference [20] are
modified as below.

Step 1: For the symbolic NA of an arbitrary interconnection of RLC–NGMFM networks with (N + 1)
nodes (excluding the reference nodes between two mirror elements since we do not particularly
wish to know the voltages of these reference nodes), select a ground node and label all other
nodes from 1 to N. Mark the directions of current flow through each of norators, CMs, current
replication cells and input voltage signal sources to build nodal equations.

Step 2: Write the nodal admittance equations for each labeled node in matrix form as

I = YN × N V (1)

I = {I1, I2, . . . , IN}’, where the ith component Ii is defined as the sum of the currents flowing
into the ith node from the independent current sources, input voltage signal sources, norators,
grounded CMs, or current replication cells. YN × N is the passive nodal admittance matrix.
V is the unknown column vector {V1, V2, . . . , VN}’ of node voltages. It must be noted that
the voltage of the node connected to input voltage signal source is regarded as an unknown
voltage variable in this step.

Step 3: For a norator that is connected between nodes l and m, for example, add the equation in row m
to the equation in row l and delete row m of the nodal equations. This involves adding the mth
row of Y to the lth row of Y. If m is the ground node, simply delete row l of the nodal equations.
The number of rows of the Y matrix is thereby reduced by one. This operation is the same as
supernode. Since the characteristic of an input voltage signal source is similar to a grounded
norator, the treatment of each input voltage signal source is the same as a grounded norator.

Step 4: For a grounded CM that is connected between the nodes e and f, for example, subtract
the equation in row e from the equation in row f and delete row e of the nodal equations.
This involves subtracting the eth row of Y from the f th row of Y. If e is the ground node, simply
delete row f of the nodal equations. A similar manipulation process can be applied to grounded
two-output CM. For a grounded two-output CM connected between the nodes e, f and g (none
is grounded), subtract the equation in row e from the equation in row f, and subtract the
equation in row e from the equation in row g and delete row e of the nodal equations. If one of
the three nodes is grounded, this grounded two-output CM can be regarded as a grounded CM
connected between two ungrounded nodes. One grounded CM (or grounded two-output CM)
incurs the deletion of one row of the Y matrix. This operation is based on the similar properties
of a grounded CM and a norator.

Step 5: For a nullator that is connected between the nodes p and q, for example, add the elements of
column q to the elements of column p and delete column q of Y. The reason is that Vp = Vq so
one unknown voltage variable can be omitted. If q is the ground node, simply delete column p
of Y. The number of columns of the Y matrix is thereby reduced by one.

Step 6: For a grounded VM that is connected between the nodes r and s, for example, subtract the
elements of column s from the elements of column r and delete column s of Y. If s is the ground
node, simply delete column r of Y. The number of columns of the Y matrix is thereby reduced
by one. This operation is based on the similar properties of a grounded VM and a nullator.

Step 7: For the differential voltage conveying cell in Figure 2b that is connected between the nodes
w, x, y and z terminals, select the ungrounded node w, for example, then add the elements of
column w to the elements of column x, add the elements of column w to the elements of column
y and subtract the elements of column w from the elements of column z and then delete column
w of Y. This operation is based on the voltage property (Vw = Vx + Vy − Vz) of the differential
voltage conveying cell. For the differential voltage cell in Figure 2a with voltage property
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(Vw = V textsubscriptx + Vy), the operation is similar to a differential voltage conveying cell
except the discard of column z operation. It must be noted that each of floating VM sections
incur the deletion of one column of Y matrix.

Step 8: For the pathological current replication cell in Figure 2d that is connected between the nodes a,
b, c and d terminals, for example, add the equation in row a to the equation in row b, add the
equation in row a to the equation in row c, subtract the equation in row a from the equation in
row d and delete row a of the nodal equations. The above operation is based on the current
property (Ia = Id = -Ib = -Ic) of a current replication cell. A similar manipulation process can
also be applied to the current replication cells in Figure 2c,e. It must be noted that each current
replication cell in Figure 2c–e will incur the deletion of one row of Y matrix.

Step 9: Move the terms of node voltages connected to input voltage signal sources in matrix V of (1)
into matrix I of (1) since they are known variables. Then a square nodal admittance matrix
can be obtained. The equations can be solved to obtain a unique solution for each unknown
voltage variable.

4. Application Examples

To demonstrate the usage of the presented symbolic NA method and the proposed active models,
three circuit examples are given below. Considering the FDCCII-based current-mode biquad in Figure 2
of reference [25], its NGMFM equivalence is given in Figure 4. The multiple-output FDCCII model
is derived from the model in Figure 3d by replacing the CMs with the grounded two-output CM in
Figure 1f and the current replication cell with seven outputs (the extended version of current replication
cell in Figure 2e). Based on the steps 1–2 in Section 3, the nodal admittance equations in matrix form
can be obtained as: 

I2 + IC2 − IC1
I3 + IC2
−IC1
−IC2

 =


sC2 0 0 0
0 sC1 0 0
0 0 G2 0
0 0 0 G1




V1

V2

V3

V4

 (2)
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Figure 4. FDCCII-based current-mode biquad in Figure 2 of [23].

