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Featured Application: The addition of the BADCy resin nanoparticles can accelerate the formation
of the microgels in the BADCy resin prepolymer. The kinetic paraments of systems with different
BADCy resin nanoparticles contents were obtained using the Avrami equation and Arrhenius
equation and explained the formation and growth of the microgels.

Abstract: Bisphenol A dicyanate (BADCy) resin nanoparticles were synthesized by precipitation
polymerization and used to modulate the microstructure of the BADCy resin matrix. A microscopic
mechanism model was used to characterize the curing process of BADCy resin systems with different
contents of the prepared nanoparticles. Due to the curing process of the thermosetting resin being
analogous to the crystallization process of the polymer, the Avrami equation was used to analyze the
microscopic mechanism of the curing process. The reactive functional groups, structure, and size of
the prepared BADCy resin nanoparticles were characterized by FT-IR, SEM, and TEM, respectively.
The kinetic parameters of different systems were then obtained using the Avrami equation, and
they adequately explained the microscopic mechanism of the curing process. The results showed
that the Avrami equation effectively described the formation and growth of gel particles during the
curing process of the BADCy resins. The addition of nanoparticles can affect the curing behavior and
curing rate. Since the reaction between the BADCy resin nanoparticles and the matrix is dominant,
the formation process of the gel particles was neglected. This phenomenon can be understood
as the added BADCy resin nanoparticles replacing the formation of gel particles. The reasons for
accelerated curing were analyzed from the perspective of thermodynamics and kinetics. Besides
this, the Arrhenius equation for non-isothermal conditions correctly accounted for the change in the
cross-linked mechanism in the late-stage curing process. A comparison of the theoretical prediction
with the experimental data shows that the Avrami theory of phase change can simulate the curing
kinetics of different BADCy resin systems well and explain the effects of BADCy resin nanoparticles
on the formation of the microstructure.

Keywords: bisphenol a dicyanate resin; Avrami equation; Arrhenius equation; curing behavior

1. Introduction

Cyanate ester (CE) resins are novel high-performance thermosetting resins similar to epoxy (EP)
and bimaleimide (BMI) that have been developed in recent decades [1]. CE monomers contain two

Appl. Sci. 2019, 9, 2365; doi:10.3390/app9112365 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-0381-271X
http://www.mdpi.com/2076-3417/9/11/2365?type=check_update&version=1
http://dx.doi.org/10.3390/app9112365
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2365 2 of 15

or more -OCN functional groups which can form a highly symmetrical triazine ring structure after
the curing reaction [2]. It is the chemical nature of the CE monomers and the unique structure of the
cured resin that give rise to a series of properties, such as excellent mechanical properties, a high glass
transition temperature, low contractibility rate, low water absorption, and ultralow dielectric constant
and dielectric loss values [3–6]. Compared with other thermosetting resins, CEs have excellent overall
performance. Therefore, CEs are a proven replacement for thermosets, such as epoxy or polyimide, in
applications in the aerospace, electronics, and communications industries [4,7–11].

CE monomers polymerize via a ring-forming reaction under the conditions of heating or catalysts.
Simmon first proposed the self-polymerization mechanism of CE resins in the absence of a catalyst [12].
The curing reaction of the CE resins was initiated and catalyzed by impurities in the monomer or
moisture in the environment. However, this process proceeds with difficulty when the purity of
the monomer is high [13]. Active hydrogen containing compounds, such as phenols, amines, and
imidazole, in concert with metal ions can catalyze the curing of CE resins [14]. This reaction is depicted
in Figure 1. A range of such metal ions has been reported, including chromium [15], manganese [16],
iron [17], cobalt [18], tin [19], zinc [20], and copper [21]. However, the metal ion compounds have
poor solubility in the CE resins and promote the hydrolysis reaction of the triazine ring as well; as a
result, these metal salts are rarely used as a catalyst. Alternative catalytic systems have always been an
important direction of research. At present, room temperature ionic liquids (RTILs) and organically
modified layered silicate have been proved to accelerate CE resin curing [22–24].
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Previous studies demonstrated that the Avrami equation considerably illustrated the isothermal and 
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Physical and structural changes affect the polymerization kinetics and the structure. Therefore, the
identification of relevant kinetic models can provide insight into the curing process of thermosetting resin
systems. In the curing process, identifying each step of the chemical reaction is very difficult. Especially,
in the late curing stage, the diffusion factor plays a controlling role. Thus, the phenomenological
model, rather than the mechanism model, is used [25]. The Kamal kinetic model considers both the
autocatalytic behavior and the n-stage reaction, and it can be used to describe the curing process of
thermosetting resins precisely [26]. However, these models are limited to describing the curing reaction
process and do not give specific physical meaning to the parameters. Previous studies demonstrated
that the Avrami equation considerably illustrated the isothermal and non-isothermal curing behavior
of thermosetting resins [25,27–29].

