Local Ternary Cross Structure Pattern: A Color LBP Feature Extraction with Applications in CBIR
Abstract
:1. Introduction
- We construct a five-level color quantizer, and it is applied to quantize the a* and b* components for the color quantization map extraction.
- We integrate the color quantization map into the LBP feature map to extract a local ternary cross structure pattern (LTCSP).
- We further extend the local ternary cross structure pattern to the uniform local ternary cross structure pattern and the rotation-invariant local ternary cross structure pattern for reducing the computational cost and improving the robustness.
- We benchmark a series of experiments on face, landmark, object and textural datasets, and extensive experimental results demonstrate the effectiveness, robustness, and practicability of the proposed descriptor.
2. Related Work
2.1. Local Binary Pattern Definition
2.2. Color Quantization Scheme
2.3. Color Prior Knowledge in the CIELAB Color Model
3. Feature Extraction
3.1. Five-Level Color Quantizer
3.2. Human Visual System
3.3. Local Ternary Cross Structure Pattern
4. Similarity Measure and Retrieval System
4.1. Similarity Measure
4.2. Retrieval System
5. Experiments and Discussion
5.1. Evaluation Criteria
5.2. Image Datasets
5.3. Experimental Details
5.4. Evaluation of Color Quantization Levels
5.5. Comparison with Other Hierarchical Quantization Schemes
5.6. Comparison with LBP-Based Methods
5.7. Comparison with Other Color LBP Descriptor
- The additional feature dimensionality and memory cost effectively improve the accuracy by a large marginal.
- The LTCSP, LTCSPuni, and LTCSPri achieve the highest score on all six datasets.
- The proposed methods achieve a trade-off compromise: adaptive feature dimensionality and acceptable memory cost, and competitive candidate in the real-world CBIR applications.
5.8. Comparison with Deep Learning (DL)-Based Models
- The DL-based models rely heavily on expensive hardware configurations (e.g., RAM and GPU), yet the proposed descriptors can be easily embedded into cheap hardware devices (e.g., chip and microcontroller).
- The DL-based models are sensitive to rotation, scaling and illumination differences, while the proposed descriptors are robust against rotation, scaling, and illumination differences to some extent.
- The DL-based models need to be pre-trained on large-scale and annotated datasets (e.g., ImageNet), which seriously limits its applications.
- LTCSP, LTCSPuni, and LTCSPri are superior to the DL-based models on five datasets out of six.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Quantization Level Aa* | Quantizer | Quantization Level Ab* | ||||
---|---|---|---|---|---|---|
Ab* = 1 | Ab* = 2 | Ab* = 3 | Ab* = 4 | Ab* = 5 | ||
Aa* = 1 | EICQ | 1150.65 | 877.69 | 825.03 | 812.65 | 792.54 |
FLCQ | 355.51 | 260.54 | 254.78 | 254.46 | 254.45 | |
Aa* = 2 | EICQ | 737.79 | 464.83 | 412.17 | 399.79 | 379.69 |
FLCQ | 156.92 | 61.95 | 56.20 | 55.88 | 55.86 | |
Aa* = 3 | EICQ | 615.66 | 342.70 | 290.04 | 277.66 | 257.56 |
FLCQ | 149.70 | 54.73 | 48.97 | 48.65 | 48.64 | |
Aa* = 4 | EICQ | 569.25 | 296.29 | 243.63 | 231.25 | 211.15 |
FLCQ | 149.35 | 54.38 | 48.63 | 48.31 | 48.29 | |
Aa* = 5 | EICQ | 549.35 | 276.39 | 223.73 | 211.35 | 191.25 |
FLCQ | 149.34 | 54.37 | 48.62 | 48.30 | 48.28 |
Quantization Level Aa* | Quantizer | Quantization Level Ab* | ||||
---|---|---|---|---|---|---|
Ab* = 1 | Ab* = 2 | Ab* = 3 | Ab* = 4 | Ab* = 5 | ||
Aa* = 1 | EICQ | 1458.63 | 1018.17 | 874.3 | 811.39 | 778.25 |
