Solids Content of Black Liquor Measured by Online Time-Domain NMR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Process and Samples
2.2. NMR Measurements
2.2.1. TD-NMR System
2.2.2. Measurements and Data Analysis
2.3. Relative Standard Deviation
3. Results
3.1. Temperature Correction
3.2. Solids Content Estimation
3.3. Online Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cardoso, M.; Domingos de Oliveira, É.; Passos, M.L. Chemical composition and physical properties of black liquors and their effects on liquor recovery operation in Brazilian pulp mills. Fuel 2009, 88, 756–763. [Google Scholar] [CrossRef]
- Leite, B.S.; Andreuccetti, M.T.; Leite, S.A.; d’Angelo, J.V. TG and DSC analyses of eucalyptus black liquor as alternative methods to estimate solids content. J. Therm. Anal. Calorim. 2013, 112, 1539–1544. [Google Scholar] [CrossRef]
- Vähä-Savo, N. Behavior of Black Liquor Nitrogen in Combustion—Formation of Cyanate. Ph.D. Thesis, Åbo Akademi University, Åbo, Finland, 2014. [Google Scholar]
- Tran, H.; Vakkilainnen, E.K. The kraft chemical recovery process. Tappi. 2008. Available online: http://www.tappi.org/content/events/08kros/manuscripts/1-1.pdf (accessed on 29 November 2018).
- Gullichsen, J.; Paulapuro, H. Forest product chemistry. In Papermaking Science and Technology; (series of 19 books); Gullichsen, J., Paulapuro, H., Eds.; Fapet Oy: Helsinki, Finland, 2000; Book 3; pp. 58–104. [Google Scholar]
- Andreuccetti, M.; Leite, B.; d’Angelo, J. Eucalyptus black liquor—Density, viscosity, solids and sodium sulfate contents revisited. O PAPEL 2011, 72, 52–57. [Google Scholar]
- Manskinen, K.; Nurmesniemi, H.; Pöykiö, R. Total and extractable non-process elements in green liquor dregs from the chemical recovery circuit of a semi-chemical pulp mill. Chem. Eng. J. 2011, 166, 954–961. [Google Scholar] [CrossRef]
- Blümich, B.; Singh, K. Desktop NMR and its applications from materials science to organic chemistry. Angew. Chem. Int. Ed. 2018, 57, 6996–7010. [Google Scholar] [CrossRef]
- Dalitz, F.; Cudaj, M.; Maiwald, M.; Guthausen, G. Process and reaction monitoring by low-field NMR spectroscopy. Progr. Nucl. Magnet. Resonance Spectrosc. 2012, 60, 52–70. [Google Scholar] [CrossRef] [PubMed]
- T650 om-89 TAPPI. Test Method: Solids Content of Black Liquor, T650 om-89; TAPPI Press: Peachtree Corners, GA, USA, 1989. [Google Scholar]
- Xin, L.-P.; Chai, X.-S.; Hu, H.-C.; Barnes, D. A novel method for rapid determination of total solid content in viscous liquids by multiple headspace extraction gas chromatography. J. Chromatogr. A 2014, 1358, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Kopra, R.; Kari, E.; Harinen, M.; Tirri, T.; Dahl, O. Improving brown stock washing by on-line measurement—Mill investigations. O PAPEL 2012, 73, 79–85. [Google Scholar]
- Kester, M.; Trung, T.; Leclerc, D.; Carver, J. On-line determination of kraft liquor constituents by Fourier-Transform Near Infrared Spectroscopy. J. Pulp Paper Sci. 2004, 30, 121–128. [Google Scholar]
- Trung, T.; Allison, B. Advanced online process analyzer for chemical recovery and pulp mill control. O PAPEL 2015, 76, 47–56. [Google Scholar]
- Fricke, A.; Crisalle, O. Development of Viscometers for Kraft Black Liquor. Final Report—Phases I, II, IIA, and III. DOE/GO/10564-F; Chemical Engineering Department, University of Florida: Gainesville, FL, USA, 1999. [Google Scholar]
- Alabi, S. Development and Implementation of an Online Kraft Black Liquor Viscosity Soft Sensor. Ph.D. Thesis, University of Canterbury, Canterbury, New Zealand, 2010. [Google Scholar]
- Alabi, S.; Williamson, C.; Lee, J. Viscosity models for New Zealand black liquor at low solids concentrations. Asia Pac. J. Chem. Eng. 2010, 5, 619–625. [Google Scholar] [CrossRef]
- Draheim, E.J.; Ragauskas, A.J. NMR Studies Part 2: Investigation of process analytical NMR techniques for the pulp and paper industry. J. Wood Chem. Technol. 1997, 17, 287–296. [Google Scholar] [CrossRef]
- Nikolskaya, E.; Hiltunen, Y. Molecular properties of fatty acid mixtures estimated by online time-domain NMR. Appl. Magn. Reason. 2019, 50, 159–170. [Google Scholar] [CrossRef]
- Nikolskaya, E.; Liukkonen, M.; Kankkunen, J.; Hiltunen, Y. A non-fouling online method for monitoring precipitation of metal ions in mine waters. IFAC PapersOnLine 2015, 48–17, 98–101. [Google Scholar] [CrossRef]
- Sørensen, M.; Vinding, M.; Bakharev, O.; Nesgaard, T.; Jensen, O.; Nielsen, N. NMR sensor for onboard ship detection of catalytic fines in marine fuel oils. Anal. Chem. 2014, 86, 7205–7208. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.K.; Jensen, O.; Bakharev, O.N.; Nyord, T.; Nielsen, N.C. NPK NMR Sensor: Online monitoring of nitrogen, phosphorus, and potassium in animal slurry. Anal. Chem. 2015, 87, 6446–6450. [Google Scholar] [CrossRef]
- Resonance Systems. Available online: http://www.nmr-design.com (accessed on 29 November 2018).
