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Abstract: As a fundamental and important task in remote sensing, remote sensing image scene
understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the
following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval,
and scene-driven remote sensing image object detection. Although these sub-tasks have different
goals, they share some communal hints. Hence, this paper tries to discuss them as a whole. Similar
to other domains (e.g., speech recognition and natural image recognition), deep learning has also
become the state-of-the-art technique in RSISU. To facilitate the sustainable progress of RSISU, this
paper presents a comprehensive review of deep-learning-based RSISU methods, and points out some
future research directions and potential applications of RSISU.

Keywords: deep learning; remote sensing image scene understanding (RSISU); remote sensing image
scene classification; remote sensing image scene retrieval; remote sensing image object detection

1. Introduction

With the advancement of remote sensing imaging technology, the spatial resolution of remote
sensing images has been continuously improved. In low- and medium-resolution remote sensing
images, the problem is that different objects may share the same spectral response curve, but the
same object may have different spectral response curves, thus making the classification methods at
the pixel or object level show many limitations. Using the image block (i.e., the scene) as the basic
unit for conducting image interpretation can make effective use of the spatial context information
to eliminate the ambiguity of interpretation. As a basic unit of remote sensing image interpretation,
the scene is a combination of multiple objects, environments, and semantics. Remote sensing image
scene understanding (RSISU) not only needs to recognize each object, but also needs to perceive
the topology distribution of multiple objects in a remote sensing image scene. Consequently, RSISU
benefits by improving things such as the stability of remote sensing image scene classification, remote
sensing image scene retrieval, and scene-driven geospatial object detection. Until now, large amounts
of methods have been proposed around RSISU. To pursue the sustainable development of RSISU, this
paper mainly focuses on giving a comprehensive review of RSISU, which also discusses the difference
and relationship among various sub-tasks in RSISU.

As is well-known, visual abstraction is an important prerequisite for remote sensing image scene
understanding (RSISU). As a classic representative of deep learning, the convolutional neural network
(CNN) [1] is the milestone technique for abstracting the visual content of remote sensing image scenes.
Because of this, CNN has been widely applied in remote sensing image scene classification, remote
sensing image retrieval, scene-driven object detection, and so on. Among all of the sub-tasks in RSISU,
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deep learning outperforms the traditional technology (e.g., hand-crafted features) by a large margin.
With this consideration, this paper mainly reviews and discusses RSISU driven by deep learning.

As the basic tasks of RSISU, remote sensing image scene classification, remote sensing image
scene retrieval, and scene-driven geospatial object detection share some communal hints (e.g., scene
abstraction) but have key respective techniques, as well as different goals. More specifically, remote
sensing image scene classification pursues a high-accuracy classification result by perceiving the objects
and their spatial layout, whereas remote sensing image scene retrieval often maps the remote sensing
image scene to an efficient representation (e.g., the low-dimensional feature vector) to address the
large-scale image retrieval problem. Scene-driven geospatial object detection aims at recognizing the
objects by exploiting the scene context. Around each sub-task, large amounts of methods have been
proposed and summarized in a specific review. For example, Cheng et al. [2] summarized the remote
sensing image scene classification methods, Xia et al. [3] reviewed the remote sensing image scene
retrieval methods, and Cheng et al. [4] conducted a survey on the different kinds of remote sensing
image object detection methods. Currently, there are no systematic surveys available in regard to the
bigger research topic—namely, RSISU.

To achieve a collaborative development of remote sensing image scene classification, remote
sensing image scene retrieval, and scene-driven geospatial object detection, this paper aims at
summarizing the deep learning driven achievements around RSISU and systematically depicting the
relationship among the sub-tasks in RSISU. As a whole, this review includes the following highlights:

1.  In contrast to the existing reviews which often review the related techniques on a specific topic,
this paper clarifies the relationship and difference among the sub-tasks in RSISU, and gives a
systematic review. Hence, this review is of benefit by mining the common problems among the
sub-tasks and highlighting the technologies that need to be specially studied in each sub-task.

2. This review not only summarizes the existing achievements, but also points out several promising
research directions around RSISU. From this perspective, this review helps the potential readers
find the research point, and motivates the engineers to develop the advanced application schema.

The rest of this paper is organized as follows. Section 2 gives a brief review of tasks in remote sensing
image scene understanding; Section 3 mainly introduces remote sensing image scene classification;
Section 4 mainly introduces remote sensing image scene retrieval; Section 5 shows remote sensing
image object detection based on the scene level; Section 6 introduces the future research directions and
potential applications; and Section 7 is the conclusion of this paper.

2. A Brief Review of Tasks in Remote Sensing Image Scene Understanding

As mentioned previously, a scene is a combination of multiple objects, environments, and
semantics. Scene-based feature representation has been acknowledged to be a more effective way to
interpret high-resolution remote sensing images [5,6] which have a spatial resolution of 1.5 m to 4
m, and usually do not have high spectral resolution. Scene classification, scene retrieval, and object
detection have all been of benefit to many important applications [7].

Scene classification is a process of learning and discovering image and scene semantic content
tags—that is, after feature learning of a large number of samples, the classification results can be
achieved after the classifier. Common scene classification methods include things such as scene
classification with local semantics, scene classification with middle semantics, and scene classification
with a semantic subject model.

Primal remote sensing (RS) image scene retrieval systems, such as those which are text-based,
queried merely with the geographical area, and time of acquisition or sensor type, might be very
imprecise and inefficient because they largely rely on manually annotated keywords, which are less
relevant to the visual content of RS images. The disadvantages of primal RS image scene retrieval based
on text or geographic region is imprecision and inefficiency. They mainly rely on manual annotation,
which may not be very relevant to the visual content of RS images. Hence, content-based image
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scene retrieval (storing and retrieving the scenes based on visual content in the order of decreasing
similarity) came into being in the early 1990s, and since then, RS image retrieval efficiency has shown
remarkable improvement. Content-based, rather than text-based remote sensing image scene retrieval
implementation is what we focus on in this paper, which is achieved by calculating the similarity
between visual features. This means that, besides the common feature learning block which also exists
in scene classification, there is an independent block of similarity-matching in scene retrieval. Early
studies mainly focused on seeking various feature representation methods (e.g., Scale-invariant Feature
Transform (SIFT) [8], Bag of Visual Words (BOVW) [9,10], fusion of local and global features [11], deep
features, and sparse coded deep features), but a drastic increase of the volume and complexity of RS
data caused visual features to be subjective and ambiguous. To solve this problem, researchers have
recently proposed the development of more suitable similarity metrics, such as deep features with
hash learning, and the end-to-end deep hash learning method. The more satisfactory performances
proved that these similarity metrics were more suitable than the distance measures and graphs for
large-scale scene retrieval.

By contrast, object detection not only requires learning features and getting classification results,
but also knowledge of the direction and location of objects. In previous studies, object detection has
often been cast as a classification problem [12]. Features which can characterize the objects are extracted
first, and then combined with the predefined classifiers to get the classification result.