FLCQ | 568.67 | 301.03 | 286.28 | 285.81 | 285.78 | |
Aa* = 2 | EICQ | 1033.79 | 593.33 | 449.46 | 386.55 | 353.41 |
FLCQ | 344.29 | 76.66 | 61.90 | 61.43 | 61.41 | |
Aa* = 3 | EICQ | 905.31 | 464.86 | 320.98 | 258.07 | 224.94 |
FLCQ | 347.00 | 79.37 | 64.61 | 64.15 | 64.12 | |
Aa* = 4 | EICQ | 851.94 | 411.49 | 267.61 | 204.70 | 171.56 |
FLCQ | 346.61 | 78.98 | 64.22 | 63.75 | 63.73 | |
Aa* = 5 | EICQ | 827.35 | 386.90 | 243.02 | 180.11 | 146.98 |
FLCQ | 346.61 | 78.97 | 64.22 | 63.75 | 63.72 |
Quantization Level Aa* | Quantizer | Quantization Level Ab* | ||||
---|---|---|---|---|---|---|
Ab* = 1 | Ab* = 2 | Ab* = 3 | Ab* = 4 | Ab* = 5 | ||
Aa* = 1 | EICQ | 1698.31 | 1247.15 | 1106.26 | 1048.22 | 1020.12 |
FLCQ | 609.53 | 359.00 | 344.97 | 344.27 | 344.24 | |
Aa* = 2 | EICQ | 1203.92 | 752.76 | 611.87 | 553.82 | 525.72 |
FLCQ | 302.63 | 52.11 | 38.07 | 37.37 | 37.34 | |
Aa* = 3 | EICQ | 1041.70 | 590.54 | 449.65 | 391.60 | 363.50 |
FLCQ | 283.95 | 33.42 | 19.38 | 18.68 | 18.66 | |
Aa* = 4 | EICQ | 971.45 | 520.28 | 379.40 | 321.35 | 293.25 |
FLCQ | 283.09 | 32.56 | 18.52 | 17.82 | 17.80 | |
Aa* = 5 | EICQ | 935.66 | 484.50 | 343.61 | 285.56 | 257.46 |
FLCQ | 283.04 | 32.52 | 18.48 | 17.78 | 17.75 |
Quantization Level Aa* | Quantizer | Quantization Level Ab* | ||||
---|---|---|---|---|---|---|
Ab* = 1 | Ab* = 2 | Ab* = 3 | Ab* = 4 | Ab* = 5 | ||
Aa* = 1 | EICQ | 1530.69 | 1167.55 | 1057.57 | 1011.01 | 987.40 |
FLCQ | 556.59 | 367.10 | 358.62 | 358.18 | 358.17 | |
Aa* = 2 | EICQ | 1053.23 | 690.09 | 580.11 | 533.55 | 509.94 |
FLCQ | 267.31 | 77.81 | 69.33 | 68.90 | 68.88 | |
Aa* = 3 | EICQ | 898.62 | 535.48 | 425.50 | 378.94 | 355.33 |
FLCQ | 248.27 | 58.77 | 50.29 | 49.85 | 49.84 | |
Aa* = 4 | EICQ | 832.16 | 469.02 | 359.04 | 312.48 | 288.87 |
FLCQ | 247.46 | 57.97 | 49.49 | 49.05 | 49.04 | |
Aa* = 5 | EICQ | 798.37 | 435.23 | 325.25 | 278.69 | 255.08 |
FLCQ | 247.42 | 57.92 | 49.44 | 49.01 | 48.99 |
Quantization Level Aa* | Quantizer | Quantization Level Ab* | ||||
---|---|---|---|---|---|---|
Ab* = 1 | Ab* = 2 | Ab* = 3 | Ab* = 4 | Ab* = 5 | ||
Aa* = 1 | EICQ | 1299.41 | 1090.02 | 1049.36 | 1031.49 | 1016.96 |
FLCQ | 438.11 | 379.63 | 373.66 | 373.47 | 373.47 | |
Aa* = 2 | EICQ | 838.96 | 629.56 | 588.91 | 571.04 | 556.51 |
FLCQ | 176.84 | 118.36 | 112.39 | 112.20 | 112.20 | |
Aa* = 3 | EICQ | 693.71 | 484.32 | 443.66 | 425.79 | 411.26 |
FLCQ | 160.37 | 101.89 | 95.92 | 95.74 | 95.73 | |
Aa* = 4 | EICQ | 633.55 | 424.16 | 383.50 | 365.64 | 351.10 |
FLCQ | 159.52 | 101.04 | 95.07 | 94.89 | 94.88 | |
Aa* = 5 | EICQ | 604.17 | 394.77 | 354.12 | 336.25 | 321.71 |
FLCQ | 159.49 | 101.01 | 95.03 | 94.85 | 94.84 |
Quantization Level Aa* | Quantizer | Quantization Level Ab* | ||||
---|---|---|---|---|---|---|
Ab* = 1 | Ab* = 2 | Ab* = 3 | Ab* = 4 | Ab* = 5 | ||
Aa* = 1 | EICQ | 1363.97 | 1026.78 | 928.64 | 887.69 | 865.82 |
FLCQ | 509.07 | 342.97 | 332.88 | 332.43 | 332.41 | |
Aa* = 2 | EICQ | 946.85 | 609.65 | 511.52 | 470.57 | 448.70 |
FLCQ | 283.30 | 117.20 | 107.12 | 106.67 | 106.65 | |
Aa* = 3 | EICQ | 822.90 | 485.70 | 387.57 | 346.62 | 324.75 |
FLCQ | 268.31 | 102.21 | 92.12 | 91.67 | 91.65 | |
Aa* = 4 | EICQ | 768.42 | 431.23 | 333.09 | 292.14 | 270.27 |
FLCQ | 267.57 | 101.47 | 91.39 | 90.94 | 90.92 | |
Aa* = 5 | EICQ | 741.21 | 404.02 | 305.88 | 264.93 | 243.06 |
FLCQ | 267.54 | 101.44 | 91.35 | 90.91 | 90.88 |
References
- Smeulders, A.W.M.; Worring, M.; Santini, S.; Gupta, A.; Jain, R. Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 22, 1349–1380. [Google Scholar] [CrossRef]
