A Novel Method Based on Neural Networks for Designing Internal Coverings in Buildings: Energy Saving and Thermal Comfort
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Office Buildings
2.2. Sampling Temperature and Relative Humidity
3. Calculation
3.1. Local Thermal Comfort Indexes
3.2. NN Training and Prediction
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Orosa, J.A.; Baaliña, A. Passive climate control in Spanish office buildings for long periods of time. Build. Environ. 2008, 43, 2005–2012. [Google Scholar] [CrossRef]
- Orosa, J.A.; Baaliña, A. Improving PAQ and comfort conditions in Spanish office buildings with passive climate control. Build. Environ. 2009, 44, 502–508. [Google Scholar] [CrossRef]
- Orosa, J.A.; Oliveira, A.C. Energy saving with passive climate control methods in Spanish office buildings. Energy Build. 2009, 41, 823–828. [Google Scholar] [CrossRef]
- Orosa, J.A.; Oliveira, A.C. Reducing energy peak consumption with passive climate control methods. Energy Build. 2011, 43, 2282–2288. [Google Scholar] [CrossRef]
- Orosa, J.A.; Oliveira, A.C.; Ramos, N.M.M. Experimental quantification of the operative time of a passive hvae system using porous covering materials. J. Porous Media 2010, 13, 637–643. [Google Scholar] [CrossRef]
- Hens, H. Indoor Climate in Student Rooms: Measured Values. IEA-EXCO Energy Conservation in Buildings and Community Systems Annex 41 “Moist-Eng” Glasgow Meeting. 2004. Available online: https://www.kuleuven.be/bwf/projects/annex41/protected/data/KUL%20Oct%202004%20Paper%20A41-T3-B-04-6.pdf (accessed on 24 February 2019).
- Padfield, T. The Role of Absorbent Building Materials in Moderating Changes of Relative Humidity. Ph.D. Thesis, Department of Structural Engineering and Materials, The Technical University of Denmark, Kongens Lyngby, Denmark, October 1998. [Google Scholar]
- Hameury, S.; Lundstrom, T. Contribution of indoor exposed massive wood to a good indoor climate: In situ measurement campaign. Energy Build. 2004, 36, 281–292. [Google Scholar] [CrossRef]
- Nicolajsen, A. Thermal transmittance of a cellulose loose-fill insulation material. Build. Environ. 2005, 40, 907–914. [Google Scholar] [CrossRef]
- Plathner, P.; Littler, J.; Stephen, R. Dynamic water vapour sorption: Measurement and modelling. In Proceedings of the Indoor Air Quality 99, Edinburgh, Scotland, 9–13 August 1999. [Google Scholar]
- Talukdar, P.; Osanyintola, O.F.; Olutimayin, S.O.; Simonson, C.J. An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part II: Experimental, numerical and analytical data. Int. J. Heat Mass Transf. 2007, 50, 4915–4926. [Google Scholar] [CrossRef]
- Osanyintola, O.F.; Simonson, C.J. Moisture buffering capacity of hygroscopic building materials: Experimental facilities and energy impact. Energy Build. 2006, 38, 1270–1282. [Google Scholar] [CrossRef]
- Simonson, C.J.; Tuomo, O. Moisture performance of buildings envelopes with no plastic vapour retarders in cold climates. In Proceedings of the Healthy Buildings 2000, Espoo, Finland, 6–10 August 2000; SIY Indoor Air Information Oy: Helsinki, Finland, 2000; Volume 3. [Google Scholar]
- Johra, H.; Heiselberg, P. Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review. Renew. Sustain. Energy Rev. 2017, 69, 19–32. [Google Scholar] [CrossRef]
- Talukdar, U.P.; Das, A.; Alagirusamy, R. Effect of structural parameters on thermal protective performance and comfort characteristic of fabrics. J. Text. Inst. 2016, 108, 1430–1441. [Google Scholar] [CrossRef]
- Wahid, M.A.; Hosseini, S.E.; Hussen, H.M.; Akeiber, H.J.; Saud, S.N.; Mohammad, A.T. An overview of phase change materials for construction architecture thermal management in hot and dry climate region. Appl. Therm. Eng. 2017, 112, 1240–1259. [Google Scholar] [CrossRef]
- Fedorczak-Cisak, M.; Furtak, M.; Gintowt, J.; Kowalska-Koczwara, A.; Pachla, F.; Stypuła, K.; Tatara, T. Thermal and vibration comfort analysis of a nearly zero-energy building in Poland. Sustainability 2018, 10, 3774. [Google Scholar] [CrossRef]
- Álvarez, J.D.; Costa-Castelló, R.; Castilla, M.D.M. Repetitive control to improve users’ thermal comfort and energy efficiency in buildings. Energies 2018, 11, 976. [Google Scholar] [CrossRef]
- Weng, K.; Meng, F.; Mourshed, M. Model-based optimal control of window openings for thermal comfort. Proceedings 2018, 2, 1134. [Google Scholar] [CrossRef]
- SIAM. Environmental Information System of Galicia. 2016. Available online: http://archivo.cesga.es/component/option,com_proyectos/task,view/Itemid,0/catid,46/id,45/lang,en/ (accessed on 24 February 2019).
- Gemini Data Loggers. 2016. Available online: http://www.geminidataloggers.com (accessed on 24 February 2019).