The specific functions of each sub-task are shown in Figure 1.
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Figure 1. Taxonomy of methods for remote sensing image scene understanding (RSISU). This figure
demonstrates each sub-task’s function. The common characteristic of three tasks is that they all pursue
a scene-level semantic representation of features. Scene classification emphasizes the perceiving of
objects and relationships for higher classification accuracy. Object detection excavates the content of
the scene in a bid to localize and classify objects, while in scene retrieval, the dimension needs to be
reduced for large-scale retrieval.
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3. Remote Sensing Image Scene Understanding

Derived from the traditional machine learning field, deep learning has established a multi-layer
processing learning model that can hierarchically describe the characteristics of raw data. Consequently,
deep learning has made great progress in solving many problems of pattern recognition and the
traditional machine learning algorithm by nonlinear processing. One of the reasons why deep learning
can achieve high accuracy and efficiency is because a complicated deep learning architecture can
be fitted with a large number of training data with diversity and variability to form a better deep
network structure. According to the level of scene classification, it can be divided into low-level
feature description and middle-level feature description. The middle-level features are aggregation
and integration of low-level features, including BoVW [13], SVM [14] based on the structural risk
minimization principle, a random forest [15] classifier based on bootstrap resampling [16], and the
Markov random field (MRF) [17]. In addition, with the rapid development of artificial intelligence
(AI), sparse coding and deep learning algorithms are widely used in scene classification because of
their high classification accuracy.

As an important application, scene classification needs a big volume of data, and RS datasets that
are frequently used for scene classification are introduced in Section 3.1. Furthermore, methods of
supervision based on deep learning have their own strengths and weaknesses, which are identified in
Section 3.2.

3.1. Datasets Used for Scene Understanding

With the development of the remote sensing sensor production level, there are many kinds of
remote sensing sensors, ranging from the multi-spectral (MS) sensor Landsat-8, to the high-resolution
sensor WorldView-III. In addition, we usually need to preprocess the raw data before RSISU. One of
the main difficulties in the quantification of remote sensing is the adjustment of the measured values of
remote sensing images according to the atmospheric conditions to eliminate the atmospheric impact.
The core of this problem is solving the radiative transfer problem in the Earth’s atmosphere and
estimating the optical parameters of this atmosphere. Among them, the atmospheric correction model
based on the radiation transfer model is a method with high accuracy, and the classical models are the 6S
model, LOW Resolution TRANsmission (LOWTRAN) model, and MODerate resolution TRANsmission
(MODTRAN) model. In addition to the atmospheric correction model based on the radiation transfer
model, there are atmospheric correction models based on image characteristics, the typical dark target
method, plane field model, internal average method, and so on. At present, many remote sensing
scene data sets come from Google Earth, where Google Earth images are an integration of aerial and
satellite images. Some of the satellite images are captured through QuickBird and WorldView satellites.
Their spatial resolution is less than 1 m, and all sensors contain panchromatic bands, whereas most
sensors contain near-infrared bands. The imaging mode is push-broom, rather than swing-broom.
Although very high-resolution (VHR) remote sensing images can clearly identify the types of objects
and have a high amount of data, the huge amount of data requires high computational efficiency in our
classification process. Meanwhile, scene classification in the field of remote sensing is more inclined to
semantic segmentation [18]. Thus, for richer semantic information, we need to train the scene-level
remote sensing dataset to obtain the semantic label of the scene. The most commonly used scene data
sets are shown in Table 1:
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Table 1. Introduction of several typical scene databases.

Dataset Land-Use Classes Volume Size Resolution (m) Year
UC-Merced [6] 21 2100 256 x 256 0.3 2010
WHU-RS19 [19] 19 1005 600 x 600 Upto 0.5 2010
RSSCN7 7 2800 400 x 400 - 2015
RSC11 11 1232 512 x 512 0.2 2016
SIRI-WHU [20] 12 2400 200 x 200 2 2016
AID [21] 30 10,000 600 x 600 0.5-0.8 2017
NWPU-RESISC45 [2] 45 31,500 256 x 256 0.2-30 2017
PatternNet [22] 38 30,400 256 X 256 0.062-4.693 2017
RSI-CB128 [23] 45 >36,000 128 x 128 0.3-3 2017
RSI-CB256 35 >24,000 256 x 256 0.3-3 2017
AID++ [24] 46 >400,000 512 x 512 - 2018

In addition, as a non-optical remote sensing method, the synthetic aperture radar (SAR) also
plays a pivotal role in remote sensing images. Due to its independence on atmosphere and sunlight
conditions, SAR images are also obtained to categorize the scene [25] like remote sensing images that
rely on spectral information. However, the SAR image is also limited by the existence of speckle noises
and the absence of effective feature representation.

It is worth mentioning that through being confronted with higher spatial resolution, scene
classification datasets have been greatly developed. However, training large-scale remote sensing
datasets from scratch are still subject to many limitations. The database, which only has three bands—R,
G, and B—is also different from the real remote sensing spectral band. Like Aerial Image Dataset++
(AID++) and Remote Sensing Image (RSI), we can make more use of the tagging of crowd-sourced
geographic data, such as OpenStreetMap (OSM).

3.2. Deep-Learning-Driven Scene Classification

The deep convolution neural network [26] has achieved promising results in the field of natural
image scene classification, and it also has many similarities with remote sensing image scene
classification. Through the migration of the data set training model, the classification accuracy
of the remote sensing image dataset can also be very encouraging. However, there are only three
channels of red, green, and blue in natural images, while remote sensing image data with more
than three bands have not yet been able to be trained in deep learning training networks, such
as ImageNet. This section mainly introduces the pre-trained convolutional neural network model,
the unsupervised classification method of scene classification, and fully supervised deep feature
networks. The typical classification process is shown in Figure 2. After the input original image passes
through the convolution layer, the regularization and pooling layer, the convolution operation, the full
connection layer, and a normalization and pooling operation, a classifier is used to get a classification
result. The most commonly used classifiers are: the support vector machine (§SVM), AdaBoost [27],
k-nearest-neighbor [28] (kNN), conditional random field [29] (CRF), sparse representation-based
classification [30] (SRC), artificial neural network [31] (ANN), random forest, Markov random field
(MREF), and support tensor machine [32] (STM).

Typical deep learning network structures include the deep belief network which needs to vectorize
the raw image and can lead to loss of topology information, the stacked autoencoder (SAE) [33], and
convolutional neural networks (CNNs). For a large number of labeled sample datasets, convolutional
neural networks (CNNs) is the most effective learning model for feature extraction. The basic network
structure of feature learning is the convolution layer, normalization, pooling layer, and full connection
layer [34]. Asmentioned above, deep learning has incomparable advantages over traditional algorithms.
Scene classification mainly includes artificial features (Grey-Level Co-occurrence Matrix (GLCM) [35],
Local binary patterns (LBP) [36], Histogram of Oriented Gradient (HOG) [37], Gist [38]), data-driven
supervised classification features, and data-driven unsupervised classification features.
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I Deep feature learning and classification g

Figure 2. Typical architecture of a convolutional neural network (CNN) for scene classification.
The input image gets feature representation through deep networks (pre-trained CNN, unsupervised
deep feature learning, and an end-to-end architecture can be included).