- Zheng, L.; Yang, Y.; Tian, Q. SIFT meets CNN: A decade survey of instance retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1224–1244. [Google Scholar] [CrossRef] [PubMed]
- Irtaza, A.; Adnan, S.; Ahmed, K.; Jaffar, A.; Khan, A.; Javed, A.; Mahmood, M. An ensemble based evolutionary approach to the class imbalance problem with applications in CBIR. Appl. Sci. 2018, 8, 495. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, J.; Wang, X.; Chen, Y.; Zhu, C. Place recognition: An overview of vision perspective. Appl. Sci. 2018, 8, 2257. [Google Scholar] [CrossRef]
- Zafar, B.; Ashraf, R.; Ali, N.; Lqbal, M.; Sajid, M.; Dar, S.; Ratyal, N. A novel discriminating and relative global spatial image representation with applications in CBIR. Appl. Sci. 2018, 8, 2242. [Google Scholar] [CrossRef]
- Feng, Q.; Hao, Q.; Chen, Y.; Yi, Y.; Wei, Y.; Dai, j. Hybrid histogram descriptor: A fusion feature representation for image retrieval. Sensors 2018, 18, 1943. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Maenpaa, T. Multi resolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, Y.; Zhao, S.; Liu, J. Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 2010, 19, 533–544. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, L.; Zhang, D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 2010, 19, 1657–1663. [Google Scholar]
- Guo, Z.; Zhang, L.; Zhang, D. Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 2010, 43, 706–719. [Google Scholar] [CrossRef]
- Tan, X.; Triggs, B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 2010, 19, 1635–1650. [Google Scholar]
- Murala, S.; Maheshwari, R.P.; Balasubramanian, R. Local tetra patterns: A new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 2012, 21, 2874–2886. [Google Scholar] [CrossRef] [PubMed]
- Subrahmanyam, M.; Maheshwari, R.P.; Balasubramanian, R. Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking. Signal. Process. 2012, 92, 1467–1479. [Google Scholar] [CrossRef]
- Zhao, G.; Ahonen, T.; Matas, J.; Pietikainen, M. Rotation-invariant image and video description with local binary pattern features. IEEE Trans. Image Process. 2012, 21, 1465–1477. [Google Scholar] [CrossRef]
- Ren, J.; Jiang, X.; Yuan, J. Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans. Image Process. 2013, 22, 4049–4060. [Google Scholar] [CrossRef] [PubMed]
- Murala, S.; Wu, Q.M.J. Local ternary co-occurrence patterns: A new feature descriptor for MRI and CT image retrieval. Neurocomputing 2013, 119, 399–412. [Google Scholar] [CrossRef]
- Verma, M.; Raman, B. Local neighborhood difference pattern: A new feature descriptor for natural and texture image retrieval. Multimed. Tools Appl. 2018, 77, 11843–11866. [Google Scholar] [CrossRef]
- Mäenpää, T.; Pietikäinen, M. Texture analysis with local binary patterns. In Handbook of Pattern Recognition and Computer Vision; Word Scientific: Singapore, 2005; pp. 197–216. [Google Scholar]
- Bianconi, F.; Bello-Cerezo, R.; Napoletano, P. Improved opponent color local binary patterns: An effective local image descriptor for color texture classification. J. Electron. Imaging 2017, 27, 011002. [Google Scholar] [CrossRef]
- Jeena Jacob, I.; Srinivasagan, K.G.; Jayapriya, K. Local oppugnant color texture pattern for image retrieval system. Pattern Recognit. Lett. 2014, 42, 72–78. [Google Scholar] [CrossRef]
