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Abstract: Manifold learning is a powerful dimensionality reduction tool for a hyperspectral image
(HSI) classification to relieve the curse of dimensionality and to reveal the intrinsic low-dimensional
manifold. However, a specific characteristic of HSIs, i.e., irregular spatial dependency, is not taken
into consideration in the method design, which can yield many spatially homogenous subregions
in an HSI scence. Conventional manifold learning methods, such as a locality preserving projection
(LPP), pursue a unified projection on the entire HSI, while neglecting the local homogeneities on
the HSI manifold caused by those spatially homogenous subregions. In this work, we propose a
novel multiscale superpixelwise LPP (MSuperLPP) for HSI classification to overcome the challenge.
First, we partition an HSI into homogeneous subregions with a multiscale superpixel segmentation.
Then, on each scale, subregion specific LPPs and the associated preliminary classifications are
performed. Finally, we aggregate the classification results from all scales using a decision fusion
strategy to achieve the final result. Experimental results on three real hyperspectral data sets validate
the effectiveness of our method.

Keywords: hyperspectral image manifold learning; dimensionality reduction; local homogeneity;
irregular spatial dependency; multiscale superpixel segmentation; covariance feature; classification

1. Introduction

Hyperspectral image (HSI) classification has been a research hotspot over recent years, since it
plays a critical role in military target detection, precision agriculture, mine exploration, and many
other applications [1–3]. With abundant spectral information, HSIs show great potential in identifying
different ground objects of interest. However, hundreds of spectral bands in an HSI also bring
about some problems, such as heavy computation burdens and the Hughes phenomenon which
means that a large amount of training HSI pixels are required to maintain statistical confidence in the
HSI classification task [4,5]. Such problems usually hinder HSI classifiers from achieving excellent
performance in real applications. In fact, HSI spectral bands are strongly correlated; hence, the spectral
signature of each HSI pixel can be represented by only a few features [6–8]. Therefore, one often-used
strategy to overcome the dimensionality dilemma mentioned above is dimensionality reduction which
aims to represent the high-dimensional HSI data in a low-dimensional space without losing important
information for discriminating tasks.

Numerous dimensionality reduction methods have been developed, which can be roughly
categorized into two groups: feature transform and feature selection [9,10]. Feature transform projects
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the original HSI data into an appropriate low-dimensional space, while feature selection chooses the
most representative bands from the HSI. Feature transform gains the advantage over feature selection
that it has the potential to maintain the original information in the high-dimensional data during
dimensionality reduction and thus generate more discriminative features [11,12]. Principle component
analysis (PCA) and linear discriminant analysis (LDA) are two typical feature transform methods.
PCA attempts to map the data along the directions of maximal variance [13]. LDA tends to maximize
between-class distances and minimize within-class distances in the meantime [14]. Both PCA and LDA
just assume that the information contained in high-dimensional data lies on a linear low-dimensional
space, whereas nonlinear structures are often exhibited in real HSI data. To cope with the nonlinearities,
manifold learning methods were developed. Manifold learning assumes that the high- dimensional
data actually lie on a low-dimensional manifold structure, which can be parameterized with a group of
identifiable coordinates. One of the most popular manifold methods is locality preserving projection
(LPP) which builds a graph to capture geometric structures of data and subsequently establishes a
projection from the original data space to the low-dimensional space [15–19]. Other manifold learning
approaches include locally linear embedding (LLE) which supposes that the structure represented by
the linear combinations of the data’s nearest neighbors is unchanged in both the high-dimensional and
the associated low-dimensional spaces [20], isometric mapping (ISOMAP) which utilizes the geodesic
distance to perform low-dimensional embedding [21], and local tangent space alignment (LTSA) which
aims to recover the intrinsic manifold of data by aligning the local tangent space of each pixel [22].

Irregular spatial dependency is an important characteristic of HSIs, which is caused by the usual
occurrences of complex irregular ground objects in HSI scenes. The dependency brings about spatially
local homogeneous subregions in different shapes and sizes in an HSI. Such subregions can be detected
effectively with appropriate techniques such as superpixel [23–25], where pixels in a homogeneous
subregion have similar spectral properties but vary relatively significantly across different subregions.
Intuitively, such homogeneous subregions would result in local homogeneities on an HSI manifold.
However, conventional manifold learning-based HSI dimensionality reduction methods, such as
LPP, directly apply a unified projection on the entire HSI, missing those local homogeneities on the
HSI manifold. Motivated by such a consideration, we propose a multiscale superpixelwise LPP
(MSuperLPP) method for HSI classification in this work. The method is able to deal with spatially
local homogeneities in HSIs during dimensionality reduction, thus offering the potential to improving
the subsequent classification. To the best of our knowledge, there is no similar work to ours in
existing literature, which performs local homogeneity manifold-based HSI dimensionality reduction.
Our methods comprise three major phases. First, we segment an HSI into many homogeneous
subregions using entropy rate superpixel segmentation (ERS) with a series of scales, which can exploit
fully rich spatial dependencies in different shapes and sizes. Next, on each scale, LPP is run on each
subregion with spectral-spatial covariance feature, and the obtained low-dimensional features are fed
into a preliminary classifier. In the final step, the results on all the scales are aggregated with a decision
fusion strategy to yield the final classification result.