3.2.1. Feature from Pre-Trained CNN for Remote Sensing Image Scene Classification

As depicted in [26], the authors utilized the pre-trained CNN network model based on ImageNet,
which performs well on scene-level datasets, such as The University of California, Merced (UC
Merced) Land-use and Brazilian Coffee Scenes, and they also used the conservative SVM. The paper
depicts that in different scene-level datasets, the scene-level aerial image datasets often achieve
better results than agricultural datasets. The reason for this is because many objects in the data set
of aerial images (e.g., aircrafts, cars) have similar salient edges and boundaries with the datasets
pre-trained in the CNN network. Thus, training samples have a great influence on the accuracy of scene
classification in supervised classification. The proposition in [39] also used pre-trained CNN models and
domain-specifically fine-tuned, pre-trained CNN models on the scene-level dataset, which functioned
as universal feature extractors to extract richer high-level representation features. In [39], the writer
adopts two strategies for feature extraction. The first is that the parameters of the convolutional
neural network model are trained on an ImageNet dataset, and the results are migrated directly to
a scene classification task. That is to say, the last classification layer is removed, and the feature
output vector of the former layer is used as the input vector of the latter layer. The second strategy
is trained on the ImageNet dataset as before, but through fine-tuning in a specific domain. Owing
to fine-tuning, the average classification accuracy is further boosted by 2-5% for AlexNet, a 16 layer
VGGNet, and GoogleNet, respectively. A Discriminative CNN (D-CNN) model is proposed in [40],
which optimizes the discriminant objective function and introduces a metric learning regularization
term into the existing CNN model features, in addition to minimizing classification errors. Through
testing on the UC Merced, Aerial Image Dataset (AID), NorthWestern Polytechnical University-REmote
Sensing Image Scene Classification (NWPU-RESISC45) datasets, it has been found that this method can
reduce classification errors caused by the similarity between classes. Even though the training ratio
is only 20%, the overall accuracy can reach 90.82 + 0.16% and 89.22 + 0.50% on the aforementioned
AID and UC Merced dataset, respectively. The paper [41] puts forward a gradient-boosting random
convolutional network (GBRCN). This is the first time that a deep integration framework for scene
classification is proposed, and it introduces a multiclass soft-max loss function into the framework.
The basic classifier is Random CNet (RCNet), which can reuse the weight of each convolution model
and reduce the parameters to make the feature extraction process more efficient. Compared with
traditional methods, such as Spatial Pyramid Matching Kernel (SPMK) (89.67%), SIFT + Sparse Coding
(SSC) (91.33%), Saliency-guided Sparse Auto Encoder (SSAE) (92.20%), the final classification accuracy
can reach 98.78%. Unlike most methods which concentrate on deep network architectures, [42] focuses
more on feature fusion methods, where Visual Geometry Group (VGG)-Net is still used for feature
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extraction, and the full connection layer obtained from the deep learning network model is considered
to be a separate feature description method. Unlike the traditional feature fusion methods based on
addition and connection, discriminant correlation analysis (DCA) is used as a feature fusion method.
This fusion method can describe scene-level images, reduce dimension and data information, and
achieve better results for Very High Resolution (VHR) images than traditional images. When the
training ratio is 80%, the scene classification performance tested on the UC Merced dataset of DCA
fusion can still reach 92.32 + 1.02% with slight improvement (about 4-5% over AlexNet and CaffeNet).

3.2.2. Unsupervised Deep Feature Learning for Remote Sensing Image Scene Classification

Deep neural networks [8] have been widely used to learn low-dimensional feature representations
to reduce the dimensionality of VHR images. Sparse coding [43] is another famous unsupervised
feature learning method, which is highly effective for scene classification when compared to the
traditional Bag of Visual Words (BoVW)-based approaches [44] and generates a set of basic functions
from the unlabeled data. Recently, a method combining scale-invariant-feature-transform (SIFT)-based
feature descriptors and sparse coding (Sift + SC) has been put forward. Although unsupervised
classification has many advantages, compared with supervised classification, it is still unable to fully
automate, and has a long way to go.

In order to overcome the influence of pre-training samples on classification accuracy and the
shortcomings of given data with few labels, the unsupervised learning algorithm is also an important
part of remote sensing. In [45], an unsupervised feature learning method is proposed. As we all
know, one of the fatal drawbacks of unsupervised classification is that the effect of the classifier is very
sensitive to the selection of parameters. The author uses a two-level feature extraction algorithm based
on K-means clustering. The first layer generates a contour basis, and the second layer generates a
corner basis. K-means clustering only needs to adjust one parameter, has strong robustness, and can
extract complex structural features (such as corners and junctions). Using the University of California,
Merced (UCM)-21 data set based on the scene level, by comparing the original training samples (83.3%)
and preventing the rotation of the training samples after fitting (89.1%), the latter can usually achieve a
higher level of accuracy. Therefore, in scene level classification, it is very important to use augmentation
to prevent over-fitting in deep network training. The paper [46] proposed a new method for training a
scene-level UC Merced dataset. Yu proposed a balanced data-driven sparsity (BDDS) method, which
designed a feasible sample input for a better-enforced lifetime and population sparsity (EPLS), and
hence improved the supervised trained CNN. The proposed deep feature learning algorithm could
overcome difficulties by smoothing patches with similar textures, and the same components lacked
edge structure information which could be helpful for the classification and failed to present the key
evidence for classification. No matter what clustering method (such as k-means and gradient modules)
it is combined with, the classification accuracy can reach more than 79%.

Inspired by SAR images unlike the optical remote sensing images, the paper [47] utilized deep
unsupervised discriminative feature learning in order to overcome the lack of labeled samples to train
the DNN, which may lead to overfitting.

For a good deep learning algorithm, besides improving the algorithm’s efficiency, it is also very
important to improve the diversity of training samples, which is crucial in order to train a robust
deep learning model. This paper [48] proposes a data augmentation method, which can decrease the
constraints of remote sensing image scenes limited by spectral and topological relations, as well as
enhance visual diversity and the reliability of scene classification. The accuracy of the augmentation
method can reach 99.127% and 99.297%, respectively.

3.2.3. Fully Supervised Deep Networks for Remote Sensing Image Scene Classification

Unlike pre-trained and unsupervised deep feature learning, which need classifiers such as a
random forest or SVM, metric learning (ML) has gradually developed, which is able to enhance the
learned features separability. ML is an end-to-end learning method mainly used to find an appropriate
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measure of similarity between pairs of data, which can preserve the desired distance structure very
well. Existing metric learning is usually categorized into two streams: contrastive embedding and
triplet embedding [49-51].