By applying the 3th to 4th steps of the proposed analytic procedure, as given by (3), one equation
has been removed since one grounded two-output CM incurs the deletion of one row. Applying the
5th to 7th steps, two unknown voltage variables have been removed since each differential cell incurs
the deletion of two columns of the nodal admittance matrix, as given by (4).
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 I2 + IC2
I3 + IC2

−IC2

 =

 sC2 0 −G2 0
0 sC1 0 0
0 0 0 G1




V1

V2

V3

V4

 (3)

 I2 + IC2

I3 + IC2
−IC2

 =

 sC2 −G2

0 sC1

G1 0

[ V1,4

V2,3

]
(4)

After applying the 8th step, the nodal admittance matrix equations are obtained as (5). The current
replication cell in Figure 4 incurs the deletion of one equation. By solving (5), we can obtain the
outputted currents as (6)–(8). [

I2

I3

]
=

[
sC2 + G1 −G2

G1 sC1

][
V1,4

V2,3

]
(5)

Iout2 = IC2 = −G1V4 =
−I2sC1G1 − I3G1G2

s2C1C2 + sC1G1 + G1G2
(6)

Iout1 = I1 + IC2 = I1 − G1V4 =

[
I1(s2C1C2 + sC1G1 + G1G2)− I2(sC1G1)− I3G1G2

]
s2C1C2 + sC1G1 + G1G2

(7)

Iout3 = −IC1 = G2V3 =
−I2(G1G2) + I3(sC2G2 + G1G2)

s2C1C2 + sC1G1 + G1G2
(8)

The results are in according with the expressions in Equations (10)–(12) of [25], so the validity of
the proposed method is confirmed.

The second application example, which takes into account the DDCC+-based filter in Figure 2a
of [26], is a voltage-mode filter. Figure 5 depicts its NGMFM equivalence using the DDCC model in
Figure 3e with omission of duplicated current at Z− terminal. According to steps 1–2 in Section 3 of
the proposed method, the nodal admittance equations in matrix form can be obtained as (9).
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Applying steps 3 and 4 respectively incur the deletion of one equation, so (9) becomes (10).
Based on steps 5–8, the nodal admittance equations can be obtained as (11) because of the voltage
property (V4 = V3 − V2 + V1) of the DDCC+. By applying step 9, the square nodal admittance matrix
can be obtained, as given by (12). Thus the transfer function is computed from (12) and given by (13).
The analyzed results are consistent with the expressions in Equation (11) of [26].
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Ii
0

−IC1
−IC1

 =


0 0 0 0
0 y1 + y4 −y1 0
0 −y1 y1 + y2 + y3 −y2

0 0 −y2 y2




V1

V2

V3

V4

 (9)

[
0
0

]
=

[
0 y1 + y4 −y1 0
0 −y1 y1 + 2y2 + y3 −2y2

]
V1

V2

V3

V4

 (10)

[
0
0

]
=

[
0 y1 + y4 −y1

−2y2 −y1 + 2y2 y1 + y3

] V1

V2

V3

 (11)

[
0

2y2V1

]
=

[
y1 + y4 −y1

−y1 + 2y2 y1 + y3

][
V2

V3

]
(12)

V2

V1
=

Vo

Vi
=

2y1y2

2y1y2 + y1y3 + y1y4 + y3y4
(13)

To show the benefit of the proposed method, the formulation methods in references [18,20,23,24]
are applied to the circuit in Figure 5. It can be found that both the DDCC+ equivalent nullor model
in [18] and the DDCC+ equivalent NGM model in Figure 5 of reference [23] are more complicated
(with a larger node count) compared to its NGMFM model. For the method in reference [24],
the NGMFM active models are used. But the dimension of the admittance matrix is increased because
additional equations may be added during its formulation process. Comparisons between the sizes of
admittance matrix and the generation of nonzero coefficients based on different formulation methods
are summarized in Table 1. We can see that by applying the formulation method described in Section 3,
both the size of the admittance matrix and the count of non-zero coefficients are smaller than those
generated with other formulation methods. Therefore, the proposed method achieves a more efficient
symbolic NA.

Table 1. Comparison of different formulation methods.

Formulation Method Admittance Matrix Size Non-Zero Coefficients

Symbolic NA using NGM model [18] 5 × 5 13

Symbolic NA using NGM model [20,23] 5 × 5 14

Symbolic NA using NGMFM model [24] 4 × 4 10

Proposed method using NGMFM model 2 × 2 4

The third example considers the fully differential amplifier circuit in Figure 14 of reference [27].
To calculate the differential-mode output (VOd) and common-mode output (VOc), the active device
FDCCII is modeled by its NGMFM equivalent and the circuits are depicted in Figure 6a,b, respectively.
The input and output voltages are defined as below.