The remainder of this paper is organized as follows. In Section 2, we introduce some backgrounds
related to the proposed approach. Section 3 gives the details of the proposed MSuperLPP. Section 4
presents the experiment results, and Section 5 provides a summary of this paper.

2. Related Work and Background

Denote an HSI with N pixels and D bands as X = [x1, x2, · · · , xN ] ∈ RD×N , and the connected
data set in a low-dimensional space as Y = [y1, y2, · · · , yN ] ∈ Rd×N , where d � D. LPP is a
widely used manifold learning method for HSI dimensionality reduction [16–19,26], while the region
covariance descriptor is an effective spectral-spatial feature for HSI classification [26–28]. In the
following, they are briefly introduced as backgrounds of our proposed method.
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2.1. Locality Preserving Projection

LPP builds a graph to obtain the connections among all HSI pixels and then intends to find an
optimal projection A to map the original HSI data into a low-dimensional space, while maintaining
the local connection relationships [15–19]. Its objective function can be mathematically represented as

min ∑
i,j
‖yi − yj‖2Wij (1)

and the weight Wij is defined as

Wij =

e−
‖xi−xj‖

2

2σ2 , if xi ∈ N(xj) or xj ∈ N(xi)

0, otherwise
(2)

where σ denotes the scale and N(xi) stands for the neighbors of xi. Equation (2) measures the similarity
or the distance between pixels xi and xi. Under the similarity, the objective in Equation (1) would
lead to a heavy penalty if xi and xj are mapped to be far away from each other; thus minimizing it
guarantees that a small distance between xi and xj tends to force a small distance between yi and yj.
Given a constraint YDY = I, which means removing the arbitrary scaling factor, the aforementioned
optimization problem can be further formulated as

arg min
A

tr(ATXLXTA)

s.t. ATXDXTA = I
(3)

where I is an identity matrix, D is a diagonal matrix with diagonal entries Dii = ∑
j

Wij, and L = D−W

is the graph Laplacian matrix. The problem in Equation (3) can be solved by the following generalized
eigenvalue formulation:

XLXTa = λXDXTa (4)

where λ denotes the eigenvalue and eigenvectors corresponding to the d smallest eigenvalues of
Equation (4) from the projection matrix A = [a1, a2, · · · , ad].

In brief, LPP aims to obtain a projection to perform an HSI dimensionality reduction while
preserving the neighborhood structure of the data. Besides the standard LPP mentioned above, some
considerations such as sparsity, tensor, and orthogonality can be utilized additionally to solve the
projection [17–19,29].

2.2. Region Covariance Descriptor

Region covariance descriptor has been applied in the computer vision and brain computer
interface problem [30–32]. Deng et al. introduced the descriptor to HSI processing [26–28]. Suppose
that X ∈ RW×H×D represents the original HSI cube, Xi ∈ Rw×h×D denotes the spatial region around
the ith pixel, and s = w× h is size of a spatially local window, then the region covariance descriptor is
as follows:

Ci =
1

s− 1

s

∑
t=1

(xt − µi)(xt − µi)
T (5)
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This can be defined as a spectral-spatial feature of Xi, where µi =
1
s

s
∑

t=1
xt. Since the covariance feature

is connected to a symmetric positive definite matrix and lies on a Riemannian manifold [32], the
Log-Euclidean distance metric shown below can measure the similarity between Ci and Cj:

dLE(Ci, Cj) = ‖ log(Ci
−1Cj)‖F =

[
n

∑
k=1

log2λk

]1/2

(6)

where λk is the kth eigenvalue of Ci
−1Cj.

Performing a region covariance descriptor can yield an excellent spectral-spatial covariance
feature for HSI classification [26–28], which has the advantage of robustness to noise and spectral
variabilities over traditional spectral feature (the original spectral signature) [33–35].