Contrastive embedding: Contrastive embedding is trained on paired data (x;, x;). Concretely, the cost
function is defined as,

= Y 6D x) + (1= €){a = Dl ) ™
ij

where the label indicator ¢;; € {1, 0} indicates whether the paired data (x;, x;) are from the same class or
not. i(x) = max(0, x) denotes the hinge loss function, and D(xl-, x]-) =l f(x;) = f (x]-) |I2 is the Euclidean
distance of paired data (x;, x;).

Triplet Embedding: Triplet embedding is trained on triplet data (x,, xp, x,). Concretely, the cost function
is defined as:

J= Z h(D(xu,xp) —D(xg,xn) + a)2 )

a,pn

Here, (xa,xp,xn) are the triplet data, where (x;, x,) have the same class labels and (x,, x,;) have
different class labels.

Compared with traditional measurement learning, which focuses on preserving interclass
separability, [44] pays more attention to label consistency (LC). In order to ensure the intraclass
compactness of VHR images, a discriminable distance metric learning method (DDML) is proposed
in this paper. In the learning process, besides the enforced intraclass compactness and interclass
separability, the global and local label consistency (LC) is constrained, which is aimed to jointly
optimize the feature manifold, distance metric, and label distribution.

As is well-known, the last layer of the network is structured as FC layers, which are typically used
in a bid to better summarize the low-level feature learning for a final strategic decision. Apart from
reducing cross entropy loss in FC layers, a metric learning regularization method was proposed in [21]
to make the network model more discriminative. In this paper, a new objective function is proposed
with three terms, including a cross entropy loss term, a metric learning regularization term, and a
weight decay term. When the percentage of labeled images is 15%, the classification accuracy (AC) and
standard deviation (STD) can reach 69.33 + 1.25%.

In order to utilize the structural information between each scene, [52] proposed a special structured
loss to measure pairwise distances. Hence, this paper puts forward diversity-promoting deep structural
metric learning (D-DSML). Compared with the similar learned metric parameters of a traditional DSML,
this method can overcome the overlapping of representations of different factors. The D-DSML method
is implemented by imposing a diversity-promoting prior which can prevent the factors in DSML from
being correlated, so that the redundancy caused by the similarity between the hidden factors can be
decreased. D-DSML-CaffeNet’s classification accuracy can reach 96.76 + 0.36% with a slight boost,
compared with CaffeNet (95.48%), GoogLeNet (94.31 + 0.89%), and VGG-VD16 (95.21 + 1.20%).

4. Remote Sensing Image Scene Retrieval

Remote sensing image scene retrieval (RSISR) is also an important application of content-based
image scene retrieval (CBISR). Remote sensing (RS) image retrieval, by analyzing the visual content,
is crucial for mining geological information. Finding the specific region from a large number of RS
images needs to be done before producing applications of RS. A fundamental flowchart of the RSISR
method includes two indispensable blocks: feature learning or extraction, which is aimed to map
the image which is queried or in the dataset into the feature space, and similarity matching (i.e.,
feature searching, using an appropriate measure to judge the similarities between the query image and
images in the dataset). A block named “relevance ranking” is a popular post-processing method for
RSISR, which focuses on enhancing the original performance of retrieval. However, it is essentially an
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interactive block of similarity-matching using the feedback information of users. As this block is also
used in many subsequent articles, we will not repeat it. The overall architecture of scene retrieval is
shown in Figure 3.

Image retrieval Feature retrieval

|:(> I::>

! Feature representation Relevance ranking

——

Large-scale remote Large-scale feature Retrieval result
sensing image dataset dataset

Figure 3. Flowchart of remote sensing image scene retrieval (RSISR). The input remote sensing (RS)
scene datasets are trained in deep networks. After feature hashing, which is aimed to reduce dimension,
and the first similarity matching from large-scale images, relevance ranking can be further achieved
according to the similarity among the query image and retrieved images.

In the block of feature learning, the low-level (e.g.,, GLCM) and mid-level features (e.g.,
Bag-of-Words) are always traditional and handcrafted [53]. Meanwhile, since the same type of
scenes might emerge at different scales, orientations, and illuminations, relevant images of diverse
appearance are difficult to be retrieved. An increasing amount of triumphant applications prove that
the features learned by the rapidly-growing deep learning (e.g., CNN) are more effective for narrowing
the semantic gap and describing the RS images. Deep learning can excavate intricate structure in huge
data sets, and automatically learn feature representations optimally and powerfully. These kinds of
features are, namely, deep features [54,55]. The feature fusion and the dimension reduction can be
done in this block, and the following RSISR methods are merely about deep features in the block of
feature representation. As Figure 3 reveals, we transfer the task of RS image retrieval to the task of
feature retrieval.

In the block of similarity matching, features excavated from the images in the dataset are compared
to features excavated from the query image [56]. The images in the dataset are ranked according to
decreasing similarity. In the methodology section, we will talk about distance measures, the graph
models, and hash learning, respectively. The block of similarity matching is what we will focus on.

4.1. Retrieval by Distance Measures

Bao et al. [57] added eight similarity metrics into RSISR, and showed the impact of this. For a
particular retrieval task, a suitable similarity metric can get K nearest neighbors, preferably by weighing
the similarities between features, which makes the results more desirable. Distance measures in his
paper include two categories: general feature vector-based metrics, which includes three distances
of Minkowski, and the cosine of the angle; and histogram vector-based measures, which includes
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the histogram intersection, center moment, x? statistical distance, and Bhattacharyya distance. This
research intuitively demonstrates that similarity metrics for a content-based RS retrieval task are very
significant, and various similarity metrics may result in distinctive ranking results, but the distance
metrics in his work were not applied here to measure the deep features.

Assume the feature vectors of query image scene Q and image scene D in the data set are
g=1{q,...,qn}andd = {dq,...,d,}. Forinstance, L1, L2, Loo that were developed from a set of distance
functions known as the Minkowski r-metric can be defined.