- Carr, H.; Purcell, E. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 1954, 94, 630–638. [Google Scholar] [CrossRef]
- Meiboom, S.; Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 1958, 29, 688–691. [Google Scholar] [CrossRef]
- Bloembergen, N.; Purcell, E.; Pound, R. Relaxation effects in nuclear magnetic resonance absorption. Physical Rev. 1948, 73, 679–712. [Google Scholar] [CrossRef]
- Webb, B.; Widek, T.; Neumayer, B.; Bruguier, C.; Scheicher, S.; Sprenger, H.; Grabherr, S.; Schwark, T.; Stollberger, R. Temperature dependence of viscosity, relaxation times (T1, T2) and simulated contrast for potential perfusates in post-mortem MR angiography (PMMRA). Int. J. Legal Med. 2017, 131, 739–749. [Google Scholar] [CrossRef]
- Robinson, M.D.; Cistola, D.P. Nanofluidity of fatty acid hydrocarbon chains as monitored by benchtop time-domain nuclear magnetic resonance. Biochemistry 2014, 53, 7515–7522. [Google Scholar] [CrossRef]
- Raunio, J.; Nikolskaya, E.; Hiltunen, Y. On-line monitoring of cationic starch gelatinization and retrogradation by 1H NMR-relaxometry. Nord. Pulp Paper Res. J. 2018, 33, 625–631. [Google Scholar] [CrossRef]
- Nikolskaya, E.; Hiltunen, Y. Determination of carbon chain lengths of fatty acid mixtures by time domain NMR. Appl. Magn. Reson. 2018, 49, 185–193. [Google Scholar] [CrossRef]
- Colnago, L.A.; Andrade, F.D.; Souza, A.A.; Azeredo, R.B.V.; Lima, A.A.; Cerioni, L.M.; Osán, T.M.; Pusiol, D.J. Why is inline NMR rarely used as industrial sensor? Challenges and opportunities. Chem. Eng. Technol. 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Meyer, K.; Kern, S.; Zientek, N.; Guthausen, G.; Maiwald, M. Process control with compact NMR. Trends Anal. Chem. 2016, 83, 39–52. [Google Scholar] [CrossRef]
- Maiwald, M.; Gräßer, P.; Wander, L.; Zientek, N.; Guhl, S.; Meyer, K.; Kern, S. Strangers in the night—Smart process sensors in our current automation landscape. Proceedings 2017, 1, 628. [Google Scholar] [CrossRef]
Sample | a, (°C·s)−1 | r |
---|---|---|
Weak | −0.088 | −0.9937 |
Intermediate | −0.305 | −0.9842 |
Half-strong | −0.465 | −0.9978 |
Sample | SC, % | T, °C | R2TC (60 °C), s−1 |
---|---|---|---|
Weak | 20.73 | 67.96 | 3.46 |
Weak | 21.47 | 66.95 | 3.72 |
Intermediate | 31.57 | 60.67 | 7.26 |
Half-strong | 43.46 | 73.81 | 17.35 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolskaya, E.; Janhunen, P.; Haapalainen, M.; Hiltunen, Y. Solids Content of Black Liquor Measured by Online Time-Domain NMR. Appl. Sci. 2019, 9, 2169. https://doi.org/10.3390/app9102169
Nikolskaya E, Janhunen P, Haapalainen M, Hiltunen Y. Solids Content of Black Liquor Measured by Online Time-Domain NMR. Applied Sciences. 2019; 9(10):2169. https://doi.org/10.3390/app9102169
Chicago/Turabian StyleNikolskaya, Ekaterina, Petri Janhunen, Mikko Haapalainen, and Yrjö Hiltunen. 2019. "Solids Content of Black Liquor Measured by Online Time-Domain NMR" Applied Sciences 9, no. 10: 2169. https://doi.org/10.3390/app9102169
APA StyleNikolskaya, E., Janhunen, P., Haapalainen, M., & Hiltunen, Y. (2019). Solids Content of Black Liquor Measured by Online Time-Domain NMR. Applied Sciences, 9(10), 2169. https://doi.org/10.3390/app9102169