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Abstract: The aim of this study was to predict chronic diseases in individual patients using
a character-recurrent neural network (Char-RNN), which is a deep learning model that treats
data in each class as a word when a large portion of its input values is missing. An advantage of
Char-RNN is that it does not require any additional imputation method because it implicitly infers
missing values considering the relationship with nearby data points. We applied Char-RNN to
classify cases in the Korea National Health and Nutrition Examination Survey (KNHANES) VI as
normal status and five chronic diseases: hypertension, stroke, angina pectoris, myocardial infarction,
and diabetes mellitus. We also employed a multilayer perceptron network for the same task for
comparison. The results show higher accuracy for Char-RNN than for the conventional multilayer
perceptron model. Char-RNN showed remarkable performance in finding patients with hypertension
and stroke. The present study utilized the KNHANES VI data to demonstrate a practical approach to
predicting and managing chronic diseases with partially observed information.

Keywords: Human factor; deep learning; character recurrent neural network; statistic learning;
health care; chronic disease; data mining; analysis

1. Introduction

Chronic diseases require long-term, continuous management. They take a long time to manifest
and are difficult to cure [1]. According to the Current Status and Future Development of Chronic
Disease Management Project of the Korean Ministry of Health and Welfare, death by five major
chronic diseases (hypertension, stroke, angina pectoris, myocardial infarction, and diabetes mellitus)
constituted 63.1% of the total deaths in Korea in 2003. While the cost burden of diseases has increased
annually, the number of deaths caused by chronic diseases also continues to increase.

Various approaches have been introduced to prevent chronic diseases, and most of them focus
on lifestyle [1–3]. However, it is difficult for individuals to change their lifestyle to prevent chronic
diseases, because many people do not know which chronic diseases they may be susceptible to based on
their physical condition and medical history. Although a few approaches have been used to predict the
possibility of contracting these diseases, their performance was limited because relevant information
on the physical condition and medical history was often omitted.

Various studies on chronic diseases have received a lot of attention since the 1990s. A few studies
were conducted on the assumption that smoking, drinking, and high cholesterol levels cause chronic
diseases. Summer et al. [2] examined the association of cholesterol level with stroke and coronary
heart disease using experimental groups. Other related studies have included reports investigating
the effects of dietary supplements on preventing chronic diseases. One such dietary supplement is
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chlorella, which is reportedly effective in facilitating growth and improving stress-related ulcers in
individuals at high risk for chronic disease. A study evaluating the effects of chlorella use found
that this supplement improved fat metabolism and lowered blood glucose levels, suggesting that
it may have beneficial effects in preventing chronic disease [3]. Disease development may also be
influenced by an individual’s living environment. A recent study quantified many diseases and risk
factors that correspond to environmental variables by conducting correlation analyses on stress-related
variables and chronic diseases [4]. As more health information data become available, a number of
machine learning approaches have been implemented [2–4] to predict the characteristics of chronic
disease potential using data as input variables and to predict these as individual medical histories.
However, studies of chronic disease are usually experimental; hence, the resulting datasets tend to
contain many missing values. Consequently, researchers are unlikely to obtain complete medical
records and relevant information when analyzing chronic diseases. However, to the best of our
knowledge, only a few approaches have predicted chronic diseases when there are missing values,
and most of them have focused on handling them by imputation instead of implicit treatment.

This study aims to accurately predict chronic diseases when there are missing values by using the
character-recurrent neural network (Char-RNN). Char-RNN is a deep learning analysis method that
specializes in text learning. It learns the relationships among sentences and the words they contain.
Char-RNN learns sequences more efficiently than traditional machine learning methods because it
learns sequences by character basis. In addition, it has a high performance for missing data analysis
because it learns the sequence of data in the data learning where the missing value exists and learns it
according to the rule of the preceding and succeeding words. If an incorrect sentence is identified,
it finds the meaning of the sentence by the learned relationships between words and sentences and
generates the correct sentence with a similar meaning for the input.

Char-RNN has not been employed to deal with missing data, although it can implicitly treat
unknown values. Thus, we applied Char-RNN to the Korea National Health and Nutrition Examination
Survey (KNHANES) VI dataset (Supplementary Materials), which contains a large amount of missing
information, to predict five types of chronic disease. Using the results of the five chronic diseases
and normal health status, we learned the complete data that were not missing and used the learned
model to predict the disease when data with missing values came in. The results show that Char-RNN
has better prediction than the conventional multilayer perceptron model because it can predict by
using previously learned data and shows better performance in processing missing values. We also
found that the method of classifying missing data in one sentence has better predictive power than the
method of sorting missing numerical values.

The remainder of this paper is structured as follows: the next section briefly reviews a few
milestone studies on missing data analysis, chronic disease prediction, and recent deep learning
approaches for health care; Section 3 describes the data and methods used in this study, including the
model-building procedure; Section 4 presents the summarized results involving a comparison with
conventional multilayer perceptron models; and finally, Section 5 provides the concluding remarks
and future directions.