For r =1, it is the city-block distance (i.e., L1 or Manhattan distance),
n
d1(q,d) = Y |gi - dil 3)
i=1

For r = 2, it is the Euclidean distance (i.e., L2),

n

d2(q,d) = (qi —di)? )
i=1

And for r = oo, it is the dominance distance (i.e., Loo),

doo(q,d) = m?x)qi - dl-| (5)

For RSISR, deep learning techniques can be roughly divided into unsupervised feature learning
and supervised feature learning methods. Due to the spatial complexity of image scenes, unsupervised
feature learning can accurately describe semantic information. Unsupervised feature learning is
attractive for RS, since RS has less labeled data than a few image analysis areas. For example, in the
ImageNet data set in the field of computer vision, more than 15 million images were tagged. However,
few RS data sets contain more than 10,000 annotated images. Zhou et al. [56] first learned features
sparser from RS images utilizing the auto-encoder, as well as minimizing the memory of features. They
developed an unsupervised feature learning framework (UFLF), and L1 and L2 were utilized to weigh
the similarity for the sparse features produced by their framework. Besides these two measures, he
also employed a histogram intersection. However, the auto-encoder network of the framework is
very shallow, and only has a single hidden layer, which makes it incapable of producing sufficiently
powerful feature representations. Furthermore, the features learned in an unsupervised way may
require longer codes to attain satisfactory results of retrieval, which will largely reduce the image
retrieval efficiency. Deeper networks are necessary for RSISR.

In high-spatial resolution RS images retrieval, the deep features produced by the Full Connection
(FC) layers are usually large, and present computational and storage challenges. This problem has
been well-addressed by Yaakoub [58], and the limitations, which merely consider features produced by
the last FC layer, are solved. They performed transfer learning for RSISR by taking into consideration
features from the FC and convolutional layers from a wider range of CNN. In their framework,
scenes were decomposed under the Quin-tree decompositional principle. The Low-Dimensional
Convolutional Neural Network model (LDCNN), which is pre-trained, is used to automatically extract
deep features from the scenes and predict the labels of them [59]. They adopted L1, L2, and the
Correlation and Cosine similarity as distance measures. Just as Napoletano [60] utilizes CNN networks
later, for both LandUse and SceneSat datasets, the descriptors based on CNN are more excellent
than other descriptors in RSISR of any class. The retrieval performance of Cosine is near to that
of L2. Meanwhile, the Average Normalized Modified Retrieval Rank (ANMRR) of x> outperforms
that of L2 by 0.163 using SatResNet-50, which is slightly smaller (0.045) than that of L1 in his work.
Deep metric learning CNN was introduced to RSISR by constructing a Triplet network with a metric
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learning objective function, which extracts the representative deep features in a semantic space. In such
a semantic space, simple distance measures such as L2 can be used directly. A method based on
the FC layer of the CNN (supervised learning) reduces the dimensionality of the semantic features,
which further guarantees that the similarity matching is efficient and that the storage is not too large.
Instead of simply taking a distance as the similarity, as many content-based RSISR ways do, a retrieval
method [61] based on weighted distance and fundamental features of fine-tuned CNN is demonstrated.
The CNN model is used to weigh the weight of image classes one by one, and employ them to calculate
the L2 between the image which is queried and the images in the data set. As one can see, it is simple
but efficient.

For multi-scale information problems, [62] combined fine-tuned CNN features excavated from
multi-scale images or from multiple sub-patches. They utilized concatenation from various scales, and
multi-patch pooling based on the retrained GoogLeNet CNN, and were able to obtain higher levels of
accuracy in that the Average Normalized Modified Retrieval Rank (ANMRR) value was approximately
3.1% less than that attained by the manual Relevance Feedback VGG Medium (RF VGG-M) descriptor.
The similarity metrics are L2, Cosine, Manhattan, and Chi-square. To make the scene sampling more
reasonable, Tang et al. [53] used two schemes. Then, they learned latent features using the deep
convolutional auto-encoder (DCAE). To find a proper metric for their deep Bag-Of-Words features, they
selected eight common distance metrics: L1, histogram intersection, Bhattacharyya, chi-square, Cosine,
correlation, L2, and inner products. A relatively good retrieval performance could be attained using L1
and L2 among these metrics. The low-dimensional global descriptors in some of the methods above
mean that irrelevant background information may still be encoded. Then, the local convolutional
descriptors extracted in an end-to-end manner and based on feature saliency were combined with
Vector of Locally Aggregated Descriptors (VLAD) aggregation to achieve compact and descriptive
image representations [63]. This effectively enabled fast database searching and made it able to
capture deep semantic multi-scale information. The similarity was determined by L2 of the query and
database vectors.

For multi-label problems, conventional RSISR systems usually perform single-label retrieval,
which underestimates the complicacy of RS images, where an image may be labeled by several tags,
thus leading to worse retrieval performance. Zhou et al. [64] therefore proposed a multi-label RSISR
approach with FC networks, and excavated region convolutional features according to a segmentation
map of each image. The region features were processed further to gain a feature vector for similarity
matching using L2, thus improving the search efficiency and retrieval performance, as well as solving
the multi-label problem at the same time.

For multi-band information problems, traditional red, green and blue (RGB)-based image
representation has been widely used for RSISR. Whereas true RS images are hyperspectral, the rich
spectral information makes them well-suited for RSISU. In [65], deep features were extracted using
CNN from the proposed new hyperspectral dataset for the RS community, and L2 was used to compute
the similarity. From the examples mentioned above, we can conclude that supervised feature learning
methods (e.g., CNN) generally outperform unsupervised feature learning methods by a wide margin.
For instance, using UC Merced data sets, the precision of the unsupervised method employed in [56]
is about 65%, but the precision of the supervised method used by [59] can reach more than 80%.
The distance measures allow the retrieval performance conducted on the deep features to be more
perfect. RSISR for SAR is not mentioned, in that deep features are scarcely exploited for SAR.

However, the aforementioned methods are all vector-based; they all calculate the similarity
between two scenes by L2 or other metrics between two feature vectors. The intrinsic relationship
between different types of features had not been excavated. They only consider the images themselves,
and they become unsuitable if the feature vector is extremely hybrid. Even when multiple types of
features are extracted, the L2 distance is used to calculate the similarity between two super-feature
vectors, which are integrated from multiple features in the Greedy Affinity Metric Fusion (GAMF)
method [66]. All of these lead to a final conclusion: the distance measures are so feature-level isolated
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that the retrieval performance is relatively poor. Taking [66] as an example, using Local Binary Pattern
(LBP) and three other features as the feature combination, 16 of the 21 classes of scenes that are retrieved
by Collaborative Affinity Metric Fusion (GAMF) combined with L2 have a smaller level of precision
than those by the Collaborative Affinity Metric Fusion combined with a graph model.

4.2. Retrieval by Graph Models

Unlike the aforementioned RSISR methods, which often concatenate features of all genres into
one vector, the graph models enriched with node and edge attributes are usually the elective data
structures for RSISR, in terms of scenes constitution and the relations among them. The high-resolution
RS scenes can be precisely retrieved by graph models. Facing the problem caused by multi-type and
large-quantity features, the graph models outperform the vector-based methods in that they make
multiple complementary features effective.