Following one of the most effective HSI classification routines which comprises three successive
phases, i.e., feature extraction, dimensionality reduction, and classification, the combination of various
features and various manifold dimensionality reduction ways can yield different HSI manifold learning
schemes which can be testified with a subsequent HSI classifier.

3. Proposed Method

A remotely sensed HSI scene usually comprises irregular ground objects in various shapes and
sizes, which leads to the irregular spatial dependency characteristic of an HSI, thus leading to the local
homogeneities on the connected HSI manifold. In the following, we develop a new method called
MSuperLPP to deal with the manifold local homogeneities. Different from a conventional LPP which
applies an unified projection on the entire HSI data, our method adaptively determines homogenous
subregions and thus the HSI manifold local homogeneity and then employs a divide-and-conquer
strategy to perform LPP processing based on those subregions. Therefore, our method is able to
fully explore local homogeneities on the HSI manifold and thus collects more useful discriminative
information, which poses the potential to enhance the final classification performance.

3.1. Determination of Manifold Local Homogeneity with Multiscale Superpixel Segmentation

Taking into consideration the irregular spatial dependency characteristic of HSIs, we adopt a
multiscale superpixel segmentation strategy here to determine the irregular homogeneous subregions
in various shapes and sizes in an HSI. ERS can achieve a natural representation of visual scenes [36,37].
It is based on an undirected graph G(V, E) where V is the vertex set and E is the edge set. The vertices
can be the pixels of an HSI, and then, the weight of an edge measures the similarity of the connected
two pixels. Thus, the image segmentation task becomes the problem of how to partition the graph
properly. ERS aims to choose a subset S of E which is in the partition of K subgraphs using the
following criterion:

max H(S) + λB(S) (7)

where the entropy rate term H(S) prefers homogeneous clusters, the regularization term B(S) forces
the clusters to be of similar sizes, and the weight λ needs to be nonnegative. To solve the optimization
problem in Equation (7), Liu et al. gave an efficient greedy algorithm [36]. In our method, we first use
PCA to obtain the first principal component of HSI and then perform ERS on the extracted principal
component for convenience.

ERS tends to divide the image into subregions of similar sizes once the number of superpixels is
given. However, the homogenous subregions in the HSI are in different sizes. That is to say, ERS with
a single scale cannot represent the homogeneities well. Therefore, we perform the segmentation in
a multiscale way to tackle this issue, where ERS is run with several scales. Specifically, if an HSI is
segmented with 2P + 1 scales, then the number of superpixels on a scale is determined by

Ns = (
√

2)pNs f , p = 0,±1,±2, · · · ,±P (8)
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where p is the index of scales and Ns f is the fundamental number of superpixels and given empirically.
With a series of scales, the segmentation is expected to adapt homogeneities in various sizes in the
scene and to offer the potential to further reduce the impact of an irregular spatial dependency.

A superpixel obtained in the HSI represents spatially homogenous subregions, while different
superpixels means there are spectral signature differences to some degree. Such homogenous
subregions in an HSI imply that there are local homogeneities on the associated HSI manifold. Thus,
we can determine local homogeneities on the connected HSI manifold by performing the multiscale
superpixel segmentation.

3.2. Divide-and-Conquer-Based LPP Classification

As local homogeneities on an HSI manifold can be reflected with superpixels, performing an
LPP in each superpixel with a superpixel specific projection is expected to preserve the spatially local
geometric structure of the data well.

Our method utilizes the region covariance descriptor to construct the graph for an LPP. The
descriptor can yield spectral-spatial covariance features more robust to noise and spectral variabilities
than the spectral feature [26–28]. More specifically, we characterize pixels with their region covariance
descriptors, calculate the pairwise distances among pixels in a superpixel with Log-Euclidean distance
metric, find the nearest neighbors of the pixels in a superpixel, and compute their similarities as

Wij =

e−
dLE(Ci ,Cj)

2

2σ2 , if Ci ∈ N(Cj) or Cj ∈ N(Ci)

0, otherwise
(9)

where N(Ci) denotes the neighbors of Ci. Then, we run an LPP on each superpixel.
After performing the dimensionality reduction on the HSI with 2P + 1 different segmentation

scales, we classify the obtained low-dimensional data on each scale, and then majority voting decision
fusion is utilized to aggregate the results from all the scales. Suppose that the classification result on
the jth scale for a pixel is lj. Then, the score for the ith class is

N(i) =
2P+1

∑
j=1

I(lj = i) (10)

where I(lj = i) =

{
1, if lj = i

0, otherwise
denotes an indicator function. The final classification result is

achieved by
l = arg max

i∈{1,2,··· ,L}
N(i) (11)

where L is the number of all possible classes. The flowchart of our proposed MSuperLPP for HSI
classification is shown in Figure 1, and the connected performing steps can be found in Algorithm 1.
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Algorithm 1 MSuperLPP