Vid = 1
2 (Vi+ − Vi−)

Vic =
1
2 (Vi+ + Vi−) (i = 1, 2)

(14)

VOd = 1
2 (VO+ − VO−)

VOc =
1
2 (VO+ + VO−)

(15)
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According to Figure 6a, it is known that V1− = −V1+ and V2− = −V2+. We obtain V1d = V1+ = V1

= −V1− = −V2 and V2d = V2+ = V3 = −V2− = −V4 from (14). Based on steps 1 and 2 in Section 3, we
can derive the system of equations in (8 × 8) matrix form as in (16). However, adopting the analytic
method in reference [20,23], when we build the system of equations to compute the differential-mode
output of the same circuit, 19 nodal admittance equations will be built. This is because each input
voltage signal source is replaced by its nullor equivalence (thus additional 4 equations are added)
and more complicated NGM model (there are 15 ungrounded nodes in the NGM model of FDCCII in
Figure 5 of reference [23]) is used. Using the method in reference [24], the dimension of initial built the
system of equations is (14 × 12) since there are 8 ungrounded nodes in the NGMFM model of FDCCII
and 6 equations are added additionally.

I1+

I1+

I2+

I2−
IC1
IC2

IC1
IC2


=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −y1 0 0 0
0 0 0 0 0 −y1 0 0
0 0 0 0 0 0 −y2 0
0 0 0 0 0 0 0 −y2





V1

V2

V3

V4

V5

V6

V7

V8


(16)

By applying steps 3 and 4 in Section 3, the system of equations can be expressed as (17) since
the voltage signal sources in Figure 6a are treated as grounded norators. Based on the property of
differential voltage conveying cell, (namely, V5 = V1 − V2 + V3 and V6 = −V1 + V2 + V4) and applying
steps 5–8, the system of equations (17) becomes (18). It is observed that the unknown voltage variables
V5 and V6 in (17) are eliminated. After applying step 9, the matrix equations can be given by (19) since
it is known that V1 = −V2 and V3 = −V4. Solving V7 and V8, we can express the differential output
function (VOd) by (20).
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[
0
0

]
=

[
0 0 0 0 −y1 0 y2 0
0 0 0 0 0 −y1 0 y2

]


V1

V2

V3

V4

V5

V6

V7

V8


(17)

[
0
0

]
=

[
−y1 y1 −y1 0 y2 0
y1 −y1 0 −y1 0 y2

]


V1

V2

V3

V4

V7

V8


(18)

[
2y1V1,−2 + y1V3,−4

−2y1V1,−2 − y1V3,−4

]
=

[
y2 0
0 y2

][
V7

V8

]
(19)

VOd =
1
2
(V7 − V8) =

y1

y2
(2V1,−2 + V3,−4) =

y1

y2
(2V1d + V2d) (20)

For the circuit in Figure 6b, V1c (= V1) and V2c (= V2) are respectively the common-mode input
voltage signal sources. According to steps 1–2 in Section 3 of the proposed method, we can write the
(6 × 6) nodal admittance equations in matrix form as (21). But the proposed methods in references [20,23]
and reference [24] will need to build 15 and 10 nodal admittance equations, respectively. According
to steps 3 and 4 in Section 3, the system of equations is reduced to (22). Based on the property of the
differential voltage conveying cell, (i.e., V5 = V2 and V6 = V2) and applying steps 5–8 leads to the
derivation of the system of equations of (23). After applying step 9, the formulation can be given by
(24). Solving V3 and V4, we can express the common-mode output function (VOc) by (25).

I1c
I2c
IC1
IC2

IC1
IC2


=



0 0 0 0 0 0
0 0 0 0 0 0
0 0 −y2 0 0 0
0 0 0 −y2 0 0
0 0 0 0 −y1 0
0 0 0 0 0 −y1





V1

V2

V3

V4

V5

V6


(21)

[
0
0

]
=

[
0 0 −y2 0 y1 0
0 0 0 −y2 0 y1

]


V1

V2

V3

V4

V5

V6


(22)

[
0
0

]
=

[
0 y1 −y2 0
0 y1 0 −y2

]
V1

V2

V3

V4

 (23)

[
−y1V2

−y1V2

]
=

[
−y2 0

0 −y2

][
V3

V4

]
(24)
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VOc =
1
2
(VO+ + VO−) =

1
2
(V3 + V4) =

y1

y2
V2 =

y1

y2
V2c (25)

The analyzed results of differential output function (VOd) and common-mode output function
(VOc) are in accordance with the functions given by (39) and (40) of reference [27], respectively.

5. Conclusions

In this paper, an improved formulation method with two techniques to enhance the efficiency
of symbolic NA is presented. Both techniques are conducive to building smaller number of nodal
equations when performing symbolic nodal analysis. It is especially practical when applied to popular
high-noise-immunity circuits with differential voltage signal inputs. The proposed analytical procedure
is expected to be realized in computer programs since it involves simple entries operations in matrix.
Thus it is helpful in enhancing the efficiency of symbolic NA in analog design automation.
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