The Impact of Catchment Characteristics and Weather Conditions on Heavy Metal Concentrations in Stormwater—Data Mining Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Area
2.2. Measurement Apparatus
2.3. Rainfall Events
2.4. Meteorological Conditions and Parameters of Hydrographs
2.5. Statistical Analysis
2.6. Development of ANN Model for Predicting HM Concentrations
2.6.1. The Model for Stormwater Quality Prediction
2.6.2. Selection of Variables for the Model
2.6.3. Artificial Neural Networks
3. Results and Discussion
3.1. Heavy Metal Concentrations in Runoff
3.2. Correlation Significance Analysis
3.3. Prediction of HM Concentrations in Stormwater
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ali, S.A.; Rodriguez, F.; Bonhomme, C.; Chebbo, G. Accounting for the Spatio-Temporal Variability of Pollutant Processes in Stormwater TSS Modeling Based on Stochastic Approaches. Water 2018, 10, 1773. [Google Scholar] [CrossRef]
- Tsai, L.Y.; Chen, C.F.; Fan, C.H.; Lin, J.Y. Using the HSPF and SWMM Models in a High Pervious Watershed and Estimating Their Parameter Sensitivity. Water 2017, 9, 780. [Google Scholar] [CrossRef]
- Cho, J.H.; Lee, J.H. Multiple Linear Regression Models for Predicting Nonpoint-Source Pollutant Discharge from a Highland Agricultural Region. Water 2018, 10, 1156. [Google Scholar] [CrossRef]
- Zawilski, M.; Sakson, G. Assessment of total suspended solid emission discharged via storm sewerage system from urban areas. Ochr. Srodowiska 2013, 35, 33–40. (In Polish) [Google Scholar]
- Yang, L.; Zhou, X.; Wang, Z.; Zhou, Y.; Cheng, S.; Xu, P.; Gao, X.; Nie, W.; Wang, X.; Wang, W. Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence on visibility impairment. Atmos. Environ. 2012, 55, 506–514. [Google Scholar] [CrossRef]
- Majewski, G.; Rogula-Kozłowska, W. The elemental composition and origin of fine ambient particles in the largest Polish conurbation: First results from the short-term winter campaign. Theor. Appl. Climatol. 2016, 125, 79–92. [Google Scholar] [CrossRef]
- Garcia, J.T.; Espin-Leal, P.; Vigueras-Rodriguez, A.; Carrillo, J.M.; Castillo, L.G. Synthetic pollutograph by prediction indices: An evaluation in several urban sub-catchnents. Sustainability 2018, 10, 2634. [Google Scholar] [CrossRef]
- Szeląg, B.; Barbusiński, K.; Studziński, J. Activated sludge process modelling using selected machine learning techniques. Desalin. Water Treat. 2018, 117, 78–87. [Google Scholar] [CrossRef]
- Bąk, Ł.; Szeląg, B.; Sałata, A.; Studziński, J. Modeling of Heavy Metal (Ni, Mn, Co, Zn, Cu, Pb, and Fe) and PAH Content in Stormwater Sediments Based on Weather and Physico-Geographical Characteristics of the Catchment-Data-Mining Approach. Water 2019, 11, 626. [Google Scholar] [CrossRef]
- May, D.B.; Sivakumar, M. Prediction of heavy metal concentrations in urban stormwater. Water Environ. J. 2009, 23, 247–254. [Google Scholar] [CrossRef]
- Pochwat, K. The use of artificial neural networks for analyzing the sensitivity of a retention tank. In Proceedings of the VI International Conference of Science and Technology INFRAEKO Modern Cities—E3S Web of Conferences 45, Krakow, Poland, 7–8 June 2018; p. 00066. [Google Scholar] [CrossRef]
