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Abstract: Mie resonances in high-refractive-index nanoparticles have been known for a long time but
only recently have they became actively explored for control of light in nanostructures, ultra-thin
optical components, and metasurfaces. Silicon nanoparticles have been widely studied mainly
because of well-established fabrication technology, and other high-index materials remain overlooked.
Transition metal dichalcogenides, such as tungsten or molybdenum disulfides and diselenides, are
known as van der Waals materials because of the type of force holding material layers together.
Transition metal dichalcogenides possess large permittivity values in visible and infrared spectral
ranges and, being patterned, can support well-defined Mie resonances. In this Communication,
we show that a periodic array of tungsten disulfide (WS2) nanoantennae can be considered to be
transdimensional lattice and supports different multipole resonances, which can be controlled by the
lattice period. We show that lattice resonances are excited in the proximity to Rayleigh anomaly and
have different spectral changes in response to variations of one or another orthogonal period. WS2

nanoantennae, their clusters, oligomers, and periodic array have the potential to be used in future
nanophotonic devices with efficient light control at the nanoscale.

Keywords: transition metal dichalcogenides; Mie resonances; multipole resonances; collective effects;
two-dimensional materials; nanomaterials; transdimensional lattices; van der Waals materials

1. Introduction

Nanoparticles and nanoantennae resulting from subwavelength patterning of single- and
multi-layer structures have been shown to be an effective way to control light at the nanoscale.
High-refractive-index nanoparticles support excitation of multipole Mie resonances of different orders
whose strength is mainly defined by the nanoparticle size, index of the material, and ohmic losses. While
nanoparticles with moderate refractive index n ≈ 1.45-2 (e.g., silicon oxide and nitride) have resonances
with relatively high radiative losses and low quality factors, materials with n > 3.5 (e.g., silicon)
enable high mode localization and relatively low radiative losses. Multipole resonances in high-index
nanoparticles are comparable to resonances in plasmonic [1] and hyperbolic nanostructures [2,3], as
the main role is played by the index difference at the nanoparticle surface.

So far, most of the studies have dealt with silicon [4–8] or III-V nanoantennae [9] because
of the readily available fabrication processes and well-established technology. However, recently
emerging two-dimensional and layered materials hold great promise to be applied in next-generation
optoelectronic devices and more efficient light harvesting [10–12]. Transition metal dichalcogenides
(TMDCs), such as tungsten or molybdenum disulfides and diselenides (WS2, MoS2, WSe2, MoSe2) and
others, are van der Waals layered materials with high anisotropy, exciton resonances in the visible
spectral range, strong nonlinear response, and tunability. Layered material anisotropy results in
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different in-plane and out-of-plane permittivity components, and the excitons in visible range result
in a large imaginary part of the permittivity along with the increased real part. A large imaginary
part not only causes non-radiative losses but also facilities excitation of Zenneck modes and light
confinement within the guiding nanolayer [13] or nanoparticles [14]. In the near-infrared range,
the losses in TMDCs are near zero, and the nanoparticle can support Mie resonances with high
quality factor [15]. Nanoparticle array can be fabricated by patterning TMDC layer (or flakes) using
electron-beam exposure of a negative resist and dry etching, see e.g., [15]. An overview of fabrication
techniques of transition metal dichalcogenides heterostructure systems can be found in [16].

Nanoparticle resonances can be enhanced, and their spectral position can be controlled not
only by the nanoparticle size, shape, and material but also their arrangement in the clusters and/or
lattices [17–24]. Nanoparticle clusters facilitate excitation of narrow Fano resonances [1] that are
very sensitive to the parameter changes, can be easily tuned in the spectral domain or lost because
of the imperfections. In contrast, the periodical arrangement of nanoparticles in the lattice enables
excitation of lattice resonances that have a relatively high tolerance to local imperfections. The spectral
position of different multipoles can be controlled by mutually perpendicular periods of the nanoparticle
array [25,26].

In this work, we report on the theoretical prediction of Mie resonances in a periodic array of WS2

nanodisks and their control by the lattice dimensions. We show excitation of multipole resonances in
the proximity to the Rayleigh anomaly λRA (wavelength equal to the product of surrounding refractive
index n and array period px,y, λRA = npx,y) and a different optical response depending on the period
changes in such a transdimensional lattice. The lattice resonances can be observed as a peak in reflection
and absorption at the wavelength λ ≈ λRA = npx,y. Because of the high real part of WS2 in-plane
permittivity tensor component in the near-infrared range, the lattice resonance of the electric dipole is
excited even for large and elongated periodic cells (240 × 700 nm2).