The essence of thermosetting resin curing is the cross-linked chemical reaction of linear polymer
chains. Meanwhile, this is accompanied by microphase separation, the shift of the glass transition, and
other processes, eventually forming a three-dimensional network structure. It is generally believed that
the crystallization process of the polymer includes two processes of nucleation and growth [30]. The
first step is the formation of crystal nuclei. Due to local fluctuations in the parent phase, the local free
energy increases, resulting in a small range of new phases (clusters). The clusters can continue to grow
and become macroscopic crystals, which can also dissolve and disappear. When the cluster reaches a
certain size—that is, a critical size—it becomes a crystal nucleus. The second step is the growth of the
crystal nucleus, which is characterized by the diffusion and stacking of the polymer segment to the
nucleus. In terms of the microscopic mechanism, the curing process of the thermosetting resins is quite
similar to the crystallization of polymers. The curing process is a chemical cross-linked process, and
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crystallization can be seen as a physical cross-linked process. In the process of the cross-linking of
linear polymers, there are many molecular aggregates or high-average-molecular-mass particles [31].
These microgel particles are stably dispersed in the low molecular oligomers. As the curing reaction
progresses, the number of microgel particles increases, their volume becomes larger, and they collide
with each other, resulting in the viscosity of the system increasing. Finally, the initial phase is wrapped
by the new phase to undergo two-phase conversion, with the result being that the gel phase becomes a
continuous phase. The formation of microgel particles can be analogized to the nucleation process, and
the volume increase can be analogized to the growth of crystal nuclei. In summary, the Avrami equation
based on phase transition theory can be applied to study the curing kinetics of thermosetting resins.

In this work, we prepared bisphenol A dicyanate (BADCy) resin nanoparticles using BADCy
monomer by precipitation polymerization. The nanoparticles were dispersed in the prepolymer
to study changes in the formation process of the microgels, in which the nanoparticles and matrix
belonged to the same polymer family but had different chemical structure [32]. The BADCy prepolymer
was synthesized in our laboratory. The added BADCy resin nanoparticles were equivalent to the
microgels, and their function was to serve as a reaction site, inducing curing of the BADCy matrix.
This process is shown in Figure 2. The dynamic curing behavior of the BADCy resin systems was
studied and the kinetic parameters were obtained by using the modified Avrami equation.
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matrix curing.

2. Materials and Methods

2.1. Reagents and Materials

BADCy monomer (white crystalline powder, 99% purity) was purchased from Yangzhou Techia
Material Co., Ltd. (Yangzhou, China). Zinc acetylacetonate hydrate (97% purity) and nonylphenol
were purchased from Aladdin (Shanghai, China) and Macklin (Shanghai, China), respectively. Xylene
was obtained from Beijing Chemical Co., Ltd. (Beijing, China). All were used as received.

2.2. Preparation of BADCy Resin Nanoparticles

A certain mass ratio (5:100) of xylene and BADCy monomer was added to a three-mouth flask,
and stirred at 100 ◦C until the BADCy monomer totally dissolved. Then, zinc acetylacetonate hydrate
and nonylphenol (two thousandths of the mass of the monomer) as catalyst were dissolved in xylene
and quickly added to the three-mouth flask. The mixture was heated at 100 ◦C, and stirred fast for
1 h. The temperature was raised to 130 ◦C and heating was continued for 3.5 h. The BADCy resin
nanoparticles were obtained after centrifugation, washing, and decompression drying.