- Mounce, S.R.; Shepherd, W.; Sailor, G.; Shucksmith, J.; Saul, A.J. Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data. Water Sci. Technol. 2014, 69, 1326–1333. [Google Scholar] [CrossRef]
- Singh, K.P.; Basant, A.; Malik, A.; Jain, G. Artificial neural network modeling of the river water quality—A case study. Ecol. Model. 2009, 220, 888–895. [Google Scholar] [CrossRef]
- Sarkar, A.; Pandey, P. River Water Quality Modelling Using Artificial Neural Network Technique. Aquat. Procedia 2015, 4, 1070–1077. [Google Scholar] [CrossRef]
- Bąk, Ł.; Górski, J.; Górska, K.; Szeląg, B. Suspended Solids and Heavy Metals Content of Selected Rainwater Waves in an Urban Catchment Area: A Case Study. Ochr. Srodowiska 2012, 34, 49–52. (In Polish) [Google Scholar]
- Górski, J.; Szeląg, B.; Bąk, Ł. The application of SWMM software for the evaluation of stormwater treatment plant operation. Woda Środ. Obsz. Wiej. 2016, 16, 17–35. (In Polish) [Google Scholar]
- PN-EN ISO 10523:2012. Water Quality. Determination pH Value; ISO: Geneva, Switzerland, 2012. (In Polish) [Google Scholar]
- PN-EN ISO 11885:2009. Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES); ISO: Geneva, Switzerland, 2009. (In Polish) [Google Scholar]
- Arbeitsblatt DWA-A 118. Hydraulische Bemessung und Nachweis von Entwässerungssystemen; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall: Hennef, Germany, 2006. [Google Scholar]
- Szeląg, B.; Kiczko, A.; Studziński, J.; Dąbek, L. Hydrodynamic and probabilistic modelling of storm overflow discharges. J. Hydroinform. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. B 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Murphy, L.U. Quantifying Spatial and Temporal Deposition of Atmospheric Pollutants in Runoff from Different Pavement Types. Ph.D. Thesis, University of Canterbury Christchurch, Christchurch, New Zealand, 2015. [Google Scholar]
- Rutkowski, L. Artificial Intelligence Methods and Techniques; PWN: Warszawa, Poland, 2006. (In Polish) [Google Scholar]
- Hecht-Nielsen, R. Kolmogorov’s Mapping Neural Network Existence Theorem. In Proceedings of the IEEE First Annual International Conference on Neural Networks, San Diego, CA, USA, 21–24 June 1987. [Google Scholar]
- Demuth, H.; Beale, M. Neural Network Toolbox. For Use with MATLAB; The MathWorks: Natick, MA, USA, 2002. [Google Scholar]
- Fach, S.; Sitzenfrei, R.; Rauch, W. Assessing the relationship between water level and combined sewer overflow with computational fluid dynamics. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, UK, 31 August–5 September 2008. [Google Scholar]
- Królikowski, A.; Garbarczyk, K.; Gwoździej-Mazur, J.; Butarewicz, A. Sediments Formed in Stormwater Sewer Facilities; Polish Academy of Sciences: Lublin, Poland, 2005. (In Polish) [Google Scholar]
- Górska, K.; Sikorski, M.; Górski, J. Occurrence of heavy metals in rain wastewater on example of urban catchment in Kielce. Ecol. Chem. Eng. A 2013, 20, 961–974. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Majewski, G.; Czechowski, P.O. The size distribution and origin of elements bound to ambient particles: A case study of a Polish urban area. Environ. Monit. Assess. 2015, 187, 240. [Google Scholar] [CrossRef] [PubMed]