Input: HSI X ∈ RW×H×D; scale set Nsp = {Ni|i = 1, 2, · · · , S} obtained by (8); window size s = w× h.
Extract spectral-spatial covariance features using (5) and perform PCA to extract the first principle

component I f .
for i=1 to S do

Segment X into Ni homogeneous subregions using ERS with I f ;
for j=1 to Ni do

Perform LPP in each subregion R̂j, where the spectral-spatial covariance features are used to
search for the k nearest neighbors.

end for
Combine the low-dimensional features of all the subregions on the same scale to form the
low-dimensional data on this scale. Perform classification on the scales i to get preliminary
output Ti.

end for
Aggregate the classification results Ti(i = 1, 2, · · · , S) using (10) and (11).

Output: Final classification result T.

PCA Multiscale ERS

Region covariance
 descriptor

Subregion 
specific LPP Classifier

Classifier

Classifier

Final result

Scale 1

Scale 2

Scale S

Scale S

Scale 2

Scale 1

Multiscale 
low-dimensional data
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classification results

Segmentaion maps

HSI
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specific LPP
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Figure 1. A flowchart of the proposed MSuperLPP for hyperspectral image (HSI) classification.

4. Experimental Results

In our experiments, three real HSI data sets are used to evaluate the proposed MSuperLPP.
The first one is the Indian Pines data set, which was acquired by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) over northwestern Indiana, including 220 spectral bands as well as 145× 145
pixels, and its available ground-truth data contains 10249 pixels with 16 classes. 40 noisy bands are
removed, and the remaining 180 bands are used for experiments. The second one is the Zaoyuan data
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set, which was collected by the Operational Modular Imaging Spectrometer (OMIS) over the Zaoyuan
region, China, in 2001. The data set comprises 137× 202 pixels and 128 bands covering the region.
After removing the noisy bands, 80 bands remain. Moreover, 23821 pixels with 8 classes are used for
classification. The last one is the Salinas data set, which was collected by AVIRIS over Salinas Valley,
California. The scene used for the experiments comprises 250× 110 pixels and 224 bands and has
14 testing classes. After removing the noisy bands, 174 bands are Left for the experiments.

For the Indian Pines and Zaoyuan data sets, we randomly choose 5, 10, 30, and 50 pixels per class
for training while the other pixels are used for test. Since some classes have a few samples, we select
at most half of the total samples. For the Salinas data set, 1, 3, 5, and 10 pixels per class are selected
as training samples. After a dimensionality reduction, both the nearest neighbor (NN) classifier
and the support vector machine (SVM) with the radial basis function (RBF) kernel are subsequently
applied to evaluate the proposed method. The free parameters of the two classifiers are set with
cross-validation [38], including the number of nearest neighbors for the NN classifier and the RBF scale
and the regularization coefficient for the SVM classifier. We repeat all the classification experiments
ten times to avoid random bias, and the average accuracies are presented.

We compare the proposed MSuperLPP with GlobalLPP-SF (global LPP on spectral feature),
GlobalLPP-SSCF (global LPP on region convariance descriptor based spectral-spatial covariance
feature), SuperLPP-SF (superpixelwise LPP on spectral feature), and SuperLPP-SSCF (superpixelwise
LPP on spectral-spatial covariance feature). In our experimental settings, some other parameters
are empirically determined as follows. The window’s size of region covariance descriptor is 3× 3
for GlobalLPP-SSCF, SuperLPP-SSCF, and MSuperLPP. In MSuperLPP, the fundamental number of
superpixel Ns f is set to 100 for Indian Pines, 40 for Zaoyuan, and 15 for Salinas, while P is set to 4 for
all three data sets.

Tables 1–3 demonstrate the overall classification accuracies on the Indian Pines, Zaoyuan, and
Salinas data sets, respectively. Figure 2 shows the influence of the number of training samples on the
classification performance. As observed, GlobalLPP-SSCF performs better than GlobalLPP-SF while
SuperLPP-SSCF is better than SuperLPP-SF, which suggests that a spectral-spatial covariance feature
is beneficial to improving classification accuracy. Meanwhile, SuperLPP-SSCF and SuperLPP-SF
achieve higher accuracies than GlobalLPP-SSCF and GlobalLPP-SF, respectively, which indicates that a
superpixel segmentation can enhance classification accuracy. Among all the five considered methods,
our proposed MSuperLPP yields the highest accuracies.

