Special Issue on Sciences in Heat Pump and Refrigeration
1. Introduction
2. Fundamental Process, Components, and Mechanical Vapor Compression
3. Next Generation Heat Pump/Refrigeration
4. Related Studies and Future Aspects
Funding
Acknowledgments
Conflicts of Interest
References
- Mohanraj, M.; Jayaraj, S.; Muraleedharan, C. Environment friendly alternatives to halogenated refrigerants—A review. Int. J. Greenh. Gas Control 2009, 3, 108–119. [Google Scholar] [CrossRef]
- Johnson, E.P. Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources. Energy Policy 2011, 39, 1369–1381. [Google Scholar] [CrossRef]
- Zhao, L.; Zeng, W.; Yuan, Z. Reduction of potential greenhouse gas emissions of room air-conditioner refrigerants: A life cycle carbon footprint analysis. J. Clean. Prod. 2015, 100, 262–268. [Google Scholar] [CrossRef]
- Brown, J.S. HFOs New, Low Global Warming Potential Refrigerants. ASHRAE J. 2009, 51, 22–29. [Google Scholar]
- Bashar, M.K.; Nakamura, K.; Kariya, K.; Miyara, A. Experimental Study of Condensation Heat Transfer and Pressure Drop inside a Small Diameter Microfin and Smooth Tube at Low Mass Flux Condition. Appl. Sci. 2018, 8, 2146. [Google Scholar] [CrossRef]
- Inoue, N.; Hirose, M.; Jige, D.; Ichinose, J. Correlation for Condensation Heat Transfer in a 4.0 mm Smooth Tube and Relationship with R1234ze(E), R404A, and R290. Appl. Sci. 2018, 8, 2267. [Google Scholar] [CrossRef]
- Yaningsih, I.; Wijayanta, A.; Miyazaki, T.; Koyama, S. Impact of blockage ratio on thermal performance of delta-winglet vortex generators. Appl. Sci. 2018, 8, 181. [Google Scholar] [CrossRef]
- Liang, C.; Tong, X.; Lei, T.; Li, Z.; Wu, G. Optimal Design of an Air-to-Air Heat Exchanger with Cross-Corrugated Triangular Ducts by Using a Particle Swarm Optimization Algorithm. Appl. Sci. 2017, 7, 554. [Google Scholar] [CrossRef]
- Hu, W.; Jia, P.; Nie, J.; Gao, Y.; Zhang, Q. A Fast Prediction Model for Heat Transfer of Hot-Wall Heat Exchanger Based on Analytical Solution. Appl. Sci. 2018, 9, 72. [Google Scholar] [CrossRef]
- Seong, K.; Lee, D.; Lee, J. The Effects of Wet Compression by the Electronic Expansion Valve Opening on the Performance of a Heat Pump System. Appl. Sci. 2017, 7, 248. [Google Scholar] [CrossRef]
- Llopis, R.; Sanchez, D.; Cabello, R.; Catalan-Gil, J.; Nebot-Andres, L. Conversion of a Direct to an Indirect Refrigeration System at Medium Temperature Using R-134a and R-507A: An Energy Impact Analysis. Appl. Sci. 2018, 8, 247. [Google Scholar] [CrossRef]
- Chang, S.; Chen, J.; Shi, L. Using Thermal Shock to Inhibit Biofilm Formation in the Treated Sewage Source Heat Pump Systems. Appl. Sci. 2017, 7, 343. [Google Scholar] [CrossRef]
- Yokoyama, R.; Ohkura, M.; Nakamata, T.; Wakui, T. Numerical Analysis for Performance Evaluation of a Multi-Functional CO2 Heat Pump Water Heating System. Appl. Sci. 2018, 8, 1829. [Google Scholar] [CrossRef]
- Galindo Luna, Y.; Gómez Franco, W.; Dehesa Carrasco, U.; Romero Domínguez, R.; Jiménez García, J. Integration of the Experimental Results of a Parabolic Trough Collector (PTC) Solar Plant to an Absorption Air-Conditioning System. Appl. Sci. 2018, 8, 2163. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Chen, E.; Jing, Y. Off-Design Modeling and Simulation of Solar Absorption-Subcooled Compression Hybrid Cooling System. Appl. Sci. 2018, 8, 2612. [Google Scholar] [CrossRef]
