Field Research on the Wind-Induced Response of a Super High-Rise Building under Typhoon
Abstract
:1. Introduction
2. Field Measurement Overview
2.1. Overview of the Test Building
2.2. Introduction to Field Measurement Instruments
2.3. Field Measurement Status
3. Analytical Research Methods
3.1. Research Method for Wind Characteristics
3.2. Welch Method
3.3. Improved NExT-ERA Method
4. Wind Characteristics
5. Structural Dynamic Characteristics
5.1. Acceleration Probability Density
5.2. Natural Frequency
5.3. Damping Ratio
6. Wind-Induced Response Analysis
6.1. Acceleration Response
6.2. Acceleration Response
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, Q.S.; Xiao, Y.Q.; Fu, J.Y.; Li, Z.N. Full-scale measurements of wind effects on the Jin Mao building. J.Wind Eng. Ind. Aerodyn. 2007, 6, 445–466. [Google Scholar] [CrossRef]
- Au, S.K.; Ping, T. Full-scale validation of dynamic wind load on a super-tall building under strong wind. J. Struct. Eng. 2012, 9, 1161–1172. [Google Scholar] [CrossRef]
- Bashor, R.; Bobby, S.; Kijewski-Correa, T.; Kareem, A. Full-scale performance evaluation of tall buildings under wind. J.Wind Eng. Ind. Aerodyn. 2012, 5, 88–97. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, G. Analytical mode decomposition with Hilbert transform for modal parameter identification of buildings under ambient vibration. Eng. Struct. 2014, 2, 173–184. [Google Scholar] [CrossRef]
- He, Y.C.; Li, Q.S. Time–frequency analysis of structural dynamic characteristics of tall buildings. Struct. Infrastruct. Eng. 2015, 8, 971–989. [Google Scholar] [CrossRef]
- Li, Q.S.; Yi, Y. Monitoring of dynamic behaviour of super-tall buildings during typhoons. J. Struct. Infrastruct. Eng. 2016, 3, 289–311. [Google Scholar] [CrossRef]
- He, Y.H.; Han, X.L.; Li, Q.S.; Zhu, H.P.; He, Y.C. Monitoring wind effects of a landfall typhoon on a 600 m high skyscraper. Eng. Struct. 2018, 167, 308–326. [Google Scholar] [CrossRef]
- Kim, W.; Yoshida, A.; Tamura, Y.; Yi, J.H. Experimental study of aerodynamic damping of a twisted supertall building. J. Wind Eng. Ind. Aerod. 2018, 176, 1–12. [Google Scholar] [CrossRef]
- Wang, C.Q.; Li, Z.N.; Luo, Q.Z.; Hu, L.; Zhao, Z.F.; Hu, J.X.; Zhang, X.W. Wind Characteristics Investigation on The Roofs of Three Adjacent High-Rise Buildings in a Coastal Area during Typhoon Meranti. Appl. Sci. 2019, 3, 367. [Google Scholar] [CrossRef]
- Vickery, B.J.; Steckley, A. Aerodynamic damping and vortex excitation on an oscillating prism in turbulent shear flow. J.Wind Eng. Ind. Aerodyn. 1993, 1–3, 121–140. [Google Scholar] [CrossRef]
- Kareem, A.; Gurley, K. Damping in structures: Its evaluation and treatment of uncertainty. J. Wind Eng. Ind. Aerodyn. 1996, 2–3, 131–157. [Google Scholar] [CrossRef]
- Cooper, K.R.; Nakayama, M.; Sasaki, Y.; Fediw, A.A.; Resende-lde, S.; Zan, S.J. Unsteady aerodynamic force measurements on a super-tall building with a tapered cross section. J. Wind Eng. Ind. Aerodyn. 1997, 2, 199–212. [Google Scholar] [CrossRef]
- Li, Q.S.; Xiao, Y.Q.; Wong, C.K. Full-scale monitoring of typhoon effects on super tall buildings. J. Fluids Struct. 2005, 5, 697–717. [Google Scholar] [CrossRef]
- Jeary, A.P. The Damping Parameter as a Descriptor of Energy Release in Structures; Structural Engineers World Congress: San Francisco, CA, USA, 1998; pp. 8–9. [Google Scholar]