2. Related Work

Data on individual lifestyle habits, which are generally obtained through surveys, similar to
other health-related data, must be collected to analyze chronic diseases related to lifestyle habits.
However, individuals are often unable to answer some health survey questions, which introduces
missing information to the survey dataset. A dataset containing missing values often causes failure
in analysis. Missing data is a common problem in survey datasets; hence, various studies have
been conducted on how to handle missing values. García-Laencina et al. [5] analyzed the missing
data problem in pattern classification and analyzed the missing data by using pattern recognition
technology when solving for missing or unknown data by using the actual classification operation.
Case detection, missing data imputation, model-based procedures, and machine learning methods for
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handling were used. We decided to introduce missing data and make the right choice for the situation
of the data [5]. The missing values are also applied to medical data. This method was applied to data
collected through the El Alamo-I project using alternative methods based on statistical techniques
such as multilayer perceptron (MLP), self-organization map (SOM), and k-nearest neighbor (KNN).
The accuracy of predicting early cancer recurrence was measured using artificial neural network
(ANN), estimated using ANN with missing data [6]. In 2019, Williams et al. [7] suggested knowledge
extraction and management (KEM). KEM can identify all related relationships between variables,
even when there is only weak correlation, compared to statistical approaches. Conventional methods
for identifying multivariate classifiers use univariate analysis of all functions, marker identification
to allow class discrimination, and optimization algorithms such as random forest, support vector
machine (SVM), or neural networks to find the optimal combination.

Several studies on health care data analysis with missing values have been presented.
Schuster et al. [8] suggested a multilevel support vector machine framework to handle missing
information and incorrect data. Razzaghi et al. [9] imputed missing values by assigning the values of
neighboring data points using four approaches: hierarchical multiagglomerative clustering, normal
distribution model, normal regression model, and predictive mean matching. Liu et al. [10] handled
missing data using a clustering approach to reduce bias when analyzing a virus’s potential for
circulation. As demonstrated by these examples, most approaches control missing data by evaluating
the surrounding mean and use clustering to compute the distance. Missing data have also been
accurately estimated by applying an adjusted weight voting random forest–based model [11]. In 2001,
data from the National Health Interview Survey were used to analyze multiple risk factors in the US
population [12]. A total of 29,183 data points were used to analyze the data by cluster analysis of the
risk factors. The analysis was excluded if there were missing data that would impair the accuracy.

In this study, the prediction of information about health is very sensitive to data omission; hence,
a method to eliminate missing data is used. However, there is a limit to understanding data on
missing information from the experimenter if there is a small amount of data or if data are missing
because the participant does not know the information [13]. In 2002, Casaburi et al. [14] evaluated
the safety and efficacy of new drugs for chronic obstructive pulmonary disease. They performed
two 12-month clinical trials comparing the placebo effect to the drug effect, collected data, conducted
covariance analysis using the collected data, and analyzed patients who could not be diagnosed by
disease deterioration with the worst of the existing data. A commonality across these approaches is that
missing values were imputed by estimating the values using adjacent data points in an arbitrary manner.
In 2016, Liu et al. [15] looked at the 2003–2004 National Health and Nutrition Survey (NHANES)
and physical activity data, and analyzed the missing data due to device failure in accelerometer
measurement using a multiple imputation approach based on additive regression, bootstrapping,
and predictive mean matching (ARBP). As a result, the most accurate ARBP model was selected and
analyzed as the final model [15]. In 2017, Beaulieu-Jones and Moore [16] examined electronic health
records (EHRs), which are a source of important data for patient status but have a lot of missing
data. In this paper, imputation of missing information using deeply learned autoencoders in the
Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT) showed strong performance
on estimation accuracy and contributed as the most powerful predictor of disease progression [17].
In 2019, Azimi et al. studied remote health status monitoring used to track patients and provide early
detection of disease and preventive care. Internet-of-Things (IoT) technology should solve serious
problems in real exams, but it facilitates the development of these monitoring systems. Therefore,
forecasting is impossible with real-time health monitoring because missing data on human health
indicators ignores variability. Therefore, IoT-based systems provide a way to experiment with clinical
trials, learn new data from them, and make decisions on other missing data [18].

In 2019, a variety of machine learning data imputation methods was used to compare the
accuracy of the data in order to replace the data of untested CpG coverage (i.e., for most CpGs,
we have missing values), sites in the Bayesian hierarchy method of clustering cells using MEthyLation
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Inference for Single cell Analysis (Melissa) and finding posterior transition patterns between cells [19].
Another paper that makes it difficult to derive the complexity and trace levels of pollutants in the
detection of unexpected compounds and chemical stability assessments for food safety assessment.
Therefore, we performed missing data substitutions using Liquid Chromatography-High Resolution
Mass Spectrometry(LC-HRMS) Peak Peaks, Mean-LOD, and Value Decomposition-Quantile Regression
Imputation of Left-censored data(SVD-QRILC) combined with chemical measurement tools that use
MTBLS752 and MTBLS74 data not explicitly stated [20]. Several studies on analyzing chronic diseases
paying attention to preventing chronic diseases caused by the growing elderly population have recently
been published.

The amount of health care data is steadily increasing; hence, various studies using deep learning
and state-of-the-art methods in several applications, including image classification [21], text analysis [22],
and speech recognition [23], are being conducted for data classification. In the field of health informatics,
different deep learning architectures have been proposed along with the increased volume of relevant
data, including convolutional neural network [24], recurrent neural network (RNN) [25], and deep
neural network (DNN) [26], which is the most commonly used deep learning architecture in studies
investigating data classification [27]. As such, the deep learning algorithm is also applied for health
status and disease prediction. In 2013, Ahmed and Loutfi [28] introduced various methods and
procedures for health monitoring and biometric information and data analysis using wearable sensors.
Their methods processed and validated data to ensure that the data configuration was significant to
the analysis, defined attributes for the datasets, and provided methods for analysis in the health and
welfare sector.