Appl. Sci. 2019, 9, 2365 4 of 15

2.3. Preparation of BADCy Resin Prepolymer

First, the BADCy monomer was melted at 100 ◦C. Second, the moisture was removed under
decompression at 80 ◦C. Finally, the liquid was heated at 200 ◦C for 2 h and the temperature was cooled
to 180 ◦C and heating was continued for 8 h until a clear homogeneous melt was obtained. The viscous
melt was defined as the BADCy resin prepolymer.

2.4. Characterization and Measurements

Fourier transform infrared (FT-IR) spectra were measured between 400 and 4000 cm−1 using
a Nicolet 8700 FT-IR spectrometer (Thermo Fisher Scientific, Shanghai, China). For each spectrum,
a resolution of 4 cm−1, 32 scanning times, and a KBr table was used. Sample measurements were
recorded at room temperature.

Scanning electron microscopy (SEM) was carried out using an S-4700 cold-field scanning electron
microscope (Hitachi, Japan). The accelerating voltage was 20 kV and the samples were coated with gold.

Transmission electron microscopy (TEM) was performed using an HT7700 biological transmission
electron microscope (Hitachi, Japan).

Differential scanning calorimetry (DSC) was carried out using a TA Instruments DSC25 calorimeter
(TA Instruments, New Castle, DE, USA). Each sample was tested at 5, 10, 15, and 20 ◦C/min, over a
range of 50-380 ◦C and with a N2 flow of 50 mL/min.

3. Results and Discussion

3.1. Characterization of the BADCy Resin Microparticles

The FT-IR spectra curves of the BADCy monomer and BADCy resin nanoparticles are shown in
Figure 3, from which the molecular structure characteristics of the BADCy monomer and BADCy resin
nanoparticle were ascertained. Compared with the BADCy monomer, the most apparent differences are
the new peaks at 1568 and 1369 cm−1. These two new peaks are due to the triazine ring structure formed
by the monomer under the conditions of catalysts and heating [33]. Besides this, the -OCN functional
group of the BADCy resin nanoparticles at 2270 cm−1 is reduced compared with the monomer because
the chemistry mechanism of the reaction is a trimerization of three -OCN groups into a triazine ring.
According to the result of the FT-IR spectra, the -OCN functional group peak at 2270 cm−1 does not
completely disappear. It can be seen that the prepared BADCy resin nanoparticles still have an active
-OCN functional group and can continue to react. Figure 4 shows a dynamic DSC curve of the BADCy
resin nanoparticles and the matrix, indicating that the nanoparticles are still exotherms during the
dynamic heating process, but with less heat than the matrix. It can also be concluded that the prepared
BADCy resin nanoparticles have reactivity.

The structure and size of the prepared BADCy resin nanoparticles were characterized by SEM (a)
and TEM (b) as shown in Figure 5. After the reaction, the mixed solution was successively subjected
to centrifugation, washing, and vacuum drying to obtain a pale yellow solid powder. The powders
were subjected to SEM observation. From the SEM images of the BADCy resin nanoparticles, a large
quantity of aggregates (micron-sized) was observed. A single aggregation particle ranged in size from
0.2 to 0.3 µm. The powder was then dispersed in an ethanol solvent via ultrasonic dispersion. A drop
of stable dispersion was dropped on a copper grid, dried, and observed using the transmission electron
microscope. It can be seen that the BADCy resin nanoparticles ranged in size from 40 to 60 nm and
there was no aggregation.
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From the above results, when the reaction solution was subjected to post-treatment, especially
the drying process, the nanoparticles were aggregated and nano-sized particles became micro-sized.
During the dying process, the nano-sized particles tended to aggregate as the solvent evaporated until
a stable size was reached.
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3.2. Cure Acceleration