- Qi, X.; Xiao, R.; Li, C.; Qiao, Y.; Guo, J.; Tang, X. Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2199–2213. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Feng, Q.; Wei, Y.; Sbert, M.; Lu, W.; Xu, Q. Pairwise cross pattern: A color-LBP descriptor for content-based image retrieval. In Proceedings of the Nineteenth Pacific Rim Conference on Multimedia, Hefei, China, 21–22 September 2018; pp. 290–300. [Google Scholar]
- Dubey, S.R.; Singh, S.K.; Singh, R.K. Multichannel decoded local binary patterns for content-based image retrieval. IEEE Trans. Image Process. 2016, 25, 4018–4032. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Guo, J.; Chamnongthai, K.; Prasetyo, H. Fusion of color histogram and LBP-based features for texture image retrieval and classification. Inf. Sci. 2017, 390, 95–111. [Google Scholar] [CrossRef]
- Somasekar, M.; Sakthivel Murugan, S. Feature extraction of underwater images by combining Fuzzy C-Mean color clustering and LBP texture analysis algorithm with empirical mode decomposition. In Proceedings of the Fourth International in Ocean Engineering (ICOE2018), Chennai, India, 19 February 2018; pp. 453–464. [Google Scholar]
- Singh, C.; Walia, E.; Kaur, K.P. Enhancing color image retrieval performance with feature fusion and non-linear support vector machine classifier. Optik 2018, 158, 127–141. [Google Scholar] [CrossRef]
- Feng, Q.; Hao, Q.; Sbert, M.; Yi, Y.; Wei, Y.; Dai, j. Local parallel cross pattern: A color texture descriptor for image retrieval. Sensors 2019, 19, 315. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Singhal, A.; Lall, B. Multi-channel local ternary pattern for content-based image retrieval. Pattern Anal. Appl. 2019, 22, 1–12. [Google Scholar] [CrossRef]
- Bianconi, F.; González, E. Counting local n-ary patterns. Pattern Recognit. Lett. 2018, 177, 24–29. [Google Scholar] [CrossRef]
- Reta, C.; Cantoral-Ceballos, J.A.; Solis-Moreno, I.; Gonzalez, J.A.; Alvarez-Vargas, R.; Delgadillo-Checa, N. Color uniformity descriptor: An efficient contextual color representation for image indexing and retrieval. J. Vis. Commun. Image Represent. 2018, 54, 39–50. [Google Scholar] [CrossRef]
- Wan, X.; Kuo, C.C. Content-based image retrieval using multiresolution histogram representation. In Proceedings of the SPIE: Digital Image Storage and Archiving Systems, Philadelphia, PA, USA, 21 November 1995; pp. 312–324. [Google Scholar]
- Liu, G.H.; Li, Z.Y.; Zhang, L.; Xu, Y. Image retrieval based on micro-structure descriptor. Pattern Recognit. 2011, 44, 2123–2133. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.H.; Yang, J.Y. Content-based image retrieval using color difference histogram. Pattern Recognit. 2013, 46, 188–198. [Google Scholar] [CrossRef]
- Wan, X.; Kuo, C.C. Color distribution analysis and quantization for image retrieval. In Proceedings of the SPIE: Storage and Retrieval for Still Image and Video Databases IV, San Jose, CA, USA, 13 March 1996; pp. 8–17. [Google Scholar]
- Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis; Wiley: New York, NY, USA, 1973; pp. 37–43. [Google Scholar]
- Wan, X.; Kuo, C.C. A new approach to image retrieval with hierarchical color clustering. IEEE Trans. Circ. Syst. Vid. 1998, 8, 628–643. [Google Scholar] [CrossRef]
- Hurvich, L.M.; Jameson, D. An opponent-process theory of color vision. Psychol. Rev. 1957, 64, 384–404. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Publishing House of Electronics Industry: Beijing, China, 2010; pp. 455–456. ISBN 9787121102073. [Google Scholar]
- Caltech-256 Image Set. Available online: http://www.vision.caltech.edu/Image_Datasets/Caltech256/ (accessed on 8 August 2017).