Various machine learning methods are used as analysis methods. Using a machine learning
method according to the data characteristics has also been suggested. In 2014, Kaur et al. [29] presented
an improved J48 algorithm for predicting diabetes and analyzed it using the diabetes data of Pima
Indians. Using a total of 768 pieces of data, they analyzed information from patients with diabetes and
predicted diabetes. In 2019, using data collected from the National Institute of Diabetes and Digestive
and Kidney Diseases, we compared SVM, Naïve bayes, Random forest, and Simple cart and SVM
provided the best accuracy for predicting diabetes. Because the variables of the collected data for the
prediction of diabetes were fixed and simple prediction to determine the presence or absence of the
disease, good accuracy was obtained through the existing machine learning method. One study [30]
predicted spatial prediction of landslide susceptibility in China’s Long Country region using kernel
logistic regression, naive Bayes and RBFNetwork. In this study, we compared the accuracy of spatial
prediction with the existing machine learning method and RBFNetwork because the analysis data
structure was simple in predicting spatial sensitivity of landslide sensitivity [31]. In order to classify the
signal of single channel Electroenocephalography (EEG), the EEG signal was judged as one sequence
and the sequence of EEG was analyzed by LSTM method. This automatically classifies sleep stages
for single-channel EEG signals. Because of this, it showed excellent performance in classifying sleep
stages and analyzing sequence data through the order of EEG [32].

Moreover, we present improved analytical models to improve health status and disease prediction;
however, there is a limit to the application of other similar data in practice using refined data.
Therefore, we compare the model proposed in this paper by applying some of the missing data
replacement methods and the machine learning classification method mentioned in the recent paper.

3. Materials and Methods

This study employed Char-RNN, which is a deep learning method for text analysis that considers
the relationships between nearby values, to classify five chronic diseases in the KNHANES dataset
with missing values. This section presents detailed descriptions of the dataset employed in this
study, preprocessing applied to the dataset, and learning procedure. The Char-RNN algorithm is
also explained.
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Char-RNN is a deep learning model that creates short strings of characters using RNN. Char-RNN
can learn and generate similar new sentences based on learned sentences and derive the sentence class
similar to the learned sentences. In a study conducted by Yuan et al. (2017), they learned the drug
molecule with Char-RNN and derived a new compound-binding equation [33]. RNN is a deep learning
method that learns training data letter by letter, whereas Char-RNN segments a sentence into words
and learns word by word. Char-RNN is trained on sentences and segments them into n-grams while
learning them. Char-RNN is frequently used in translation, because this model accurately interprets
typographical errors and missing letters and has higher accuracy in sentence learning compared with
RNN. For example, in [34], training a Char-RNN model on music data to develop a transcription model
showed that Char-RNN performed better than the existing methods in music transcription.

RNN is a deep learning method frequently used in work involving natural language processing
(NLP) [35]. The model equation is ht = ∅(Wxt + Uht−1), where ht is a hidden layer at time t that
is a function of xt (input at the same time t), W (a coefficient matrix), and a matrix U, which shows
the value of a hidden layer at time t − 1 (i.e., ht−1). Memory is reflected in the coefficient matrix, W.
A decision is made based on the current input value xt, an error value is computed, and the computed
error is fed to the hidden layers. Next, W is updated based on the values. The sum of input x and
memory h passes through the function ∅ and is compressed. The range of output values is restricted
by a hyperbolic tangent function (tanh function) and can be differentiated segment by segment; hence,
backpropagation is applied. Accordingly, ht and ht−1 feedback occurs at every moment. Through the
learning process, the output is produced via a tanh function of input x and weight W multiplied by the
input data. When an RNN model is trained on text based on these learning processes, it can learn short
sentences; however, it does not perform well in learning long sentences or determining relationships
among words.

In contrast to RNN, text analysis by Char-RNN learns a sentence by dividing it into n-gram
segments, which results in superior learning performance when determining the relationships among
words. Given a previous character sequence, Char-RNN effectively learns to predict the next character.
This learning mode is similar to that of learning characters and sentences to output text vocabulary
by generating a probability distribution of an object class-like image or character [35]. In this case,
a standard categorical cross-entropy loss is used to effectively classify characters in a sentence and train
a model whose output class is text vocabulary. Char-RNN divides the order of words into n-grams
in each sentence, predicts the next word according to the order of the divided words, and grasps the
meaning of the sentence. According to function 2, Char-RNN understands the sentences for n-grams
before and after function 2 and learns one sentence by using it.

−

n∑
i=1

yi log(ŷi) (1)

P(w1, w2 . . .wn) =
∏

P(wi | w1, w2 . . .wi−1) (2)

4. Data Description and Learning Procedure

We applied Char-RNN to data from the KNHANES VI (2013, 2014, and 2015) to predict five
chronic diseases (hypertension, stroke, myocardial infarction, angina pectoris, and diabetes mellitus)
with the greatest influence on comorbidities. The KNHANES is a national health survey conducted
annually by the Korea Center for Disease Control that consists of questions to examine characteristics
such as health behavior, nutritional intake, and chronic diseases [36]. The survey is administered to
participants selected at the city, province, and county level. The screening items included in the survey
are selected by the sector advisory committees and the coordinating advisory council. The KNHANES
datasets have high reliability and accuracy because the data are collected by a national institute and
the survey items are revised during each phase of the survey. The KNHANES datasets consist of
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760 variables. This study focused on the phase VI data, containing approximately 22,000 cases reflecting
the most recent lifestyle habits and patterns available in the datasets.