- Murphy, L.U.; Cochrane, T.A.; O’Sullivan, A. Build-up and wash-off dynamics of atmospherically derived Cu, Pb, Zn and TSS in stormwater runoff as a function of meteorological characteristics. Sci. Total Environ. 2015, 508, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Hong, N.; Zhu, P.; Liu, A. Modelling heavy metals build-up on urban road surfaces for effective stormwater reuse strategy implementation. Environ. Pollut. 2017, 253, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Djukić, A.; Lekić, B.; Rajaković-Ognjanović, V.; Veljović, D.; Vulić, T.; Djolić, M.; Naunovic, Z.; Despotović, J.; Prodanović, D. Further insight into the mechanism of heavy metals partitioning in stormwater runoff. J. Environ. Manag. 2016, 168, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Sakson, G.; Zawilski, M.; Badowska, E.; Brzezińska, A. Stormwater pollution as the basis of choice the method of their management. J. Civ. Eng. Environ. Archit. 2014, 31, 253–264. [Google Scholar] [CrossRef]
- Lundy, L.; Ellis, J.B.; Revitt, D.M. Risk prioritisation of stormwater pollutant sources. Water Res. 2012, 46, 6589–6600. [Google Scholar] [CrossRef]
- Gasperi, J.; Kafi-Benyahia, M.; Lorgeoux, C.; Moilleron, R.; Gromaire, M.C.; Chebbo, G. Wastewater quality and pollutant loads in combined sewers during dry weather periods. Urban Water J. 2008, 5, 305–314. [Google Scholar] [CrossRef]
- Zgheib, S.; Moilleron, R.; Chebbo, G. Priority pollutants in urban stormwater: Part 1—Case of separate storm sewers. Water Res. 2012, 46, 6683–6692. [Google Scholar] [CrossRef]
- Gnecco, I.; Berretta, C.; Lanza, L.G.; La Barbera, P. Storm water pollution in the urban environment of Genoa, Italy. Atmos. Res. 2005, 77, 60–73. [Google Scholar] [CrossRef]
- Revitt, D.M.; Lundy, L.; Coulon, F.; Fairley, M. The sources, impact and management of car park runoff pollution: A review. J. Environ. Manag. 2014, 146, 552–567. [Google Scholar] [CrossRef] [Green Version]
- Gan, H.; Zhuo, M.; Li, D.; Zhou, Y. Quality characterization and impact assessment of highway runoff in urban and rural area of Guangzhou, China. Environ. Monit. Assess. 2008, 140, 147–159. [Google Scholar] [CrossRef]
- Brombach, H.; Fuchs, S. Datenpool Gemessener Verschmutzungskonzentrationen von Trocken—und Regenwetterabflüssen in Misch—und Trennkanalisationen; ATV-DVWK—Forschungsfonds, Projekt 1-01; GFA: Hennef, Germany, 2001. [Google Scholar]
- Charters, F.J.; Cochrane, T.A.; O’Sullivan, A. Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate. Sci. Total Environ. 2016, 550, 265–272. [Google Scholar] [CrossRef]
- Valtanen, M.; Sillanpää, N.; Setälä, H. The Effects of Urbanization on Runoff Pollutant Concentrations, Loadings and Their Seasonal Patterns Under Cold Climate. Water Air Soil Pollut. 2014, 225, 1977. [Google Scholar] [CrossRef]