- Zhang, M.; Zhang, K.; Feng, Q.; Wang, J.; Kong, J. A novel image retrieval method based on hybrid information descriptors. J. Vis. Commun. Image Represent. 2014, 25, 1574–1587. [Google Scholar] [CrossRef]
- Standring, S. Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 41st ed.; Elsevier Limited: New York, NY, USA, 2016; pp. 686–708. ISBN 9780702068515. [Google Scholar]
- Guo, J.; Prasetyo, H.; Wang, N. Effective image retrieval system using dot-diffused block truncation coding features. IEEE Trans. Multimed. 2015, 17, 1576–1590. [Google Scholar] [CrossRef]
- Libor Spacek’s Facial Image Databases “Face 95 Image Database”. Available online: https://cswww.essex.ac.uk/mv/allfaces/faces95.html (accessed on 8 August 2014).
- ETH Zurich. Available online: http://www.vision.ee.ethz.ch/en/datasets/ (accessed on 8 August 2014).
- Zurich Buildings Database. Available online: http://www.vision.ee.ethz.ch/en/datasets/ (accessed on 8 August 2014).
- MIT Vision and Modeling Group. Available online: http://vismod.media.mit.edu/pub/ (accessed on 12 August 2014).
- KTH-TIPs2 Image Database. Available online: http://www.nada.kth.se/cvap/databases/kth-tips/download.html (accessed on 12 August 2014).
- Corel 1000 Image Database. Available online: http://wang.ist.psu.edu/docs/related/ (accessed on 12 August 2014).
- Guo, J.; Prasetyo, H. Content-based image retrieval using features extracted from halftoning-based block truncation coding. IEEE Trans. Image Process. 2015, 24, 1010–1024. [Google Scholar] [PubMed]
- Guo, J.; Prasetyo, H.; Su, H. Image indexing using the color and bit pattern feature fusion. J. Vis. Commun. Image Represent. 2013, 24, 1360–1379. [Google Scholar] [CrossRef]
- Orchard, M.T.; Bouman, C.A. Color quantization of Images. IEEE Trans. Signal. Process. 1991, 39, 2677–2690. [Google Scholar] [CrossRef]
- Kolesnikov, A.; Trichina, E.; Kauranne, T. Estimating the number of clusters in a numerical data set via quantization error modeling. Pattern Recognit. 2015, 48, 941–952. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, C.; Lin, C.; Hsu, C. Content-based color image retrieval using block truncation coding based on binary ant colony optimization. Symmetry 2019, 11, 21. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinvovich, A. Going deeper with convolutionals. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into convolutional nets. In Proceedings of the British Machine Vision Conference 2014, Nottinghamshire, UK, 1–5 September 2014. [Google Scholar]
- Napoletano, P. Hand-crafted vs. learned descriptors for color texture classification. In Proceedings of the International Workshop on Computational Color Imaging, Milan, Italy, 29–31 March 2017; pp. 259–271. [Google Scholar]
- Napoletano, P. Visual descriptors for content-based retrieval of remote-sensing images. Int. J. Romote Sens. 2018, 39, 1043–1376. [Google Scholar] [CrossRef]