We selected five popular chronic diseases among a variety of diseases and related variables,
including osteoarthritis, rheumatoid arthritis, osteoporosis, tuberculosis, asthma, thyroid disease,
cancer, inflammation, and hepatitis. Table 1 presents the gender and age composition of the subjects
included in the dataset for this study. Although the dataset contained 22,000 cases, most individual
cases did not have any diagnosed disease. Consequently, significant variables were selected from
the dataset with 760 variables using a regression analysis with stepwise variable selection. A total of
62 variables were selected for the five diseases. Correlations among selected variables were used to
remove variables with strong correlation, with a correlation coefficient of 0.6 or higher, and finally,
32 variables were used for analysis. To maximize analytical accuracy, we excluded selected variables
that coexisted with other selected variables during data processing (Table 2).

Table 1. Demographic variables in Korea National Health and Nutrition Examination Survey
(KNHANES) VI.

Age

1–9: 2489 (10.8%)
10–18: 2425 (10.6%)
19–29: 2250 (9.8%)
30–39: 2946 (12.8%)
40–49: 3283 (14.3%)
50–59: 3499 (15.2%)
60–69: 3014 (13.1%)

70 and older: 3042 (13.3%)

Gender variable Male: 10,411 (45.4%)
Female: 12,537 (54.6%)

Type of residential area Neighborhood: 18,551 (80.8%)
Town/township: 4397 (19.2%)

Marital status (for those aged 30 or older)
Not married: 904 (5.7%)

Married (with a spouse): 12,298 (78.1%)
Married (widowed, divorced, or separated): 2549 (16.2%)

Education level (for those aged 30 or older)

Graduated from elementary school or less: 3670 (27.2%)
Graduated from middle school: 1609 (11.9%)

Graduated from high school: 4135 (30.6%)
Graduated from college or higher: 4084 (30.3%)

Table 2. Data construct. DF2_ag, time of depression diagnosis; DI6_ag, time of angina pectoris
diagnosis; DI4_pr, presence or absence of comorbidities of myocardial infarction and angina pectoris.

DF2_ag DI4_pr DI6_ag

888 8 888
888 8 888
888 8 888
888 1 888
888 8 888
888 8 888
888 8 888
888 8 888
888 8 888

After variable selection, each variable value was interpreted as text and converted to character
format. As shown in Figure 1, the numerical values of 29 variables relevant to the five diseases were
converted to letters using the following rule: (0→ a, 1→ b, 2→ c . . . ). The missing values were
replaced with tabs that could not be represented in alphabetical order. The reason for assigning
numbers to one alphabet was to train the data in the form of one sentence. The sequences 0001 and
AAAB are the same.
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Figure 1. Data category configuration.

Pretreatment divided the five diseases and six normal variables into the required variables.
We extracted the variables using regression analysis to determine the variables affecting the disease.
We trained Char-RNN with the preprocessed dataset after completing the preprocessing. Char-RNN
learned each case as a sentence, identified the characteristics of the sentence from the cases,
and determined the relationship between the label of each case and the corresponding characteristics
of the transformed sentence. This approach assigned missing values in a new instance based on the
characteristics or by considering the nearby values identified during the learning phase.

5. Experimental Results

The analysis was performed using two deep learning models. Figure 2 shows the whole
process. Each model was trained to make decisions regarding cases labeled as normal, hypertension,
stroke, myocardial infarction, angina pectoris, or diabetes mellitus and tested on test datasets with
missing information to classify new cases. Learning was conducted with approximately 600 cases per
label. The number of cases of angina pectoris and myocardial infarction was reduced to fewer than
600 during data processing; therefore, it can be seen that they are lower than the other chronic diseases.
Hence, the sizes of these groups were increased by replicating existing cases to prevent overfitting due
to imbalanced data. Char-RNN required the value of each case to be text, thus the data were converted
using the rule (0→ a, 1→ b, 2→ c . . . ). The data format was text separated by tabs. The data were
transformed to sentence format for the learning phase.

Figure 2. Overview of proposed procedure using character-recurrent neural network (Char-RNN).

Stepwise regression was used to remove the KNHANES VI variables that did not influence the
five selected chronic diseases. There were a total of 760 variables in KNHANES VI, and 652 were
selected after excluding pediatric- and female-specific and cancer-, joint-, or dental-related variables.
Next, variables that were significantly associated with the five chronic diseases were selected using
a stepwise selection method. In this case, variables with a p-value less than a significance level of
0.05 were extracted, and the rest were excluded because they were greater than that level. As a result,
17 variables were selected for hypertension, 20 for stroke, 23 for myocardial infarction, 22 for angina
pectoris, and 29 for diabetes mellitus (Table A1). A few influential variables were associated with
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more than one disease; therefore, a total of 62 unique variables were selected. Table A2 lists detailed
descriptions of the selected variables shown in Table A1, along with the variables affecting the five
diseases, and detailed descriptions of the variables came with the KNHANES VI guideline. Of the
available 22,000 cases, those with missing values in 200 or more variables relevant to the five chronic
diseases were completely removed from the analysis dataset. In addition, the existing training data had
to be cleaned up to make the model using the data of the selected variables. Therefore, we removed the
data where there was at least one missing value for each disease. Finally, approximately 3000 cases were
selected after the filtering steps. The analysis outcome can be affected by the presence of correlations
among the selected variables; hence, a correlational analysis was conducted. The results show that
a few variables were correlated with others, and those that strongly correlated with included variables
were removed. The criterion of r > 0.6 was used to select and remove strongly correlated variables.
A total of 32 variables remained after strongly correlated variables were removed.