In this part, we should be aware that many existing region-based graph models have been utilized
in RSISR. For example, [67-70] used attributed relational graphs (ARG) to represent the images instead
of using deep features, while their similarity metrics are region-based. These graph models are not
what we are pursuing. Only graph-based retrieval is discussed below in this section, which means
there is retrieval in the data set by graph-based algorithms. Each image in the data set corresponds to a
node in a graph, and the edge between two nodes represents the connection between scenes, rather
than regions. A weight on one edge represents the similarity. As seen in Figure 4, such a mesh structure
shows that auxiliary information from other scenes in the dataset is actually taken into consideration,
from vector-based one-to-one feature retrieval to one-to-many feature retrieval.
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Figure 4. Schematic diagrams of distance measures and graph-based measures. The picture on the left is
the principle of feature-level retrieval, and the picture on the right is the principle of scene-level retrieval.
A one-way arrow indicates similarity matching between the query scene or corresponding feature
and the dataset scene or corresponding feature. Two-way arrows indicate there exists transmission of
information between scenes or scenes features, so the scenes in the dataset aren’t feature-level isolated.

Owing to the single-image feature vector-based algorithms, to alleviate the incredible difference
of the retrieval accuracy among queries, a three-layer graph learning method was applied to holistic
and semi-supervised local features [71], which is reasonable and scalable. Here, the graph-based
algorithm of retrieval consists of a kernel matrix, which represents the similarity among images using
multiple features. The paper in [72] also uses RS images to make a graph which is undirected (fully
connected), and then utilizes graph learning for retrieval. Here, original rank scenes are also graph
nodes, and the similarity between nodes is weighted by the resemblance between RS scenes under the
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chosen measures like L2. That is to say, they first use different “distance measures” to attain various
affinity graphs, and then re-rank scenes by calculating the similarities between nodes within the
affinity graph. To enhance multiple complementary features efficiency in RSISR, Li et al. [66] employed
the model that crossed diffusion. In this paper, the collaborative metric fusion is the graph-based
retrieval algorithm, which shares information in multiple feature spaces in the fusion process. It builds
the relationship among multiple types of deep features, and imports other auxiliary images in the
dataset while maintaining the discriminating power. Here, each initial graph is constructed by one
corresponding feature. The image retrieval task can be finished immediately just by searching the
graph’s affinity matrix rather than distance measures, and this method can achieve a dataset-level
precision of 76.57%, which is 33.26% higher than the framework which uses L2 in [56].

4.3. Retrieval with the Aid of Hash Learning

The approaches in the last part use the graph-based model to measure the similarity, but the
graph model cannot easily be applied to large-scale RSISR, because it requires a large memory and
the computation of it is very complex. In addition to improving feature retrieval skills, there is also a
feasible way to reduce the dimensionality of features. In the former method, there are methods based
on trees, such as the K-Dimensional (K-D) tree which divides data into subspaces and stores partition
patterns through trees. This method does improve the retrieval speed, but can greatly damage the
performance, especially when the high dimension of features makes the tree more complex. Obviously,
they are not suitable for RSISR.

There are alternative solutions (i.e., the methods which reduce the dimension of feature) to
overcome the shortcomings of methods based on the tree. For instance, [73] employed the Principal
Component Analysis (PCA) to map RS features learned by traditional CNN to Deep Compact Codes
(DCC). Recently, hash learning methods have been used to address large-scale RSISR, and have been
shown to behave promisingly [74-78]. The hash functions change features from high vectors into
binary low vectors (i.e., the vectors are made of binary hash codes), and the primitive structure can
be preserved. Figure 5 shows how the amount of memory required is largely reduced, whereas
the retrieval efficiency is enhanced (i.e., the Hamming distance can be calculated efficiently) in the
low-dimensional binary feature space (i.e., Hamming space).
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Figure 5. Schematic diagram of hash learning. In large-scale remote sensing image scene retrieval
(RSISR), hash learning enormously reduces the storage while maintains the discriminating power of
features, as well as transferring visual features to hash codes.

Compared to the graph model, there is neither high computational complexity nor storage
complexity of graphs in hash learning. The constraint among the query image and retrieved images
are denser. To overcome the problem of how linear search is time-consuming and unsuitable for
multi-scale situations, [75] first introduces two nonlinear kernel-based hashing methods. The first
method only uses untagged images, and the hash functions are defined in the kernel space. By contrast,
the second method uses the semantic similarity excavated from annotated images to describe the
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unique hash function in the kernel space. However, the learning time complexity of these methods
can be high and cannot achieve a quick response, so [76] proposes a novel data-independent hashing
method, named partial randomness hashing (PRH). Later, Li [74] advocated an unsupervised feature
learning method. The hash learning module probes the hashing function. Li learned the hybrid
feature mapping function on column sampling hashing, where the precision and recalls are even
larger than when using the former KSH (kernel-based nonlinear hashing in [75]). The approach has
surprisingly better retrieval performance in that the mean average precision (MAP) values exceed
those of KSH by about 45%, which can train all of the data that is available. As Zhang et al. [79] brought
the hashing method to hyperspectral RS scenes, deep features which are spectral-spatial and produced
by the Deep Convolutional Generative Adversarial Networks (DCGAN) model were then Nonlinear
Manifold [80] (NM) hashed to reduce their dimensionality. Multi-index hashing was also employed to
search hyperspectral images.

There is a trend where deep feature extracting and hash learning need to be jointly trained in one
network, so that the retrieval performance could be enhanced in an end-to-end manner. The similarity
metrics that are learned can be more appropriate for the deep features. The deep hashing neural
networks [81] (i.e., DHNNSs) are developed, while both deep feature learning and hash learning neural
networks are constructed and linked. The time spent on the feature extraction can be reduced, and the
final features generated from the Deep Hashing Neural Networks (DHNNSs) in the large-scale RS image
dataset can be calculated before and stored as the data set of features without leading to huge costs
of memory. However, a high retrieval accuracy can only be achieved if hash codes are long enough
and training images annotated are adequate in this method. To solve these problems, this paper [77]
advocates a solution that learns a metric space based on semantics, while only using a few annotated
training images for fast and accurate RSISR in large archives. Also in the paper [78], the deep semantic
hashing (DSH) model was also end-to-end, but only exploited a few tagged images. Meanwhile,
DSH abates the accuracy of the hash codes in that there is no relaxation in its learning. The author
experimented on a Canadian Institute for Advanced Research (CIFAR)-10 data set and utilized his
DSH, as well as a few hashing methods such as Hashing with Mutual Information (MIHASH), which
is famous in the computer vision community. Mean Average Precision (MAP), which was chosen to be
the accuracy, showed that the DSH was about 12.7% more efficient than MIHASH when the scenes
were 32-bits.