2. Results

We consider a periodic rectangular array of WS2 nanodisks surrounded by a uniform medium with
moderate refractive index n = 1.5 (equivalent to matched-index substrate and superstrate, Figure 1a).
Permittivity components of WS2 are presented in Figure 1b where ε|| is in-plane and εzz is out-of-plane
tensor components and εWS2 = (ε||, ε||, εzz). One can see that losses of ε|| are relatively high for λ <

λc = 655 nm, and nanoparticle resonances in this spectral region are not well defined for a dense
array. At the same time, for λ > λc, the absorption peak is clearly seen for the electric dipole (ED)
resonance λED ≈ 697 nm (Figure 1c, red line and Figure 1d), which indicates excitation of Mie resonance.
The E-field profile at λ = 697 nm in Figure 1d is not the one of a pure ED multipole but the distribution
is clearly seen with the main contribution of ED resonance. Absorption is calculated as losses in the
nanoparticle regardless of the number of diffraction orders taken into account, and the resonance is
associated with an increase in reflection at the wavelength about 690 nm (Figure 1c, blue line).

We analyze the absorption and reflection properties in the transdimensional lattice [27] with
different periods in orthogonal direction px and py. In numerical modeling, we consider the normal
incidence of light, one WS2 nanodisk in the unit cell, periodic boundary conditions in x- and y-directions,
and the artificial perfectly matched layers in the z-direction. We perform numerical simulations with
finite element method implemented in CST Microwave Studio frequency-domain solver.
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Figure 1. (a) Schematic of the transdimensional lattice under consideration. The parameters are the 
following: nanodisk radius R = 100 nm, height h = 200 nm, and refractive index of surrounding n = ns 
Figure 1. (a) Schematic of the transdimensional lattice under consideration. The parameters are the
following: nanodisk radius R = 100 nm, height h = 200 nm, and refractive index of surrounding n = ns

= 1.5. (b) WS2 permittivity components. (c) Absorption and reflection from the nanoparticle array with
periods px = py = 240 nm. Magenta lines on (b) and (c) panels indicate the wavelength λc where WS2

absorption drops significantly, and for λ > λc, the nanoparticles support Mie and lattice resonances.
(d) E-field distribution at λ = 697 nm indicating ED contribution of the resonance.

For a spherical particle with isotropic constituent material, each of these periods controls different
lattice resonances: under illumination with x-polarized light, px controls the magnetic dipole (MD) and
electric quadrupole (EQ) resonances, and py controls ED and magnetic quadrupole (MQ) [17,24,25].
These considerations are approximately valid for disks even though the description of the particle
includes a tensorial polarizability. Calculations in Figure 2 show that under change of py, the ED
resonance shifts to longer wavelength. In Figure 2, calculation results are terminated at Rayleigh
anomaly wavelength λRA = npx,y to account for only sub-diffraction effects. Upon further increase in
the period (py > 400 nm), the ED transforms to ED-lattice-resonance (ED-LR) and follows the Rayleigh
anomaly. Even for fairly large periods py > 700 nm, the resonance is well defined, and one can see
peaks in absorption and reflection profiles. Similar to the effect of py changes, changes in px result
in the excitation of lattice resonances in the proximity to the Rayleigh anomaly, but the resonances
do not extend to a longer wavelength. This behavior is typical for the nanoparticles with rapidly
decreasing polarizability.
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period py changes and px = 240 nm. In (b,d), period px is changes and py = 240 nm. Magenta
dashed lines indicate the same wavelength of absorption drop λc as in Figure 1. Electric dipole lattice
resonances (ED-LRs) appear for a change of the period py, which is in full agreement with the analytical
considerations for incident field E along the x-axis. Calculation results are terminated at Rayleigh
anomaly wavelength λRA = npx,y to account for only sub-diffraction effects.

3. Conclusions

To sum up, we have studied a transdimensional lattice consisting of a two-dimensional periodic
arrangement of WS2 nanodisks with single-particle Mie resonances defined by disk parameters in all
three dimensions. Even though the TMDC family of materials have high permittivity comparable
to silicon and III-V materials, the idea of engineering Mie resonances in nanoparticle lattices and
designing metasurfaces based on them remain overlooked. In this work, we show that well-defined
Mie resonances are not only excited in single or closely packed nanodisks but the resonances can be
also shifted by the array periods. Because of the high value of in-plane permittivity component in the
visible and near-infrared spectral ranges, the lattice resonances of the electric dipole can be excited
even in the elongated lattice and in a broad spectral range.
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