Figure 6 shows the results of the 10 ◦C/min temperature ramp dynamic DSC experiments in which
the prepared BADCy resin nanoparticles were added into the neat BADCy prepolymer at various
contents (neat, 4, 8, and 10 wt%). It can be seen that the added BADCy resin nanoparticles had a strong
effect on the curing temperature and enthalpy changes. The curves reveal a decrease in the curing
peak temperature, Tp, as well as an increase in the curing enthalpy, ∆H, with the addition of BADCy
resin nanoparticles (Table 1). This indicates that a range of BADCy resin nanoparticles can be used for
accelerating curing and improving the degree of curing. This conclusion is consistent with the FT-IR
spectra. The initially polymerized nanoparticles still have reactive functional groups, and can directly
initiate the self-polymerization reaction. Compared with the 4 and 8 wt% systems, the curing enthalpy,
∆H, of the 10 wt% system is reduced. This is because the excessive quantity of nanoparticles results in
the distance between the nanoparticles becoming small. The nanoparticles react with the matrix and
also react with other nanoparticles. The heat of reaction between the nanoparticles themselves is less
than that between the particles and the matrix. Therefore, the total exotherm is reduced.
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Table 1. Thermal characteristics of samples. BADCy: Bisphenol A dicyanate.

BADCy Resin Nanoparticles
wt%

Tonset
◦C

Tpeak
◦C

∆H
J/g

0 248 308 303.19
4 209 238 423.16
8 212 235 441.15
10 201 229 370.60

The formation of microgel particles can occur from a thermodynamic point of view. Analogous
to the thermodynamic equations of the crystallization process, the thermodynamic equations of the
microgel particles can be expressed as:

∆G = Gcure −Gmelt, (1)

where ∆G is the change in Gibbs free energy during the curing process and the curing reaction occurs
when the ∆G is negative. At the beginning of the curing reaction, the gel particles have a small volume
and a large specific surface area. If the surface effect is considered, the total free energy of the system
can be accurately expressed as:

Gcure = Gbulk +
∑
σA, (2)

where Gbulk is the change in the matrix free energy without considering the surface effect, σ is the surface
free energy coefficient, and A is the surface area of the gel particles. Therefore, the thermodynamic
equation (Equation (1)) of the curing process can be rewritten as:

∆G = ∆Gc +
∑
σA. (3)

Here, ∆Gc represents the free energy change of the matrix. ∆G is a negative value when the
reaction temperature reaches curing conditions. Since the surface free energy coefficient, A, is a positive
value, only at the condition of the curing temperature, ∆Gc, is a negative value, making ∆G still less
than zero. Therefore, curing of the resin system will proceed. Figure 7 is a schematic illustration of the
free energy changes in the gel particle formation and growth stages.

During the heating process of the resin systems, ∆G is greater than zero before the formation
of the thermodynamically stable gel particles, and ∆G has a maximum value. This stage is mainly a
cross-linked reaction of polymer segments and is primarily controlled by kinetic factors. Once the gel
particles are formed, the growth of the gel particles can reduce the free energy of the systems and the
gel particles enable automatic growth. At this stage, the viscosity of the system increases due to the
growth of the gel particles, and the movement of the molecular segments is limited, so it is mainly
controlled by the diffusion factors. In our study, when nanoparticles were added into the matrix,
there were two reaction processes. The first is that the matrix itself undergoes a curing reaction which
includes the formation and growth of gel particles. The second is the reaction of the particles with the
matrix, which only appears as the growth of the gel particles. These two reaction processes are carried
out simultaneously. However, the first case requires overcoming a considerable surface energy barrier
to nucleate. In the second case, since the matrix is heterogeneous, the surface energy barrier at the time
of nucleation of the gel particles can be effectively reduced, resulting in preferential formation of the
gel particle cores at these uneven places. These two cases are similar to homogeneous nucleation and
heterogeneous nucleation.
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3.3. Kinetic Analysis Using the Avrami Equation

The prepared BADCy resin nanoparticles were added into the BADCy prepolymer at contents
of neat, 4, 8, and 10 wt%. The nanoparticles were dispersed evenly in the matrix under high-sheer
conditions. The DSC characterization was performed based on the following assumptions. First, the
nanoparticles do not react with the matrix during the mixing. Second, the absolute area under the
curve is proportional to the degree of cure, and α is defined as the degree of cure at any time, t:

α =
∆H
∆H0

, (4)

where ∆H is the enthalpy changes at any points, and ∆H0 is the total enthalpy change during the
heating process.

Representative DSC curves are shown in Figure 8, in which (a), (b), (c), and (d) represent the neat,
4, 8, and 10 wt% system, respectively. It can be seen that the curing temperature is proportional to the
rate of temperature increase for the same system. Also, the onset curing temperature decreases as the
BADCy resin nanoparticle content increases.