For visual inspection purposes, the classification maps obtained with five compared methods are
given in Figures 3–5. Here, we only show the results obtained with the nearest neighbor classifier when
the size of the training set is set to 50 for Indian Pines and Zaoyuan and 10 for Salinas, respectively.
It can be seen that our MSuperLPP yields the best regional consistency and agrees more with the
ground truth.

Table 1. The classification accuracy (%) for the Indian Pines data set with the nearest neighbor and
SVM classifiers.

Training Size 5 10 30 50

Classifier NN SVM NN SVM NN SVM NN SVM
GlobalLPP-SF 44.40 49.11 49.47 56.26 58.52 67.90 62.67 72.96

GlobalLPP-SSCF 62.81 63.65 68.67 68.87 77.66 77.99 80.39 80.98
SuperLPP-SF 63.74 64.10 70.73 71.65 80.92 80.33 84.03 83.14

SuperLPP-SSCF 73.50 74.37 82.23 81.35 90.43 87.91 92.28 89.38
MSuperLPP 76.49 75.91 85.53 83.60 94.55 93.10 97.02 95.57
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Table 2. The classification accuracy (%) for the Zaoyuan data set with the nearest neighbor and
SVM classifiers.

Training Size 5 10 30 50

Classifier NN SVM NN SVM NN SVM NN SVM
GlobalLPP-SF 64.26 75.81 71.29 81.64 77.18 84.84 79.34 86.21

GlobalLPP-SSCF 75.12 80.18 81.06 84.92 85.77 88.50 86.63 89.19
SuperLPP-SF 70.06 80.65 75.56 86.88 81.30 89.48 83.44 90.55

SuperLPP-SSCF 80.81 84.34 84.79 87.28 88.00 90.83 89.22 92.26
MSuperLPP 82.27 86.64 90.10 90.68 93.83 93.75 94.42 94.39
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Figure 2. Classification accuracy versus training size. (a) Indian Pines with the nearest neighbor
classifier. (b) Indian Pines with support vector machine (SVM) classifier. (c) Zaoyuan with nearest
neighbor classifier. (d) Zaoyuan with SVM classifier. (e) Salinas with nearest neighbor classifier.
(f) Salinas with SVM classifier.
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Table 3. Classification accuracy (%) for the Salinas data set with nearest neighbor and SVM classifiers.

Training Size 1 3 5 10

Classifier NN SVM NN SVM NN SVM NN SVM
GlobalLPP-SF 69.00 75.61 76.02 81.95 79.04 85.00 83.05 89.07

GlobalLPP-SSCF 78.69 80.60 85.14 86.55 87.11 88.69 89.97 91.91
SuperLPP-SF 80.67 80.51 89.82 89.36 90.74 92.06 91.95 93.32

SuperLPP-SSCF 81.77 84.23 90.92 92.37 91.97 93.28 93.82 94.50
MSuperLPP 90.46 88.32 95.55 94.73 96.87 96.89 97.78 97.59

(a) (b) (c)

(d) (e) (f)

Figure 3. Classification maps obtained with the Indian Pines data set. (a) Ground truth.
(b) GlobalLPP-SF. (c) GlobalLPP-SSCF. (d) SuperLPP-SF. (e) SuperLPP-SSCF. (f) MSuperLPP.

(a) (b) (c)

(d) (e) (f)

Figure 4. Classification maps obtained with the Zaoyuan data set. (a) Ground truth. (b) GlobalLPP-SF.
(c) GlobalLPP-SSCF. (d) SuperLPP-SF. (e) SuperLPP-SSCF. (f) MSuperLPP.
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(a) (b) (c) (d) (e) (f)

Figure 5. Classification maps obtained with the Salinas data set. (a) Ground truth. (b) GlobalLPP-SF.
(c) GlobalLPP-SSCF. (d) SuperLPP-SF. (e) SuperLPP-SSCF. (f) MSuperLPP.

Therefore, it is verified by the experimental results that our MSuperLPP, involving the multiscale
superpixel segmentation strategy, is able to achieve an excellent classification performance.

5. Conclusions

Taking into consideration local homogeneities on the HSI manifold connected to the irregular
spatial dependency characteristic of an HSI, which is usually ignored by existing manifold
learning-based dimensionality reduction methods, we propose a MSuperLPP method for HSI
classification. In MSuperLPP, we adopt a divide-and-conquer strategy, first dividing the HSI into many
homogeneous subregions on various scales to reveal those local homogeneities, then performing a LPP
in each subregion and a preliminary classification on each scale, and finally fusing all the preliminary
classification results to yield a final result. The experimental results on real HSI data sets verify the
excellent performance of our method.
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