- Sternbeck, J.; Sjodin, A.; Andreasson, K. Metal emissions from road traffic and the influence of resuspension—Results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Bergbäck, B.; Johansson, K.; Mohlander, U. Urban Metal Flows—A Case Study of Stockholm. Review and Conclusions. Water Air Soil Pollut. Focus 2001, 1, 3–24. [Google Scholar] [CrossRef]
- Suresh, G.; Sutharsan, P.; Ramasamy, V.; Venkatachalapathy, R. Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments India. Ecotoxicol. Environ. Saf. 2012, 84, 117–124. [Google Scholar] [CrossRef]
- Gunawardena, J.; Ziyath, A.M.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Sources and transport pathways of common heavy metals to urban road surfaces. Ecol. Eng. 2015, 77, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Rocher, V.; Azimi, S.; Gasperi, J.; Beuvin, L.; Mulle, M.; Moilleron, R.; Chebbo, G. Hydrocarbons and metals in atmospheric deposition and roof runoff in central Paris. Water Air Soil Pollut. 2004, 159, 67–86. [Google Scholar] [CrossRef]
- Wicke, D.; Cochrane, T.A.; O’Sullivan, A.D. Atmospheric deposition and storm induced runoff of heavy metals from different impermeable urban surfaces. J. Environ. Monit. 2012, 14, 209–216. [Google Scholar] [CrossRef]
Catchment | Area A | Surface Type | ||||
---|---|---|---|---|---|---|
Roads | Roofs | Car Parks | Green Spaces | |||
Asphalt | Gravel | |||||
ha | % | |||||
IX Wieków Kielc | 62 | 26.0 | – | 14.3 | 11.2 | 48.5 |
Witosa | 83 | 8.5 | 1.6 | 9.4 | 6.4 | 74.1 |
Jesionowa | 400 | 11.3 | 8.4 | 11.5 | 11.2 | 57.6 |
Years | Value (μg∙dm−3) | Cd | Cu | Cr | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|
IX Wieków Kielc SWTP | |||||||
2009–2018 | Range | 0–162 | 0–1068 | 0–350 | 0–168 | 0–1405 | 0–3873 |
Median | 20 | 128 | 70 | 45 | 411 | 430 | |
Mean | 17 | 113 | 46 | 31 | 342 | 298 | |
Witosa SWTP | |||||||
2015–2018 | Range | 1–766 | 3–959 | 3–319 | 2–341 | 1–343 | 45–3160 |
Median | 37 | 358 | 70 | 38 | 55 | 663 | |
Mean | 22 | 262 | 67 | 23 | 14 | 550 | |
Jesionowa SWTP | |||||||
2016–2018 | Range | 4–649 | 5–660 | 14–2236 | 13–304 | 13–1115 | 319–5731 |
Median | 16 | 128 | 177 | 74 | 138 | 1148 | |
Mean | 7 | 99 | 117 | 80 | 101 | 842 |
Ni | Cu | Cr | Zn | Pb | Cd | Q | Ptot | P(10) | tr | tbd | G | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ni | 1.00 | 0.57 * | 0.42 * | 0.61 * | 0.71 * | 0.72 * | −0.28 * | −0.43 * | −0.52 * | −0.11 * | −0.27 * | 0.49 * |
Cu | 0.57 * | 1.00 | 0.81 * | 0.79 * | 0.58 * | 0.71 * | −0.24 * | −0.48 * | −0.53 * | −0.03 | −0.12 * | 0.40 * |
Cr | 0.42 * | 0.81 * | 1.00 | 0.65 * | 0.57 * | 0.59 * | −0.06 | −0.26 * | −0.53 * | 0.06 | 0.00 | 0.17 * |
Zn | 0.61 * | 0.79 * | 0.65 * | 1.00 | 0.65 * | 0.71 * | −0.22 * | −0.41 * | −0.45 * | 0.03 | −0.24 * | 0.39 * |
Pb | 0.70 * | 0.57 * | 0.57 * | 0.66 * | 1.00 | 0.73 * | 0.02 | −0.17 * | −0.44 * | −0.11 * | −0.13 * | 0.24 * |
Cd | 0.72 * | 0.71 * | 0.59 * | 0.71 * | 0.72 * | 1.00 | −0.26 * | −0.38 * | −0.49 * | −0.03 | −0.22 * | 0.39 * |
wme | wvar | wgrad | Vime | Vivar | Vigrad | Tsn | Tf | Tme | Tvar | Tgrad | ts | |
Ni | −0.71 * | −0.46 * | −0.15 * | 0.32 * | 0.51 * | 0.02 | 0.09 | −0.08 | −0.70 * | −0.24 * | −0.01 | 1.00 |
Cu | −0.46 * | −0.28 * | −0.41 * | 0.39 * | 0.44 * | 0.27 * | 0.02 | 0.35 * | −0.60 * | 0.18 * | −0.16 * | −0.34 |