Next, three variables (time of depression diagnosis, DF2_ag; time of angina pectoris diagnosis,
DI6_ag; and presence or absence of comorbidities of myocardial infarction and angina pectoris, DI4_pr)
were removed because they had similar values across all five chronic diseases and were likely to reduce
the analysis accuracy. The response rates for these three variables were very low because a large majority
of respondents did not know the answer. Consequently, the value of DF2_ag, DI4_pr, and DI6_ag was
mostly 8, which was used to code the response “do not know” (Figure 2). Such variables may reduce
the analysis accuracy; thus, they were removed, and the analysis was performed on the final set of
29 variables. Based on the finally selected 29 variables included in the KNHANES VI (2013, 2014, 2015)
dataset, we performed a classification of the five chronic diseases (hypertension, stroke, myocardial
infarction, angina pectoris, and diabetes mellitus) that affect many individuals but do not yet have clear
predictive criteria. Figure 3 depicts a graph of the optimal learning frequency of the analytical model.
The number of iterations during the learning phase was set at 50,000, because data loss increased when
the number of iterations exceeded 50,000. Char-RNN was compared against multilayer perceptron
(MLP), an extensively employed deep neural network model that was specifically developed for data
classification. For MLP, three hidden layers were formed with 256, 128, and 64 nodes. The prediction
accuracy was higher for Char-RNN than for MLP.

Figure 3. Data loss at (a) 50,000 and (b) 55,000 epochs.

Table 4 shows the accuracies of chronic disease predictions in 100, 200, and 300 test datasets with
missing values based on the outcomes of learning via DNN and Char-RNN. In testing the model
using test data, data imputation was performed on the models other than Char-RNN. KNNimputation
uses k-nearest neighbor and multiple imputation. KNNimputation finds k-nearest neighbors with
missing data, and then finds k-missing neighbors. This was used to find the class of data. There are
several ways to measure the distance of neighbor algorithms. In this paper, we used Euclidean
distance to find the closest neighbor and then used that value as a replacement for missing data.
Alternatively, KNN with k neighbors can be used to take the weighted average of the distance from
neighbors as a weight. The closer you are to neighbors, the more weight you have when you average.
Weighted averages seem to be the most commonly used method [37]. Multiple imputation consists of
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three steps: imputation, analysis, and pooling. Multiple imputation can be used to account for the
uncertainty of results in all environments. It can be interpreted as multiple substitution using chain
equations. Therefore, we simulated multiple imputation using existing data, created several missing
value substitution sets (m), performed specific statistical modeling with functions in the analysis step,
and averaged m sets of substitutions generated in the pooling step to derive the results. This found the
most optimal missing data replacement value [38].

The variables (HE_HPdg, HE_DMdg, HE_HLdg, and HE_fh) were physician diagnoses; hence,
they directly affected the prediction outcome. The brightness contrast in the confusion matrices indicated
that Char-RNN performed better than other models in predicting chronic diseases. Overall, the accuracy
and precision were higher for Char-RNN, and the recall level was similar between the two models.
The predictive power of Char-RNN was particularly high for hypertension and stroke.

The accuracy was higher for Char-RNN compared to DNN, Bayesian, SVM, and long short-term
memory (LSTM) models (Tables 3 and 4), most likely because other models classify new data
based on learning the training data, whereas Char-RNN learns training data by treating words as
a data pattern and attributes meaning to a word when encountering a similar word in each label.
Therefore, Char-RNN is far more effective than other models in handling missing values. In addition,
it can learn long sequences exceptionally well even when there is missing information, because it
learns the training data by dividing sequences into n-grams. The missing values of test datasets of
other models were solved through data imputation. For the data imputation method, we processed
the missing values using KNNimpute, mode impute, and multiple impute methods.

Table 3. Accuracies with varying numbers of selected variables. MLP, multilayer perceptron; SVM,
support vector machine; LSTM, long short-term memory; KNN, k-nearest neighbor; MI.

MLP

Number of
Variables

Accuracy (100) Accuracy (200) Accuracy (300)

KNN Mode MI KNN Mode MI KNN Mode MI

10 58% 54% 51% 57.3% 56.1% 53.1% 60.9% 58.2% 64.4%
20 67% 65% 62% 65.5% 68.6% 64.5% 68.8% 64% 62.5%
30 84% 75% 87% 79.2% 71.7% 73.7% 72.5% 77.8% 78.5%

Naïve Bayes

Number of
Variables

Accuracy (100) Accuracy (200) Accuracy (300)

KNN Mode MI KNN Mode MI KNN Mode MI

10 42% 45% 48% 48.2% 51.8% 42.2% 68.1% 62.5% 64.2%
20 62% 69% 63% 65.2% 62.4% 64.6% 69.3% 65.6% 66.7%
30 76% 74% 77% 79.5% 71.7% 72.6% 74.8% 71.8% 76.8%

SVM

Number of
Variables

Accuracy (100) Accuracy (200) Accuracy (300)