- Yi, Y.; Zhou, W.; Liu, Q.; Luo, G.; Wang, J.; Fang, Y.; Zheng, C. Ordinal preserving matrix factorization for unsupervised feature selection. Signal. Process. Image Commun. 2018, 67, 118–131. [Google Scholar] [CrossRef]
- Cernadas, E.; Fernández-Delgado, M.; González-Rufino, E. Influence of normalization and color space to color texture classification. Pattern Recognit. 2017, 61, 120–138. [Google Scholar] [CrossRef]
- Yi, Y.; Wang, J.; Zhou, W.; Zheng, C.; Kong, J.; Qiao, S. Non-Negative matrix factorization with locality constrained adaptive graph. IEEE Trans. Circ. Syst. Vid. 2019. [Google Scholar] [CrossRef]
- Liu, S.; Wu, J.; Feng, L.; Qiao, H.; Liu, Y.; Lou, W.; Wang, W. Perceptual uniform descriptor and ranking on manifold for image retrieval. Inf. Sci. 2017, 424, 235–249. [Google Scholar] [CrossRef]
- Chum, O.; Mikulik, M.; Perdoch, M.; Matas, J. Total recall II: Query expansion revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 889–896. [Google Scholar]
Number | Name | Image Size | Class | Images in Each Class | Images Total | Format |
---|---|---|---|---|---|---|
1 | Face-95 | 180 × 200 | 72 | 20 | 1440 | JPG |
2 | ETHZ | 320 × 240 | 53 | 5 | 265 | BNG |
3 | ZuBuD | 640 × 480 | 201 | 5 | 1005 | JPG |
4 | VisTex | 128 × 128 | 40 | 16 | 640 | PPM |
5 | KTH-2a | 200 × 200 | 11 | 396/432 | 4608 | BNG |
6 | Corel-1000 | 384 × 256 or 256 × 384 | 10 | 100 | 1000 | JPG |
Method | Performance | Data Set | |||||
---|---|---|---|---|---|---|---|
Face-95 | ETHZ | ZuBuD | VisTex | KTH-2a | Corel-1000 | ||
LTCSP | (Aa*, Ab*) | (5, 5) | (3, 4) | (5, 5) | (4, 2) | (5, 3) | (3, 3) |
APR (%) | 94.31 | 90.57 | 85.63 | 98.56 | 98.96 | 83.94 | |
LTCSPuni | (Aa*, Ab*) | (5, 5) | (5, 3) | (5, 4) | (3, 2) | (4, 3) | (3, 2) |
APR (%) | 97.19 | 94.04 | 85.97 | 97.81 | 99.15 | 82.83 | |
LTCSPri | (Aa*, Ab*) | (5, 5) | (5, 3) | (5, 5) | (3, 3) | (4, 5) | (3, 2) |
APR (%) | 97.39 | 94.72 | 86.11 | 97.53 | 99.19 | 82.33 |
Method | Data Set | |||||
---|---|---|---|---|---|---|
Face-95 | ETHZ | ZuBuD | VisTex | KTH-2a | Corel-1000 | |
CH | 6085.91 | 6714.11 | 7483.35 | 6716.29 | 5858.41 | 6386.27 |
Lab-CVV | 1024.93 | 1430.97 | 1622.65 | 1358.55 | 1090.41 | 1276.06 |
CDH | 391.83 | 205.99 | 90.02 | 255.97 | 487.37 | 370.97 |
MSD | 385.29 | 200.00 | 83.31 | 249.44 | 481.69 | 365.06 |
LTCSP | 48.28 | 64.15 | 17.75 | 57.97 | 95.03 | 92.12 |
LTCSPuni | 48.28 | 64.22 | 17.78 | 58.77 | 95.07 | 102.21 |
LTCSPri | 48.28 | 64.22 | 17.75 | 58.77 | 94.88 | 102.21 |
Method | Performance | Date Set | |||||
---|---|---|---|---|---|---|---|
Face-95 | ETHZ | ZuBuD | VisTex | KTH-2a | Corel-1000 | ||
LBP | APR (%) | 63.45 | 49.28 | 61.45 | 93.37 | 91.56 | 71.86 |
ARR (%) | 31.73 | 49.28 | 61.45 | 58.36 | 2.19 | 7.19 | |
LBPuni | APR (%) | 58.25 | 44.38 | 54.63 | 90.83 | 88.56 | 68.94 |
ARR (%) | 29.12 | 44.38 | 54.63 | 56.77 | 2.11 | 6.89 | |
LBPri | APR (%) | 59.78 | 45.96 | 53.07 | 89.75 | 85.52 | 66.73 |
ARR (%) | 29.89 | 45.96 | 53.07 | 56.09 | 2.04 | 6.67 | |
LTCSP | APR (%) | 94.31 | 90.57 | 85.63 | 98.56 | 98.96 | 83.94 |