- Tamura, Y. Amplitude dependency of damping in buildings and critical tip drift ratio. Int. J. High-Rise Build. 2012, 1, 1–13. [Google Scholar]
- Li, Q.S.; Li, X.; He, Y.; Yi, J. Observation of wind fields over different terrains and wind effects on a super-tall building during a severe typhoon and verification of wind tunnel predictions. J. Wind Eng. Ind. Aerod. 2017, 162, 73–84. [Google Scholar] [CrossRef]
- Huang, Y.J.; Gu, M.; Huang, Z.F. Field Measurement of Wind and Acceleration on Shanghai World Financial Center. J. Tongji Univ. (Nat. Sci.) 2017, 6, 821–826. [Google Scholar] [CrossRef]
- Huang, M.F.; Wu, C.H.; Xu, Q.; Zhang, F.L.; Lou, W.J. Structural dynamic and aerodynamic parameters identification for a tall building with full-scale measurements. J. Vib. Shock 2017, 10, 31–37. [Google Scholar] [CrossRef]
- Xiang, H.F.; Ge, Y.J.; Zhu, L.D. Modern Theory and Practice on Bridge Wind Resistance, 1st ed.; China Communications Press: Beijing, China, 2005; pp. 82–105. [Google Scholar]
- Ellis, B.R. An assessment of the accuracy of predicting the fundamental natural frequencies of buildings and the implications concerning the dynamic analysis of structures. Proc. Inst. Civ. Eng. 1980, 3, 763–776. [Google Scholar]
- Tamura, Y.; Suganuma, S. Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds. J. Wind Eng. Ind. Aerodyn. 1996, 2–3, 1115–1130. [Google Scholar] [CrossRef]
- Johann, F.A.; Carlos, M.E.N.; Ricardo, F.L.S. Wind-induced motion on tall buildings: A comfort criteria overview. J. Wind Eng. Ind. Aerodyn. 2015, 142, 26–42. [Google Scholar] [CrossRef]
- Li, Z.N.; Hu, J.X.; Zhao, Z.F.; Wang, C.Q. Dynamic system identification of a high-rise building during Typhoon Kalmaegi. J. Wind Eng. Ind. Aerodyn. 2018, 181, 141–160. [Google Scholar] [CrossRef]
- International Organization for Standardization. Guidelines for the Evaluation of the Response of Occupants of Fixed Structures, Especially Buildings and Offshore Structures, to Low-Frequency Horizontal Motion (0.063 to 1.0 Hz); ISO 6897:1984; Int. Organization for Standardization: Geneva, Switzerland, 1984. [Google Scholar]
Typhoon | Date | Maximum Wind Speed (m/s) |
---|---|---|
Matmo | 23 July 2014 | 31.1 |
Fung-wong | 22 September 2014 | 17.7 |
Chan-hom | 10 July 2015 | 24.8 |
Dujuan | 29 September 2015 | 23.2 |
Nepartak | 9 July 2016 | 14.8 |
Wind Direction (°) | Maximum Mean Wind Speed (m/s) |
---|---|
0–30 | 15.7 |
75–105 | 14.9 |
300–330 | 12.2 |
330–360 | 10.5 |
Floor | Fung-Wong | Chan-Hom | Dujuan | |||
---|---|---|---|---|---|---|
Skewness | Kurtosis | Skewness | Kurtosis | Skewness | Kurtosis | |
10X | −0.322 | 8.148 | 0.114 | 2.597 | −0.002 | 2.526 |
10Y | −0.083 | 6.986 | 0.059 | 2.286 | −0.010 | 3.324 |
18X | −0.296 | 10.832 | 0.002 | 2.618 | −0.008 | 3.226 |
18Y | −0.435 | 7.126 | 0.020 | 2.146 | −0.010 | 2.313 |
25X | −0.372 | 7.200 | 0.036 | 2.811 | −0.003 | 3.076 |
25Y | −0.045 | 6.552 | 0.001 | 1.532 | 0.075 | 2.852 |
32X | −0.321 | 6.248 | −0.020 | 1.914 | −0.001 | 2.756 |
32Y | −0.258 | 5.986 | 0.012 | 2.345 | −0.00 | 2.566 |
41X | −0.360 | 9.273 | 0.002 | 1.755 | −0.002 | 2.672 |
41Y | −0.132 | 5.727 | 0.013 | 2.932 | −0.001 | 2.402 |
Identified Mode No. | Results from Field Measurement (Hz) | Numerical Results from FEM (Hz) | Difference (%) | Mode Type | ||