KNN Mode MI KNN Mode MI KNN Mode MI

10 55% 57% 51% 52.7% 57.4% 55.5% 62.3% 64.2% 62.6%
20 65% 67% 59% 65.4% 68.2% 62.1% 64.2% 68.1% 67.6%
30 77% 81% 82% 84.1% 82.7% 76.4% 72.5% 79.5% 72.8%

LSTM

Number of
Variables

Accuracy (100) Accuracy (200) Accuracy (300)

KNN Mode MI KNN Mode MI KNN Mode MI

10 60% 62% 64% 60.5% 58.2% 57.4% 56.8% 54.5% 65.8%
20 67% 68% 74% 72.8% 71.5% 78.5% 73.5% 75.4% 77.1%
30 82% 84% 86% 80.9% 82.8% 87.8% 90.9% 91.4% 85.5%

Char-RNN

Number of
Variables Accuracy (100) Accuracy (200) Accuracy (300)

10 64% 66.3% 62.5%
20 81% 84.2% 79.4%
30 92% 91.5% 91.7%
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Table 4. Comparison of results of Char-RNN and other models.

MLP Naïve Bayes

Variables Accuracy Precision Recall Accuracy Precision Recall

Normal 74.4% 77.9% 50.7% 62.2% 75.5% 42.5%
Hypertension 46.2% 48.9% 45.7% 53.2% 82.2% 47.4%

Stroke 35.7% 46.2% 51.4% 48.7% 84.6% 56.4%
Myocardial infarction 80.3% 86.2% 49.7% 71.4% 73% 64.4%

Angina pectoris 92.1% 97.9% 50.3% 68.4% 86.4% 61.2%
Diabetes mellitus 93.6% 94.9% 50.1% 74.4% 76.2% 66.6%

SVM LSTM

Variables Accuracy Precision Recall Accuracy Precision Recall

Normal 72.3% 82.8% 62.5% 79.5% 82.4% 51.7%
Hypertension 74.2% 86.4% 45.2% 75.2% 84.1% 46.2%

Stroke 81.4% 96.5% 47.6% 80.1% 97.1% 48.5%
Myocardial infarction 75.8% 89.1% 65.4% 79.8% 92.4% 47.2%

Angina pectoris 74.3% 84.2% 67.5% 84.5% 94.2% 56.4%
Diabetes mellitus 81.1% 78.5% 57.2% 89.7% 96.6% 65.6%

Char-RNN

Variables Accuracy Precision Recall

Normal 77.6% 78.4% 49.8%
Hypertension 82.6% 86.0% 50.7%

Stroke 80.6% 88.6% 48.4%
Myocardial infarction 82.5% 94.4% 48.6%

Angina pectoris 96.5% 98.0% 49.7%
Diabetes mellitus 95.2% 96.9% 47.5%

6. Conclusions

This study applied Char-RNN to the KNHANES VI dataset to classify five chronic diseases
(hypertension, stroke, myocardial infarction, angina pectoris, and diabetes) and normal status to deal
with missing values in the data. We first selected 29 of 760 variables using the stepwise selection method.
We then applied Char-RNN to classify the five chronic diseases and normal status. A conventional
DNN model with three hidden layers having 256, 128, and 64 nodes was applied to the same dataset for
comparison. Additionally, LSTM and machine learning models, naïve Bayes, and SVM were used to
compare the five chronic diseases. The results show that Char-RNN performed, on average, 10% better
than the other models with KNN, mode, and multiple imputation methods. Table 4 shows that LSTM
was more accurate for normal status and SVM was more accurate for stroke; however, Char-RNN had
higher performance for the remaining four classes. In the comparison of missing values in Table 3,
we can see that Char-RNN had better accuracy than the other models on the test dataset with missing
values, because it predicted the labels of partially observed instances by identifying the data patterns
surrounding the missing values. In addition, the data replacement method was used to replace the
missing values in the other four models; however, Char-rnn did not go through the data replacement
process for the missing values. Therefore, Char-rnn can provide better results than other machine
learning methods that result when analyzing missing data without passing through the data transfer
process, thus reducing data preprocessing time. Characterization of char-rnn allows for more accurate
prediction and classification.

However, a few limitations must also be considered. First, the KNHANES dataset was only
collected in South Korea. Therefore, applying Char-RNN to a dataset including respondents of diverse
ethnicities and lifestyle habits can be one future research direction. This study also focused on the
prediction of a dataset with missing values using machine learning methods. Identifying common and
different features across chronic diseases to prevent those diseases by using machine learning methods
can be studied in future work. Finally, there are several implicit methods for missing data analysis
other than Char-RNN. Applying these implicit methods and comparing the results to find the best
method of predicting chronic diseases can be useful.
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Appendix A

Table A1. Chronic disease variables, P-values.