Cr | −0.34 * | −0.31 * | −0.52 * | 0.44 * | 0.42 * | 0.29 * | −0.03 | 0.20 * | −0.46 * | 0.15 * | −0.19 * | −0.37 |
Zn | −0.58 * | −0.29 * | −0.28 * | 0.42 * | 0.39 * | 0.12 * | −0.05 | 0.20 * | −0.70 * | 0.11 * | −0.10 * | −0.33 |
Pb | −0.64 * | −0.45 * | −0.33 * | 0.47 * | 0.52 * | −0.03 | −0.05 | −0.16 * | −0.68 * | −0.28 * | 0.07 | −0.38 |
Cd | −0.59 * | −0.52 * | −0.26 * | 0.35 * | 0.39 * | 0.21 * | 0.00 | 0.01 | −0.62 * | −0.07 | −0.19 * | −0.32 |
Zi | A | |||||||||||
RF | CP | GRD | GS | RD | ||||||||
Ni | 0.43 * | 0.43 * | −0.26 * | −0.43 * | 0.43 * | −0.66 * | ||||||
Cu | 0.13 * | 0.13 * | −0.49 * | −0.13 * | 0.14 * | −0.51 * | ||||||
Cr | 0.28 * | 0.28 * | −0.33 * | −0.28 * | 0.29 * | −0.56 * | ||||||
Zn | 0.19 * | 0.19 * | −0.45 * | −0.19 * | 0.19 * | −0.54 * | ||||||
Pb | 0.71 * | 0.71 * | −0.12 * | −0.71 * | 0.71 * | −0.86 * | ||||||
Cd | 0.34 * | 0.34 * | −0.31 * | −0.35 * | 0.34 * | −0.59 * |
Ni | Cu | Cr | Zn | Pb | Cd | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | F | p | Variable | F | p | Variable | F | p | Variable | F | p | Variable | F | p | Variable | F | p |
G | 215 | <0.00001 | GRD | 68.2 | <0.00001 | A | 95.2 | <0.00001 | A | 49.4 | <0.00001 | RF | 215 | <0.00001 | A | 58.2 | <0.00001 |
Tme | 92.6 | <0.00001 | RF | 68.2 | <0.00001 | CP | 56.7 | <0.00001 | CP | 24.8 | <0.00001 | CP | 215 | <0.00001 | G | 30.7 | <0.00001 |
ts | 72.1 | <0.00001 | RD | 68.2 | <0.00001 | RF | 56.7 | <0.00001 | RF | 24.8 | <0.00001 | GS | 215 | <0.00001 | RD | 29.5 | <0.00001 |
A | 63.9 | <0.00001 | CP | 68.2 | <0.00001 | RD | 56.7 | <0.00001 | RD | 24.8 | <0.00001 | RD | 215 | <0.00001 | CP | 29.5 | <0.00001 |
CP | 46.7 | <0.00001 | GS | 68.2 | <0.00001 | GRD | 56.7 | <0.00001 | GS | 24.8 | <0.00001 | GRD | 215 | <0.00001 | RF | 29.5 | <0.00001 |
RD | 46.7 | <0.00001 | A | 59.3 | <0.00001 | GS | 56.7 | <0.00001 | GRD | 24.8 | <0.00001 | A | 82.9 | <0.00001 | GS | 29.5 | <0.00001 |
GRD | 46.7 | <0.00001 | wvar | 53.6 | <0.00001 | Tvar | 55.1 | <0.00001 | ts | 24.7 | <0.00001 | Vivar | 48.6 | <0.00001 | GRD | 29.5 | <0.00001 |
RF | 46.7 | <0.00001 | Tvar | 53.4 | <0.00001 | ts | 52.1 | <0.00001 | wvar | 24.4 | <0.00001 | wvar | 41.7 | <0.00001 | ts | 26.3 | <0.00001 |
GS | 46.7 | <0.00001 | ts | 46.2 | <0.00001 | Vime | 49.0 | <0.00001 | Tme | 16.6 | <0.00001 | ts | 34.3 | <0.00001 | wvar | 25.0 | <0.00001 |
Vime | 41.1 | <0.00001 | G | 43.6 | <0.00001 | Tme | 37.6 | <0.00001 | Tvar | 16.5 | <0.00001 | Tme | 29.0 | <0.00001 | Tme | 21.1 | <0.00001 |
wvar | 38.8 | <0.00001 | Tme | 38.6 | <0.00001 | Vivar | 27.7 | <0.00001 | wme | 14.7 | <0.00001 | wgrad | 24.5 | <0.00001 | tbd | 13.5 | <0.00001 |
P(10) | 29.4 | <0.00001 | Q | 30.2 | <0.00001 | Tsn | 25.2 | <0.00001 | Vigrad | 12.8 | <0.00001 | tbd | 24.2 | <0.00001 | wme | 12.2 | <0.00001 |
Vivar | 24.9 | <0.00001 | Tf | 22.3 | <0.00001 | Ptot | 21.6 | <0.00001 | Vime | 9.7 | <0.00001 | Vime | 21.4 | <0.00001 | Vime | 11.1 | <0.00001 |
Ptot | 24.7 | <0.00001 | Ptot | 21.0 | <0.00001 | Q | 20.5 | 0.0001 | G | 9.3 | 0.0024 | Tf | 20.9 | <0.00001 | Ptot | 9.3 | <0.00001 |