Dealing with cross-source (CS) RSISR is also in need. Usually, the scenes retrieved are from the
same RS data source. If the same method is applied to retrieve scenes in another data source, then the
data shift problem emerges, and the performance decreases drastically. The CS messages can be fused
to achieve a higher retrieval performance in the end, and the CS tasks firstly need to be dealt with [82].
For instance, the MAP values of the proposed approach overwhelm those of other famous methods
like DCMH for about 0.15 in the computer vision community when they are applied to solve RSISR CS
tasks. The CS deep hashing is even more necessary because the volume of CS remote sensing data is
continually increasing. Meanwhile, RSISR results vary among datasets, since the CNN models learned
are different. Only source-invariant deep hashing methods, such as source-invariant deep hashing
convolutional neural networks (SIDHCNNS) can overcome these two shortcomings. In this example,
CS messages in multi-spectral images (high spectral resolution) and panchromatic images (high spatial
resolution) are fused to achieve a higher retrieval performance in the end.

From distance measures to graph models and hash learning, existing methods can mine
complementary messages of multiple features and multiple scales more effectively [74]. The retrieval
performance is becoming better (generally, the precision is enhanced from less than 60% to more than
70%). To conclude, the deep feature obtains cracking behaviors in RSISR [53], and the expensive
learning process needs to be more unsupervised. Hence, creating more effective and cheaper deep
feature extraction methods are of great necessity. Although these approaches could largely accelerate
searching speeds, the accuracy levels of retrieval cannot practically apply to applications. On average,
the cost of an operation is quite small. By contrast, the individual cost of an operation might be quite
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high. Moreover, the modeling and learning of deep hashing neural networks (DHNNs) based on
specific RSISR tasks deserve more exploration. In the literature, CS RSISR is rarely discussed [82],
but CS RS data is increasing ceaselessly, thus stimulating us to further our work on CS RSISR.

5. Scene-Driven Remote Sensing Image Object Detection

As shown in Figure 6, scene-level object detection has, in recent years, been gradually applied in
scientific research due to how can extract segmented image information to improve the accuracy of
object detection. The scenes trained for deep networks are gained through sliding scenes. By comparing
the labeled scene and unlabeled scenes, the training scenes can be labeled, and the object detection
result can be achieved. There are several methods used to extract multi-layer features of images
by using deep networks. One is based on region nomination, such as Region-based Convolutional
Neural Networks (R-CNN) [83], Spatial Pyramid Pooling Net (SPP-net) [84], Fast R-CNN [85], and
Region-based Full Connection Network (R-FCN), and the other is end-to-end, which does not require
region nomination, including You Only Look Once (YOLO) and Single Shot MultiBox Detector
(SSD) [86]. Furthermore, the feature maps from higher layers of the deep neural network display
semantic abstracting properties [87].
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Figure 6. Flowchart of scene-driven object detection: take urban village (UV) detection as an example.
The scene trained for deep networks is gained through sliding scenes. By comparing the scene and
scenes which have been labeled “UVs”, the training scenes can be labeled UVs or non-UVs, and the
object detection result can be achieved.

5.1. Taking the Scene as the Primary Unit to Interpret Objects from Remote Sensing Images

For scene-based detection, the primary unit is the image block, and its semantic scene category is
determined not only by the contained objects, but also their relative positions. Hence, scene-based
classification methods are able to better distinguish complex categories, and can simultaneously
consider the relationships between objects.

Li et al. [88] first utilized multi-kernel learning to incorporate multiple features to implement the
block-level image interpretation. Then, multi-field integrating was proposed to obtain the block-level
result. Subsequently, multi-hypothesis voting was finally utilized for the built-up area detection result
through multi-hypothesis super-pixel representation and graph smoothing. Compared with pixel-based
Grey-Level Co-occurrence Matrix (GLCM) (89.9%), Li’s method can reach 94.3%. In addition, Li [89]
presented an unsupervised deep neural network (UDNN), which is composed of an unsupervised
deep convolutional neural network (UDCNN) with UDCNNB3'’s accuracy reaching 97.08 + 1.76% and
UDNNB3-1-2’s accuracy reaching 98.55 + 0.87%, as well as an unsupervised deep fully connected neural
network (UDFNN). The former can hierarchically extract the local features, from simple to complex.
UDENN attaches importance to the merits of fully connected layers by stacking the RBMs, and works
to further abstract the feature representation from a global perspective.
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In our previous work [90], a double-stream convolutional neural network (DSCNN) model
based on Inception V3 was proposed to extract the built-up area automatically. The network
consists of two branches: the upper branches manipulate the panchromatic image providing primary
information for object classification, and the lower branch attaches more importance to the multispectral
image, providing auxiliary information for improvement in accuracy (with the overall accuracy
reaching 98.39%).

5.2. Deep Networks under Scene-Level Supervision for Geospatial Object Detection

The intrinsic difference between deep learning methods and traditional visual recognition methods
is that the deep learning methods can autonomously learn feature representations from a large amount
of data, without much expertise or effort in designing features. The deep learning methods can
automatically learn hierarchical feature representations. In the hierarchical feature representations,
a simple concept is first learned, and then complex concepts are built successively by being composed
of simpler ones. As depicted in Figure 7, this feature abstraction process also accords with the human
visual cognition process [89].

B 1 (=shi)=0.998
resize
— ship
. 1)=0.0834 z
resize E
— storage tank —E

Discriminative Class-specific Class-specific ~ Synthesized class- Detection result
convolutional weights activation weights|  activation maps specific activation
maps

Figure 7. Scene-level supervised object detection based on deep networks.

In [91], weakly supervised learning (WSL) obtains the initial training examples via saliency-based
self-adaptive segmentation and negative mining based on weakly labeled remote sensing images (RSIs).
On the basis of the trained target detector refined in advance, a candidate-patch-based scheme was
adopted so as to detect targets effectively. Analogously, weakly supervised learning (WSL) combined
with high-level feature learning [12] was adopted for automatic detection of the optical remote sensing
images (RSIs). Furthermore, in a bid to obtained more structural and semantic representation of the
image patches, they extracted the low-level and mid-level features to capture the spatial information,
and a deep Boltzmann machine (DBM) was utilized to learn the hidden patterns of the mid-level
features, even though it can only detect single objects.

Li et al. [92] analysed the drawbacks of weak supervision, which takes scenes as isolated ones and
ignores the mutual cues between scene pairs. Hence, an end-to-end multi-class method based on two
stages is put forward, which were intended to learn discriminative convolutional weights through
exploiting the mutual information between scene pairs, as well as the class-specific activation weights,
respectively. Besides, the paper proposes a multi-scale scene-sliding-voting strategy to compute
the class-specific activation maps (CAM) and a new set of CAM-oriented segmentation methods
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aimed to detect objects. Even under weak supervision, the result of training deep networks has an
encouraging result.

To better classify, multi-scale convolutional neural networks (MCNN) [93] can also be used to
extract deep features of the scale by considering the context information of the image. MCNN uses a
series of images of different scales to perform a pyramid algorithm, and uses the back propagation
algorithm [94] to automatically optimize various parameters in a deep network. In addition, because
the non-linear feature is often better than the linear feature in representing the characteristics of the
object, and in order to better classify, the extracted multi-scale spectral features become non-linear after
the action of the non-linear activation function. Compared with classic SVM, whose overall accuracy
(OA) is 80.13%, MCNN has an overwhelming advantage in accuracy (96.78%).