Chronic Disease Variables Pr(>|t|)

Hypertension

DI1_dg <2e−16***
DI1_pt <2e−16 ***
DI1_2 0.003949 **

DE1_dg 0.023553 *
DE1_pt 0.024046 *
DE1_32 0.011176 *
DF2_ag 0.024011 *
LQ4_06 0.003265 **
LQ4_07 0.048531 *
LQ4_08 0.002055 **
LQ4_14 6.13e−06 ***
EC1_2 0.022494 *

BS6_2_1 0.042053 *
BS6_2_2 0.035517 *

HE_HPdg 0.000380 ***
HE_DMdr 6.90e−05 ***
HE_STRfh1 0.000204 ***

Myocardial infarction

DI1_dg 0.018140*
DI1_pt 0.022980 *
DI1_2 0.048649 *

DI3_dg 0.015375 *
DI3_ag 0.003401 **
DI3_2 6.39e−07 ***

DI4_dg <2e−16 ***
DI4_pr <2e−16 ***
DI4_pt 0.005583 **
DI5_dg 9.58e−10 ***
DI5_ag <2e−16 ***
DI5_pt <2e−16 ***
DI6_dg <2e−16 ***
DI6_ag 6.88e−08 ***
DI6_pt <2e−16 ***
DE1_ag 0.036523 *
DE1_33 0.000187 ***
LQ4_04 0.000334 ***
LQ1_mn 0.012614 *

educ 0.000503 ***
BO3_07 0.002166 **
BP6_31 0.027196 *

HE_HPdg 0.000907 ***
DE1_33 0.000187 ***
LQ4_04 0.000334 ***
LQ1_mn 0.012614 *

educ 0.000503 ***
BO3_07 0.002166 **
BP6_31 0.027196 *

HE_HPdg 0.000907 ***

https://www.cdc.go.kr/CDC/contents/CdcKrContentView.jsp?cid=60939&menuIds=HOME001-MNU1130-MNU1639-MNU1748-MNU1751
https://www.cdc.go.kr/CDC/contents/CdcKrContentView.jsp?cid=60939&menuIds=HOME001-MNU1130-MNU1639-MNU1748-MNU1751


Appl. Sci. 2019, 9, 2170 12 of 17

Table A1. Cont.

Chronic Disease Variables Pr(>|t|)

Diabetes mellitus

DI1_dg <2e−16 ***
DI1_pt <2e−16 ***
DI1_2 1.54e−14 ***

DI5_dg 0.008476 **
DI5_ag 0.003172 **
DI6_dg 0.018528 *
DI6_ag 0.003206 **
DE1_dg 0.000918 ***
DE1_pt 0.002990 **
DE1_4 0.014432 *

DE2_dg 0.030405 *
DF2_pr 0.014291 *
DK4_pr 0.010164 *
LQ4_15 0.001020 **
LQ4_22 0.000761 ***
EC_occp 0.022475 *

EC_lgw_2 0.000365 ***
EC_lgw_4 0.000505 ***
EC_lgw_5 0.003918 **

BO3_04 0.005202 **
BD7_4 0.023864 *

BP5 0.045927 *
BS6_2_1 0.044478 *
BS6_3 0.007516 **
BS6_4 0.015076 *

HE_HPdg 0.000262 ***
HE_DMdg 9.46e−14 ***
HE_HLdg 1.07e−05 ***

HE_fh 0.000380 ***

Stroke

DI3_dg <2e−16 ***
DI3_dg <2e−16 ***
DI3_ag 4.82e−15 ***
DI3_pt <2e−16 ***
DI3_2 3.31e−09 ***

DI4_dg 3.94e−07 ***
DI4_pt 0.000148 ***
DI5_ag 0.000691 ***
DI5_pt 2.13e−09 ***
DI6_pt 1.91e−05 ***
LQ4_04 0.001673 **
LQ4_06 7.47e−14 ***
BS3_1 0.031119 *
BS3_2 0.030441 *
BS3_3 0.028916 *
BS6_3 0.002509 **
HE_fst 0.041026 *

HE_HPdg 0.001564 **
HE_HLfh3 0.044872 *
HE_IHDfh3 0.003670 **
HE_STRfh1 1.82e−05 ***
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Table A1. Cont.

Chronic Disease Variables Pr(>|t|)

Angina pectoris

DI1_dg 0.001704 **
DI1_pt 0.001441 **
DI1_2 0.000919 ***

DI3_dg 0.002154 **
DI3_ag 0.000437 ***
DI3_2 1.05e−08 ***

DI4_dg <2e−16 ***
DI4_pr <2e−16 ***
DI4_pt <2e-16 ***
DI5_dg 6.35e−11 ***
DI5_ag 5.68e−11***
DI6_dg <2e−16 ***
DI6_pt <2e−16 ***
DE1_33 0.000111 ***
LQ4_04 0.003495 **
LQ4_06 0.008981 **
LQ1_mn 0.038536 *

educ 0.008716 **
BO3_07 0.047492 *
BD2_32 0.028725 *
BS6_3 0.049513 *

HE_STRfh1 0.036219 *
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Table A2. Chronic disease variables, explanation.

Chronic Disease Variables Variable Description

Hypertension

DI1_dg Whether diagnosed with hypertension by a physician
DI1_pt Hypertension treatment
DI1_2 Taking blood pressure regulator

DE1_dg Whether diagnosed with diabetes mellitus by a physician
DE1_pt Diabetes mellitus treatment
DE1_32 Diabetes mellitus treatment_antidiabetics
DF2_ag Time of depression diagnosis
LQ4_06 (Adult) Reason for limited activity: stroke
LQ4_07 (Adult) Reason for limited activity: diabetes mellitus
LQ4_08 (Adult) Reason for limited activity: hypertension
LQ4_14 (Adult) Reason for limited activity: dementia
EC1_2 Reason for unemployment

BS6_2_1 (Adult) Smoking duration of past smokers (years)
BS6_2_2 (Adult) Smoking duration of past smokers (months)

Stroke

DI3_dg Whether diagnosed with stroke by a physician
DI3_ag Time of stroke diagnosis
DI3_pt Stroke treatment
DI3_2 Sequelae of stroke