- Wang, J.; Shang, S.; Li, X.; Wang, B.; Wu, W.; Shi, W. Dynamic Performance Analysis for an Absorption Chiller under Different Working Conditions. Appl. Sci. 2017, 7, 797. [Google Scholar] [CrossRef]
- Maeda, S.; Thu, K.; Maruyama, T.; Miyazaki, T. Critical Review on the Developments and Future Aspects of Adsorption Heat Pumps for Automobile Air Conditioning. Appl. Sci. 2018, 8, 2061. [Google Scholar] [CrossRef]
- Grekova, A.; Gordeeva, L.; Sapienza, A.; Aristov, Y. Adsorption Transformation of Heat: The Applicability in Various Climatic Zones of the Russian Federation. Appl. Sci. 2019, 9, 139. [Google Scholar] [CrossRef]
- Zwarycz-Makles, K.; Majorkowska-Mech, D. Gear and Runge–Kutta Numerical Discretization Methods in Differential Equations of Adsorption in Adsorption Heat Pump. Appl. Sci. 2018, 8, 2437. [Google Scholar] [CrossRef]
- Farikhah, I.; Ueda, Y. Numerical Calculation of the Performance of a Thermoacoustic System with Engine and Cooler Stacks in a Looped Tube. Appl. Sci. 2017, 7, 672. [Google Scholar] [CrossRef]
- Dai, N.; Xu, X.; Li, S.; Zhang, Z. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System. Appl. Sci. 2017, 7, 197. [Google Scholar] [CrossRef]
- Hasan, M.; Mahadi, M.; Miyazaki, T.; Koyama, S.; Thu, K. Exergy Analysis of Serpentine Thermosyphon Solar Water Heater. Appl. Sci. 2018, 8, 391. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.; Kang, M.; Choi, H. Field Experiments to Evaluate Thermal Performance of Energy Slabs with Different Installation Conditions. Appl. Sci. 2018, 8, 2214. [Google Scholar] [CrossRef]
- Park, M. A Study on the Improvement Effect and Field Applicability of the Deep Soft Ground by Ground Heating Method. Appl. Sci. 2018, 8, 852. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z.; Fu, B.; Chen, Y. Influence of Frost Growth and Migration in Cryogenic Heat Exchanger on Air Refrigerator. Appl. Sci. 2019, 9, 753. [Google Scholar] [CrossRef]
- Cattani, L.; Magrini, A.; Cattani, P. Water Extraction from Air by Refrigeration—Experimental Results from an Integrated System Application. Appl. Sci. 2018, 8, 2262. [Google Scholar] [CrossRef]
- Lee, H.K.; Choi, K.H.; Yoon, J.I.; Moon, C.G.; Jeon, M.J.; Lee, J.H.; Lee, K.S.; Son, C.H. Performance Characteristics of a Seawater Ice-Making Device Using a Scraped Surface Double Tube Evaporator. Appl. Sci. 2018, 8, 2063. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyazaki, T. Special Issue on Sciences in Heat Pump and Refrigeration. Appl. Sci. 2019, 9, 2385. https://doi.org/10.3390/app9112385
Miyazaki T. Special Issue on Sciences in Heat Pump and Refrigeration. Applied Sciences. 2019; 9(11):2385. https://doi.org/10.3390/app9112385
Chicago/Turabian StyleMiyazaki, Takahiko. 2019. "Special Issue on Sciences in Heat Pump and Refrigeration" Applied Sciences 9, no. 11: 2385. https://doi.org/10.3390/app9112385
APA StyleMiyazaki, T. (2019). Special Issue on Sciences in Heat Pump and Refrigeration. Applied Sciences, 9(11), 2385. https://doi.org/10.3390/app9112385