- Toftum, J.; Jorgensen, A.S.; Fanger, P.O. Upper limits for indoor air humidity to avoid uncomfortably humid skin. Energy Build. 1998, 28, 1–13. [Google Scholar] [CrossRef]
- Toftum, J.; Jorgensen, A.S.; Fanger, P.O. Upper limits of air humidity for preventing warm respiratory discomfort. Energy Build. 1998, 28, 15–23. [Google Scholar] [CrossRef]
- Simonson, C.J.; Salonvaara, M.; Ojanen, T. The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality. Indoor Air 2002, 12, 243–251. [Google Scholar] [CrossRef]
- Fang, L.; Clausen, G.; Fanger, P.O. Impact of temperature and humidity on perception of indoor air quality during immediate and longer whole-body exposures. Indoor Air 1998, 8, 276–284. [Google Scholar] [CrossRef]
- Matlab Mathworks. Available online: https://es.mathworks.com (accessed on 24 February 2019).
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Kartal, S.; Oral, M.; Ozyildirim, B.M. Pattern layer reduction for a generalized regression neural network by using a self–organizing map. Int. J. Appl. Math. Comput. Sci. 2018, 28, 411–424. [Google Scholar] [CrossRef]
- MathWorks. Divide Data for Optimal Neural Network Training. 2019. Available online: https://www.mathworks.com/help/deeplearning/ug/divide-data-for-optimal-neural-network-training.html;jsessionid=33c5d9e13c9aa6f19e618b26f0d8 (accessed on 26 April 2019).
- Costa, A.M.; Bouzón, R.; Vergara, D.; Orosa, J.A. Eco-friendly pressure drop dehumidifier: An experimental and numerical analysis. Sustainability 2019, 11, 2170. [Google Scholar] [CrossRef]
- Csoknyai, T.; Hrabovszky-Horváth, S.; Georgiev, Z.; Jovanovic-Popovic, M.; Stankovic, B.; Villatoro, O.; Szendrő, G. Building stock characteristics and energy performance of residential buildings in Eastern-European countries. Energy Build. 2016, 132, 39–52. [Google Scholar] [CrossRef]
- Vasco, D.A.; Muñoz-Mejías, M.; Pino-Sepúlveda, R.; Ortega-Aguilera, R.; García-Herrera, C. Thermal simulation of a social dwelling in Chile: Effect of the thermal zone and the temperature-dependant thermophysical properties of light envelope materials. Appl. Thermal Eng. 2017, 112, 771–783. [Google Scholar] [CrossRef]
- Glass, S.V.; Kochkin, V.; Drumheller, S.C.; Barta, L. Moisture performance of energy-efficient and conventional wood-frame wall assemblies in a mixed-humid climate. Buildings 2015, 5, 759–782. [Google Scholar] [CrossRef]
- Bhikhoo, N.; Hashemi, A.; Cruickshank, H. Improving thermal comfort of low-income housing in thailand through passive design strategies. Sustainability 2017, 9, 1440. [Google Scholar] [CrossRef]
- Boostani, H.; Hancer, P. A model for external walls selection in hot and humid climates. Sustainability 2019, 11, 100. [Google Scholar] [CrossRef]
- Orosa, J.A.; Vergara, D.; Costa, Á.M.; Bouzón, R. A novel method for nZEB internal coverings design based on neural networks. Coatings 2019, 9, 288. [Google Scholar] [CrossRef]
- Medved, I.; Trník, A.; Vozár, L. Modeling of heat capacity peaks and enthalpy jumps of phase-change materials used for thermal energy storage. Int. J. Heat Mass Transf. 2017, 107, 123–132. [Google Scholar] [CrossRef]
GRNN | Error (%) |
---|---|
Winter permeable | 1.59 |
Winter semi-permeable | 1.20 |
Winter impermeable | 1.34 |
Summer permeable | 1.47 |
Summer semi-permeable | 1.21 |
Summer impermeable | 1.68 |
Covering | Permeability (kg/(m s Pa)) |
---|---|
Paper and Plaster | 1.44e-10 |
Paint | 1.75e-12 |
Plastic | 0.80e-12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orosa, J.A.; Vergara, D.; Costa, Á.M.; Bouzón, R. A Novel Method Based on Neural Networks for Designing Internal Coverings in Buildings: Energy Saving and Thermal Comfort. Appl. Sci. 2019, 9, 2140. https://doi.org/10.3390/app9102140
Orosa JA, Vergara D, Costa ÁM, Bouzón R. A Novel Method Based on Neural Networks for Designing Internal Coverings in Buildings: Energy Saving and Thermal Comfort. Applied Sciences. 2019; 9(10):2140. https://doi.org/10.3390/app9102140
Chicago/Turabian StyleOrosa, José A., Diego Vergara, Ángel M. Costa, and Rebeca Bouzón. 2019. "A Novel Method Based on Neural Networks for Designing Internal Coverings in Buildings: Energy Saving and Thermal Comfort" Applied Sciences 9, no. 10: 2140. https://doi.org/10.3390/app9102140
APA StyleOrosa, J. A., Vergara, D., Costa, Á. M., & Bouzón, R. (2019). A Novel Method Based on Neural Networks for Designing Internal Coverings in Buildings: Energy Saving and Thermal Comfort. Applied Sciences, 9(10), 2140. https://doi.org/10.3390/app9102140