DI4_dg Whether diagnosed with myocardial infarction, angina pectoris by
a physician

DI4_pt Myocardial infarction, angina pectoris treatment
DI5_ag Time of myocardial infarction diagnosis
DI5_pt Myocardial infarction treatment
DI6_pt Angina pectoris treatment
LQ4_04 Reason for limited activity: heart disease
LQ4_06 (Adult) Reason for limited activity: stroke
BS3_1 (Adult) Currently smoking or not
BS3_2 (Adult) Average daily smoking amount of current smokers
BS3_3 (Adult) Number of days smoking per month of occasional smokers
BS6_3 (Adult) Average daily smoking amount of past smokers
HE_fst Fasting duration

HE_HPdg Whether diagnosed with hypertension by a physician
HE_HLfh3 Whether diagnosed with hypercholesterolemia by a physician (siblings)
HE_IHDfh3 Whether diagnosed with ischemic heart disease by a physician (siblings)
HE_STRfh1 Whether diagnosed with stroke by a physician (father)

Myocardial infarction

DI1_dg Whether diagnosed with hypertension by a physician
DI1_pt Hypertension treatment
DI1_2 Taking blood pressure regulator

DI3_dg Whether diagnosed with stroke by a physician
DI3_ag Time of stroke diagnosis
DI3_2 Sequelae of stroke

DI4_dg Whether diagnosed with myocardial infarction, angina pectoris by
a physician

DI4_pr Current morbidity of myocardial infarction, angina pectoris
DI4_pt Myocardial infarction, angina pectoris treatment
DI5_dg Whether diagnosed with myocardial infarction by a physician
DI5_ag Time of myocardial infarction diagnosis
DI5_pt Myocardial infarction treatment
DI6_dg Whether diagnosed with angina pectoris by a physician
DI6_ag Time of angina pectoris diagnosis
DI6_pt Angina pectoris treatment
DE1_ag Time of diabetes mellitus diagnosis
DE1_33 Diabetes mellitus treatment: non-pharmaceutical therapy
LQ4_04 Reason for limited activity: heart disease
LQ1_mn Number of days bedridden in the last month

educ Education level
BO3_07 Weight control method: health functional food
BP6_31 Whether attempted suicide in the past year

HE_HPdg Whether diagnosed with hypertension by a physician
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Table A2. Cont.

Chronic Disease Variables Variable Description

Angina pectoris

DI1_dg Whether diagnosed with hypertension by a physician
DI1_pt Hypertension treatment
DI1_2 Taking blood pressure regulator

DI3_dg Whether diagnosed with stroke by a physician
DI3_ag Time of stroke diagnosis
DI3_2 Sequelae of stroke

DI4_dg Whether diagnosed with myocardial infarction, angina pectoris by
a physician

DI4_pr Current morbidity of myocardial infarction, angina pectoris
DI4_pt Myocardial infarction, angina pectoris treatment
DI5_dg Whether diagnosed with myocardial infarction by a physician
DI5_ag Time of myocardial infarction diagnosis
DI6_dg Whether diagnosed with angina pectoris by a physician
DI6_pt Myocardial infarction treatment
DE1_33 Diabetes mellitus treatment: non-pharmaceutical therapy
LQ4_04 Reason for limited activity: heart disease
LQ4_06 (Adult) Reason for limited activity: stroke
LQ1_mn Number of days bedridden in the last month

educ Education level
BO3_07 Weight control method: health functional food
BD2_32 (Adult) Frequency of heavy drinking
BS6_3 (Adult) Average daily smoking amount of past smokers

HE_STRfh1 Whether diagnosed with stroke by a physician (father)

Diabetes mellitus

DI1_dg Whether diagnosed with hypertension by a physician
DI1_pt Hypertension treatment
DI1_2 Taking blood pressure regulator

DI5_dg Whether diagnosed with myocardial infarction by a physician
DI5_ag Time of myocardial infarction diagnosis
DI6_dg Whether diagnosed with angina pectoris by a physician
DI6_ag Time of angina pectoris diagnosis
DE1_dg Whether diagnosed with diabetes mellitus by a physician
DE1_pt Diabetes mellitus treatment
DE1_4 Ophthalmoscopy

DE2_dg Whether diagnosed with thyroid disease by a physician
DF2_pr Current morbidity of depression
DK4_pr Current morbidity of cirrhosis
LQ4_15 Reason for limited activity: depression/anxiety/emotional problem
LQ4_22 (Adult) Reason for limited activity: old age
EC_occp (If employed) Occupation type

EC_lgw_2 (Adult) Longest occupation: occupational code +
unemployment/non-economic activity status

EC_lgw_4 (Adult) Longest occupation: worker title
EC_lgw_5 (Adult) Longest occupation: worker title wage workers in detail

BO3_04 (Adult) Weight control method: prescription weight loss pills
BD7_4 (Adult) Whether family/physician recommended to quit drinking

BP5 Whether feeling depressed for two 2 weeks or more at a time
BS6_2_1 (Adult) Smoking duration of past smokers (years)
BS6_3 (Adult) Average daily smoking amount of past smokers
BS6_4 (Adult) Smoking cessation period of past smokers converted to months

HE_HPdg Whether diagnosed with hypertension by a physician
HE_DMdg Whether diagnosed with diabetes mellitus by a physician
HE_HLdg Whether diagnosed with hypercholesterolemia by a physician

HE_fh Family history of diagnosis of chronic disease by a physician
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