6. Future Research Directions

6.1. Unsupervised Model Transfer Cross Different Scene Datasets

In the past, classification methodologies were normally based on pixels or objects. However,
with the appearance of the data shift problem (i.e., tagged and untagged images acquired by various
sensors of completely different geographical areas), the classification scenarios subjected to it need to
be dealt with [34]. The retrieval results from different regions vary dramatically, even if the scenes are
born from the same sensor. As revealed, the cross-source RSISU problems should be scene-based and
jointly optimized in an unsupervised way. Thus a domain adaptation network was developed in this
paper [34]. For the analysis of the tagged and untagged images, the authors employed pre-trained CNN
to produce the original feature representation. Then, they threw the resulting features into the other
network based on the pre-trained CNN for further learning. In their work, they created a cross-dataset
made by aggregating images of the same class from the UC Merced data set and Kingdom of Saudi
Arabia (KSA) data set. Obviously, there exists the data shift problem, in that images in the source and
target domains are from different places or different sensors. However, the shift is narrowed largely
with the aid of the proposed network. At the same time, the overall accuracy of retrieval was enhanced
from 73.25% to 91.50% when the source domain data set was KSA and the target domain data set was
UC Merced. Besides uni-scene classification, they were able to achieve cross-scene classification.

6.2. Recognition of Unseen Scenes via Knowledge Transfer

Currently, several distinct drawbacks exist in the scene classification of HSR (high spatial resolution)
RS images [34]:

e  Under no circumstance can a scene class get an appropriate classifier without labeled data using
most state-of-art approaches.

e  Only messages of HSR RS images can be used. The images of a scene class which are unseen
cannot be recognized.

e  The names of typical classes are less semantically related than those of the object classes in natural
image recognition, which restricts the zero-shot (ZS) learning approaches from being employed in
the RS community.

It is normal for humans to be able to identify a new scene class. Since a huge amount of knowledge
is contained and delivered to us through texts and other channels in our daily life, the former statement
is reasonable. Hence, by combining seen instances and ancillary information (e.g., texts), humans may
effortlessly identify new scene classes. We can use ZS learning, which is famous in natural language for
transferring knowledge from seen classes to unseen classes based on accessorial information. In this
paper, a novel ZS scene classification approach for High Spectral Resolution (HSR) RS images (the
word2vec model) changed the names of classes to semantic vectors for the first time [95]. Through
sorting all the zero-shot models in the community of RS, only the accuracy of the ZS scene classification
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method was able to achieve more than 70%. This indicates that the aforementioned limitations are
being dealt with.

6.3. Language-Level Understanding of Remote Sensing Image Scenes

Regarded as a significant but rare task for Al, RS image captioning is more challenging [96], which
is actually closer to RSISU itself. The words generated are preliminary comprehensions from the
machine, which can be regarded as a bridge linking up computer vision and language.

Instead of simply predicting individual tags, it generates a complete sentence that is
comprehensible. This not only means classifying each image scene as scene classification does,
but also mining the dependencies between classes. It means adding contextual information between
scenes to RSISR. Furthermore, it not only means recognizing objects and analyzing each image scene
at a multi-scale, but also finding out the spatial relationship between the objects. Such descriptive
sentences are closer to RSISU. By using deep learning and FC networks, an RS image capture framework
was constructed in this article. The descriptions produced show wonderful performance. For instance,
the lowest accuracy of the scenes in Google Earth images achieved 79%. This inspires us in at least
two ways:

e Image Retrieval: Rather than keyword searching, users can further describe their needs and
improve the approachability of gathering useful images.

e  Military Intelligence Generation: Battlefield images can immediately be converted to text messages
by machine. These messages can be delivered to soldiers and help them to fight.

6.4. Greedy Annotation of RS Image Scenes

In addition to the aforementioned zero-shot problem, the low-shot problem (i.e., only a small
number of samples are tagged) is more common in RSISU. To target the problem of annotating for
remote sensing large data in an unsupervised way, we can solve it by clustering, instead of using
knowledge transfer. For example, in the article [97], hierarchical similarity diffusion is used. This
method is based on the assumption that scenes in a cluster should have the same label, which is
obviously reasonable.

To some degree, it tolerates some wrong annotations. An accuracy level higher than 90% can be
attained even when only one-tenth of the scenes are annotated. Therefore, the idea of further solving
the low-shot problem in RSISU can diverge from this method.

6.5. Multi-Source Remote Sensing Image Scene Understanding

By coupling multi-source data, RSISU can play a more beneficial role in today’s society. True
and reliable data sources are scarce in the real developing world, so in order to obtain more accurate
socio-economic information [98], we sometimes need to combine existing social survey information with
remote sensing image information. In [99], satellite images of luminosity at night (“nightlights” [100])
and country-level economic production statistics were used to train the deep learning model with the
method of “transfer learning”. Through the method of this article, we were able to properly detect the
level of economic development of a certain region, so as to help improve the poverty evaluation.

In addition to the need for testing in poor areas, human residential areas are still largely affected
by natural disasters [101]. It is also essential to find the law of the time and location of natural disasters,
and to reasonably predict the place and time of possible disasters in the future so that we can assist the
relevant departments when making decisions. As depicted in [102], the multi-kernel learning method
is combined with 3D point-cloud data (which is known to be a very precise data source that can extract
the geometric information of the objects) to detect natural disasters.

Nowadays, remote sensing data sources are still a challenge [103] to the understanding of remote
sensing image scenes. Thanks to the further development of WIFI, GPS, and other systems [104], users
can upload their location information and corresponding geographic data by Twitter or Instagram. We
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should learn how to use “big data” or multi-source data [105], such as OpenStreetMap (OSM) and
Google Maps to obtain image information, and apply the deep learning geography theory to these
kinds of mass data geosciences. In the long run, learning and transfer learning based on social media
and multi-source dataset between different data sources is a promising application.

6.6. Automatic Target Detection under Scene-Tng-Supervision

In many practical applications, it is not a simple task to label the accurate boundary of targets
in the infrared imagery [106] or SAR imagery [107]. However, we can easily determine whether one
image block (i.e., scene) contains the target of interest or not. Hence, training deep networks under
scene-tag-supervision is a promising way to address many challenging target detection tasks (e.g.,
target detection from infrared imagery or SAR imagery).

7. Conclusions

This comprehensive review may be of benefit to both the industry and academia in the remote
sensing domain. In this paper, we introduced the different applications of remote sensing image
interpretation based on deep learning. Through sorting out and summarizing the existing research,
the latest technologies of scene classification, scene retrieval, and object detection have been more
thoroughly analyzed. However, for deep learning, because of the need for a large number of training
data sets and speed constraints, even with high operational accuracy, there are still challenges and
many areas for improvement.
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