Figure 9 is obtained from the integration of Figure 8 and the curves of the degree of cure as a
function of temperature can be obtained correspondingly in Figure 9. It shows that the degree of cure
is inversely proportional to the rate of temperature increase for the same system. This is because a fast
rate of temperature rise results in an incomplete curing reaction. At the same temperature, the degree
of cure is proportional to the content of nanoparticles. This conclusion again demonstrates that the
BADCy resin nanoparticles have a promoting effect on the matrix.
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The Avrami equation is:
α = 1− exp(−ktn), (5)

where α is the relative crystallinity, n is the Avrami index reflecting the nucleation and growth
mechanism, and k is the rate constant. Ozawa improved the Avrami equation to enable it to be used
for non-isothermal crystallization kinetics [34]. Assuming that non-isothermal crystallization consists
of innumerable tiny isothermal crystallization steps, the Avrami equation can be modified to:

α = 1− exp(−k(T)/φm), (6)

or
ln[− ln(1− α)] = ln k(T) −m lnφ, (7)

where the rate constant, k, is a function of T, φ is the heating rate, and m is the Ozawa index.
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When Equation (7) is used to describe the curing process of thermosetting resins, α is the relative
degree of cure, k is the curing rate constant, and n is the relative index describing the curing mechanism.
At a given temperature, n is a constant. Equation (6) can be written as:

1−α = exp(−k′Rn), (8)

where α is a function of temperature, R is the heating rate, and k′ is a function of temperature.
Equation (8) also can be written as:

log[− ln(1− α)] = log k′ − n log R. (9)

Equation (9) shows that the curing kinetic parameters, k′ and n, can be determined according to
the degrees of curing at different heating rates. At a given temperature, a plot of log[−ln(1−α)] on logR
should be a straight line with a slope of −n and an intercept of logk′.

Figure 10 is a graph made according to Equation (9) and Figure 9. The curves show an excellent
linear relationship over the curing temperature range, which is consistent with the conclusions obtained
from Equation (9). The result indicates that the modified Avrami equation can be used to describe the
non-isothermal curing process of the BADCy resin systems. A series of rate constants and indices are
listed in Tables 2 and 3.
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Table 2. Kinetic parameters obtained from Equation (9) at different temperatures under dynamic
conditions for the neat system.

Temperature/◦C k′/minn
·K−n n

270 4.26 ± 1.51 1.42 ± 0.17
280 7.41 ± 1.47 1.46 ± 0.17
290 13.18 ± 1.45 1.50 ± 0.11
300 20.42 ± 1.35 1.48 ± 0.12
310 26.30 ± 1.32 1.40 ± 0.11
320 26.92 ± 1.38 1.22 ± 0.14

Table 3. Kinetic parameters obtained from Equation (9) at different temperatures under dynamic
conditions for the 4, 8, and 10 wt% systems.

T/◦C 4 wt% 8 wt% 10 wt%

k′/minn
·K−n n k′/minn

·K−n n k′/minn
·K−n n

200 0.74 ± 1.31 1.46 ± 0.03 0.72 ± 1.23 1.34 ± 0.09 0.78 ± 2.14 1.15 ± 0.04
210 1.35 ± 1.17 1.50 ± 0.07 1.90 ± 1.26 1.46 ± 0.10 2.14 ± 1.10 1.25 ± 0.03
220 2.51 ± 1.10 1.55 ± 0.11 6.31 ± 1.10 1.61 ± 0.04 4.57 ± 1.20 1.21 ± 0.08
230 4.47 ± 1.15 1.59 ± 0.06 10.47 ± 1.26 1.52 ± 0.10 7.07 ± 1.17 1.08 ± 0.07
240 6.31 ± 1.07 1.41 ± 0.03 11.71 ± 1.20 1.31 ± 0.07 7.41 ± 1.17 0.84 ± 0.07
250 7.24 ± 1.02 1.17 ± 0.01 13.08 ± 1.51 1.03 ± 0.16 8.32 ± 1.09 0.74 ± 0.04
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The following conclusions can be drawn from the above-described fitting straight line and data.
First, k′ is a function of the temperature and is proportional to the temperature. Second, as can be seen
from Tables 2 and 3, the n of all the systems shows a trend of increasing first and then decreasing.
When the Avrami equation is used to study the curing of thermosetting resins, n is the scale for the
formation and growth of microgel particles and will vary with the curing mechanism. An increase in
the value of n represents the formation and initial growth of the microgel particles. However, in the
late stage of curing, since the microgel particles are difficult to form and the growth of the gel particles
is limited, the value of n is lowered.