wme | 17.9 | <0.00001 | tr | 19.4 | <0.00001 | wgrad | 19.6 | <0.00001 | Ptot | 8.9 | <0.00001 | Ptot | 19.9 | <0.00001 | Tgrad | 9.1 | <0.00001 |
Tsn | 17.4 | <0.00001 | Vigrad | 15.1 | <0.00001 | P(10) | 19.4 | <0.00001 | tr | 8.2 | <0.00001 | wme | 19.1 | <0.00001 | Tvar | 7.9 | <0.00001 |
Tvar | 12.7 | <0.00001 | Tgrad | 13.2 | <0.00001 | Tf | 14.9 | <0.00001 | Tf | 7.9 | <0.00001 | Tvar | 18.9 | <0.00001 | Tf | 7.3 | <0.00001 |
Tgrad | 11.7 | <0.00001 | P(10) | 9.9 | <0.00001 | Tgrad | 13.4 | <0.00001 | tbd | 6.2 | 0.0004 | Tsn | 15.1 | <0.00001 | Vivar | 6.7 | <0.00001 |
Vigrad | 10.4 | <0.00001 | Vivar | 8.4 | <0.00001 | tr | 11.2 | <0.00001 | P(10) | 5.3 | 0.0001 | P(10) | 13.4 | <0.00001 | Vigrad | 6.4 | <0.00001 |
tbd | 7.9 | <0.00001 | Vime | 5.6 | <0.00001 | G | 11.1 | 0.0010 | Tgrad | 3.2 | 0.0029 | Vigrad | 11.8 | <0.00001 | P(10) | 5.7 | <0.00001 |
Tf | 6.8 | <0.00001 | wme | 0.32 | >0.05 | wvar | 9.0 | <0.00001 | Q | 0.26 | >0.05 | tr | 9.5 | <0.00001 | tr | 5.6 | <0.00001 |
Q | 6.2 | <0.00001 | wgrad | 0.22 | >0.05 | tbd | 7.8 | <0.00001 | wgrad | 0.25 | >0.05 | Q | 5.2 | 0.0001 | Q | 4.2 | 0.0010 |
tr | 3.7 | 0.0013 | tbd | 0.13 | >0.05 | wme | 6.3 | <0.00001 | Tsn | 0.18 | >0.05 | G | 0.31 | >0.05 | Tsn | 0.28 | >0.05 |
wgrad | 0.17 | >0.005 | Tsn | 0.10 | >0.05 | Vigrad | 0.33 | >0.05 | Vivar | 0.11 | >0.05 | Tgrad | 0.28 | >0.05 | wgrad | 0.19 | >0.05 |
Heavy Metals | Number of Neurons | Activation Function | Training | Validation | |||||
---|---|---|---|---|---|---|---|---|---|
Hidden Layer | Output Layer | R | MAE | RMSE | R | MAE | RMSE | ||
mg·dm−3 | mg·dm−3 | mg·dm−3 | mg·dm−3 | ||||||
Ni | 28 | exp | tanh | 0.887 | 0.0093 | 0.0200 | 0.845 | 0.986 | 0.0043 |
Cu | 30 | exp | tanh | 0.933 | 0.0374 | 0.0824 | 0.979 | 0.887 | 0.0457 |
Cr | 32 | tanh | lin | 0.889 | 0.0130 | 0.0237 | 0.871 | 0.929 | 0.0113 |
Zn | 35 | tanh | exp | 0.951 | 0.0931 | 0.1539 | 0.975 | 0.950 | 0.0871 |
Pb | 33 | sigm | lin | 0.923 | 0.0489 | 0.1072 | 0.881 | 0.913 | 0.0557 |
Cd | 35 | lin | tanh | 0.896 | 0.0044 | 0.0078 | 0.581 | 0.530 | 0.0083 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bąk, Ł.; Szeląg, B.; Górski, J.; Górska, K. The Impact of Catchment Characteristics and Weather Conditions on Heavy Metal Concentrations in Stormwater—Data Mining Approach. Appl. Sci. 2019, 9, 2210. https://doi.org/10.3390/app9112210
Bąk Ł, Szeląg B, Górski J, Górska K. The Impact of Catchment Characteristics and Weather Conditions on Heavy Metal Concentrations in Stormwater—Data Mining Approach. Applied Sciences. 2019; 9(11):2210. https://doi.org/10.3390/app9112210
Chicago/Turabian StyleBąk, Łukasz, Bartosz Szeląg, Jarosław Górski, and Katarzyna Górska. 2019. "The Impact of Catchment Characteristics and Weather Conditions on Heavy Metal Concentrations in Stormwater—Data Mining Approach" Applied Sciences 9, no. 11: 2210. https://doi.org/10.3390/app9112210
APA StyleBąk, Ł., Szeląg, B., Górski, J., & Górska, K. (2019). The Impact of Catchment Characteristics and Weather Conditions on Heavy Metal Concentrations in Stormwater—Data Mining Approach. Applied Sciences, 9(11), 2210. https://doi.org/10.3390/app9112210