ARR (%) | 47.15 | 90.57 | 85.63 | 61.60 | 2.36 | 8.39 | |
LTCSPnui | APR (%) | 97.19 | 94.04 | 85.97 | 97.81 | 99.15 | 82.83 |
ARR (%) | 48.60 | 94.04 | 85.97 | 61.13 | 2.37 | 8.28 | |
LTCSPri | APR (%) | 97.39 | 94.72 | 86.11 | 97.53 | 99.19 | 82.33 |
ARR (%) | 48.69 | 94.72 | 86.11 | 60.96 | 2.37 | 8.23 |
Method | Performance | Date Set | |||||
---|---|---|---|---|---|---|---|
Face-95 | ETHZ | ZuBuD | VisTex | KTH-2a | Corel-1000 | ||
OCLBP | APR (%) | 64.40 | 42.57 | 56.42 | 92.42 | 90.62 | 68.86 |
ARR (%) | 32.20 | 42.57 | 56.42 | 57.76 | 2.16 | 6.89 | |
IOCLBP | APR (%) | 66.47 | 45.51 | 61.05 | 95.59 | 94.26 | 73.01 |
ARR (%) | 33.24 | 45.51 | 61.05 | 59.75 | 2.25 | 7.30 | |
maLBP | APR (%) | 67.94 | 55.17 | 59.46 | 95.80 | 92.25 | 74.45 |
ARR (%) | 33.97 | 55.17 | 59.46 | 59.87 | 2.20 | 7.45 | |
mdLBP | APR (%) | 72.97 | 61.43 | 61.85 | 97.05 | 94.88 | 76.02 |
ARR (%) | 36.49 | 61.43 | 61.85 | 60.65 | 2.26 | 7.60 | |
OC-LBP + CH | APR (%) | 80.50 | 78.04 | 63.98 | 92.20 | 95.31 | 74.94 |
ARR (%) | 40.25 | 78.04 | 63.98 | 57.63 | 2.27 | 7.49 | |
LPCP | APR (%) | 92.33 | 88.15 | 84.82 | 98.33 | 98.77 | 82.85 |
ARR (%) | 46.16 | 88.15 | 84.82 | 61.46 | 2.36 | 8.29 | |
LTCSP | APR (%) | 94.31 | 90.57 | 85.63 | 98.56 | 98.96 | 83.94 |
ARR (%) | 47.15 | 90.57 | 85.63 | 61.60 | 2.36 | 8.39 | |
LTCSPnui | APR (%) | 97.19 | 94.04 | 85.97 | 97.81 | 99.15 | 82.83 |
ARR (%) | 48.60 | 94.04 | 85.97 | 61.13 | 2.37 | 8.28 | |
LTCSPri | APR (%) | 97.39 | 94.72 | 86.11 | 97.53 | 99.19 | 82.33 |
ARR (%) | 48.69 | 94.72 | 86.11 | 60.96 | 2.37 | 8.23 |
Method | Feature Dimensionality (d) | Memory Cost (kB) |
---|---|---|
OCLBP | 1535 | 11.99 |
IOCLBP | 3072 | 24.00 |
maLBP | 1024 | 8.00 |
mdLBP | 2048 | 16.00 |
OC-LBP + CH | 108 | 0.84 |
LPCP | 844/760/844/616/592/424 | 6.59/5.94/6.59/4.81/4.63/3.31 |
LTCSP | 688/496/688/436/544/448 | 5.38/3.88/5.38/3.41/4.25/3.50 |
LTCSPnui | 491/347/419/203/299/203 | 3.84/2.71/3.27/1.59/2.34/1.56 |
LTCSPri | 468/324/468/288/396/180 | 3.66/2.53/3.66/2.25/3.09/1.41 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Wei, Y.; Yi, Y.; Hao, Q.; Dai, J. Local Ternary Cross Structure Pattern: A Color LBP Feature Extraction with Applications in CBIR. Appl. Sci. 2019, 9, 2211. https://doi.org/10.3390/app9112211
Feng Q, Wei Y, Yi Y, Hao Q, Dai J. Local Ternary Cross Structure Pattern: A Color LBP Feature Extraction with Applications in CBIR. Applied Sciences. 2019; 9(11):2211. https://doi.org/10.3390/app9112211
Chicago/Turabian StyleFeng, Qinghe, Ying Wei, Yugen Yi, Qiaohong Hao, and Jiangyan Dai. 2019. "Local Ternary Cross Structure Pattern: A Color LBP Feature Extraction with Applications in CBIR" Applied Sciences 9, no. 11: 2211. https://doi.org/10.3390/app9112211
APA StyleFeng, Q., Wei, Y., Yi, Y., Hao, Q., & Dai, J. (2019). Local Ternary Cross Structure Pattern: A Color LBP Feature Extraction with Applications in CBIR. Applied Sciences, 9(11), 2211. https://doi.org/10.3390/app9112211