When the prepared BADCy resin nanoparticles were added into the matrix for curing, there
were two processes. First, the matrix still underwent the formation and growth of microgel particles.
Second, the added nanoparticles reacted with the matrix and appeared to undergo continuous growth
in size. According to the results of the curing acceleration, it can be concluded that the reaction between
the BADCy resin nanoparticles and the matrix is dominant. It is worth noting that the temperature
corresponding to the change in n is markedly different. The turning points of the neat, 4, 8, and 10 wt%
systems are 300, 240, 230, and 220 ◦C, respectively. This trend indicates that the mass content of the
added BADCy resin nanoparticles is inversely proportional to the gelation time. Therefore, the added
BADCy resin nanoparticles are capable of reconstructing the microscopic cross-linked network of the
BADCy resin matrix.

A difference in the trend of n means that the curing mechanism may change at the turning point.
After all, curing and crystallization are not exactly the same. Although the formation and growth of the
microgels during the curing process cannot give relatively clear qualitative information, like polymers’
crystallization, the slope of the line is the scale of the Avrami index, n, so it can be considered that this
turning point explains the curing process with significant changes in the cross-linked mechanism. In
the later stage of the curing process, the viscosity of the resin system shows an extreme increase, and
the movement of the polymer segments is limited by the viscosity of the system. Therefore, the growth
of microgels in the late curing process is probably affected by diffusion factors. To better illustrate this
problem, a model of diffusion control was used for analysis.

We assumed that the relationship between the rate constant, k(T), and temperature, (1/T), is
consistent with the Arrhenius equation:

k(T) = A exp
−Ea

R0T
. (10)

Equation (10) can be written as:

ln k = ln A−
Ea

RT
, (11)

where Ea is the apparent activation energy, R is the molar gas constant, and A is a pre-exponential factor.
Figure 11 is a plot of lnk versus 1/T. It can be seen that the Arrhenius fitting plots of all the systems

have an obvious turning point. The slope is a measure of the activation energy. It can be concluded that
the activation energy in the low temperature stage is higher than that in the high-temperature stage.
This indicates that the energy required for the formation and growth of the microgel particles has
changed markedly. This phenomenon is common in heterogeneous reactions under diffusion-limited
conditions [35,36]. It further indicates that the diffusion factor is dominant in the late stage of the curing
reaction. During the curing process, the quantity of microgels increases, and when a higher temperature
is reached, a mass transfer restriction mechanism is established, and the microgels aggregate with each
other, so that phase inversion occurs. This point of change is the gel point. After gelation, the resin
changes from the original viscous liquid to a semi-solid elastomeric gel and loses fluidity.
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4. Conclusions

The BADCy resin nanoparticles prepared by precipitation polymerization can accelerate curing
and reconstruct the microscopic network structure. From the results of dynamic DSC, the resin systems
containing the BADCy resin nanoparticles had a markedly lower curing temperature than the neat
system, indicating that the BADCy resin nanoparticles can accelerate the curing of the BADCy resin
matrix. From a thermodynamic point of view, since the Gibbs free energy between the particles
and the substrate is low, the reaction proceeds more easily, thereby accelerating the progress of the
curing reaction. The kinetic parameters determined by the Avrami equation were used to analyze the
evolution of the microgels and indicate that the micromechanism model can accurately describe the
formation and growth of microgel particles during the curing process of BADCy resin.

The change in the curing mechanism was further confirmed by the Arrhenius equation. There
was also a turning point in the fitting curve, and the activation energy in the low temperature stage
was higher than that in the high temperature stage. This phenomenon indicates that the diffusion
factor dominates in the late stage of the curing reaction.
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