---|---|---|---|---|---|---|
Welch | ERA-NExT-AVG | |||||
1st | 0.408 | 0.409 | 0.381 | 6.618 | 6.846 | 1st mode in X direction (sway) |
2nd | 0.390 | 0.394 | 0.372 | 4.615 | 5.584 | 1st mode in Y direction (sway) |
3rd | 1.252 | 1.241 | 1.210 | 3.355 | 2.498 | 2nd mode in X direction (sway) |
4th | 1.372 | 1.378 | 1.33 | 2.843 | 3.266 | 2nd mode in Y direction (sway) |
5th | 2.458 | 2.490 | 2.592 | −5.452 | −4.096 | 3rd mode in X direction (torsion) |
6th | 2.955 | 2.939 | 3.001 | −1.557 | −2.110 | 3rd mode in Y direction (torsion) |
Typhoon | Mean Wind Speed (m/s) | Mean Wind Direction (°) | Direction X | Direction Y | ||||
---|---|---|---|---|---|---|---|---|
Mode 1(%) | Mode 2(%) | Mode 3(%) | Mode 1(%) | Mode 2(%) | Mode 3(%) | |||
Fung-wong | 5.154 | 324.229 | 1.627 | 3.198 | 2.103 | 0.600 | 3.113 | 3.677 |
6.204 | 326.059 | 1.445 | 3.823 | 2.349 | 1.337 | 2.767 | 1.881 | |
7.865 | 324.015 | 1.502 | 3.444 | 2.603 | 1.375 | 2.927 | 3.345 | |
Chan-hom | 8.393 | 310.793 | 0.875 | 2.313 | 1.840 | 0.843 | 3.134 | 2.111 |
9.140 | 309.512 | 1.295 | 2.061 | 2.263 | 1.329 | 4.127 | 1.509 | |
10.256 | 309.241 | 1.021 | 2.807 | 2.476 | 0.759 | 3.987 | 2.650 | |
10.525 | 307.990 | 1.255 | 2.463 | 2.217 | 1.128 | 3.615 | 1.728 | |
11.910 | 305.509 | 1.020 | 2.421 | 2.069 | 1.879 | 2.913 | 2.198 | |
11.999 | 305.014 | 1.157 | 3.437 | 2.378 | 0.714 | 3.951 | 1.969 | |
Dujuan | 8.495 | 88.395 | 1.094 | 2.200 | 2.673 | 0.783 | 1.695 | 2.437 |
9.164 | 89.330 | 1.007 | 2.245 | 1.827 | 1.004 | 3.175 | 3.799 | |
10.613 | 91.499 | 1.212 | 2.462 | 1.967 | 1.004 | 2.590 | 4.580 | |
11.759 | 90.694 | 1.343 | 2.574 | 1.9667 | 1.320 | 1.902 | 3.400 | |
12.357 | 94.307 | 1.250 | 2.607 | 2.334 | 1.132 | 2.635 | 4.333 | |
13.340 | 94.005 | 1.638 | 3.003 | 1.991 | 1.132 | 2.333 | 4.177 | |
14.468 | 97.366 | 1.274 | 3.421 | 2.233 | 0.916 | 2.477 | 4.170 |
Floor | Chan-Hom | Dujuan | ||
---|---|---|---|---|
C1 | C2 | C1 | C2 | |
10X | 7.377 | 0.6243 | 3.624 | 0.518 |
10Y | 11.878 | 0.703 | 21.711 | 1.018 |
18X | 27.061 | 0.888 | 516.465 | 1.633 |
18Y | 16.580 | 0.720 | 67.443 | 1.183 |
25X | 33.712 | 0.899 | 675.032 | 1.634 |
25Y | 27.579 | 0.790 | 133.243 | 1.272 |
32X | 17.620 | 0.583 | 259.722 | 1.307 |
32Y | 34.511 | 0.782 | 95.346 | 1.072 |
41X | 19.231 | 0.490 | 1162.793 | 1.602 |
41Y | 43.138 | 0.782 | 51.566 | 0.875 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Li, Z.; Hu, L.; Zhao, Z.; Luo, Q.; Hu, J.; Zhang, X. Field Research on the Wind-Induced Response of a Super High-Rise Building under Typhoon. Appl. Sci. 2019, 9, 2180. https://doi.org/10.3390/app9112180
Wang C, Li Z, Hu L, Zhao Z, Luo Q, Hu J, Zhang X. Field Research on the Wind-Induced Response of a Super High-Rise Building under Typhoon. Applied Sciences. 2019; 9(11):2180. https://doi.org/10.3390/app9112180
Chicago/Turabian StyleWang, Chequan, Zhengnong Li, Lan Hu, Zhefei Zhao, Qizhi Luo, Jiaxing Hu, and Xuewen Zhang. 2019. "Field Research on the Wind-Induced Response of a Super High-Rise Building under Typhoon" Applied Sciences 9, no. 11: 2180. https://doi.org/10.3390/app9112180
APA StyleWang, C., Li, Z., Hu, L., Zhao, Z., Luo, Q., Hu, J., & Zhang, X. (2019). Field Research on the Wind-Induced Response of a Super High-Rise Building under Typhoon. Applied Sciences, 9(11), 2180. https://doi.org/10.3390/app9112180