Heating, Ventilation, and Air Conditioning System Optimization Control Strategy Involving Fan Coil Unit Temperature Control
Abstract
:1. Introduction
2. Research Background
2.1. Dynamic FCU Temperature Settings
2.2. Indoor Heat Demand Conversion
- The change in temperature settings (F1) is used to understand the required RT for a user, as presented in Equation (5). A negative F1 value (e.g., a change in temperature setting from 26 °C to 24 °C) indicates that the user feels hot, whereas a positive F1 value indicates that the user feels cold:F1 = Ts (t) − Ts (t − 1)In Equation (5), t is the sampling time.
- The target temperature error (F2) is the difference between Ti and Ts, and it represents indoor cooling level, as presented in Equation (6). A negative F2 value (e.g., an actual indoor temperature of 24 °C and set temperature of 26 °C) signifies overcooling, whereas a positive F2 value signifies undercooling. Additionally, wind speed is used to determine whether the FCU is turned on or off:F2 = Ti – TsIn Equation (6), N represents a negative value and P represents a positive value.
2.3. Optimization Control Strategy for Single Cooling Machine of Chilled Water System
2.3.1. Coding
2.3.2. Fitness Value Calculation and Reproduction Mechanism
2.3.3. Crossover
2.3.4. Mutation
3. Case Study
- 1.
- FCU data collection
- 2.
- Chilled water system power consumption monitoring
- 3.
- Chilled water system flow and temperature monitoring
- 4.
- Chilled water system ON/OFF and frequency change control
- 5.
- FCU temperature control
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pe’rez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Mathews, E.H.; Botha, C.P.; Arndt, D.C.; Malan, A. HVAC control strategies to enhance comfort and minimize energy usage. Energy Build. 2001, 33, 853–863. [Google Scholar] [CrossRef]
- Chow, T.T.; Zhang, G.Q.; Lin, Z.; Song, C.L. Global optimization of absorption chiller system by genetic algorithm and neural network. Energy Build. 2002, 34, 103–109. [Google Scholar] [CrossRef]
- Browne, M.W.; Bansal, P.K. Transient simulation of vapour-compression packaged liquid chillers. Int. J. Refrig. 2002, 25, 597–610. [Google Scholar] [CrossRef]
- Yu, F.W.; Chan, K.T. Optimization of water-cooled chiller system with load-based speed control. Appl. Energy 2008, 85, 931–950. [Google Scholar] [CrossRef]
- Yoon, J.H.; Baldick, R.; Novoselac, A. Dynamic demand response controller based on real-time retail price for residential buildings. IEEE Trans. Smart Grid 2014, 5, 121–129. [Google Scholar] [CrossRef]
- Wang, Y.; Kuckelkorn, J.; Zhao, F.-Y.; Liu, D.; Kirschbaum, A.; Zhang, J.-L. Evaluation on classroom thermal comfort and energy performance of passive school by optimizing HVAC control systems. Build. Environ. 2015, 89, 86–106. [Google Scholar] [CrossRef]
- Fanger, P.O.; Toftum, J. Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy Build. 2002, 34, 533–536. [Google Scholar] [CrossRef]
- Castilla, M.; Álvarez, J.D.; Normey-Rico, J.E.; Rodríguez, F. Thermal comfort control using a non-linear MPC strategy: A real case of study in a bioclimatic building. J. Process Control 2014, 24, 703–713. [Google Scholar] [CrossRef]
- Jazizadeh, F.; Ghahramani, A.; Becerik-Gerber, B.; Kichkaylo, T.; Orosz, M. User-led decentralized thermal comfort driven HVAC operations for improved efficiency in office buildings. Energy Build. 2014, 70, 398–410. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; Srebric, J. Model predictive control for indoor thermal comfort and energy optimization using occupant feedback. Energy Build. 2015, 102, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, Q.; Srebric, J. Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation. Appl. Energy 2016, 164, 341–351. [Google Scholar] [CrossRef]
- Oldewurtel, F.; Parisio, A.; Jones, C.N.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 2012, 45, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Fong, K.F.; Hanby, V.I.; Chow, T.T. HVAC system optimization for energy management by evolutionary programming. Energy Build. 2006, 38, 220–231. [Google Scholar] [CrossRef]
- Lin, C.-M.; Wu, C.-Y.; Tseng, K.-Y.; Ku, C.-C.; Lin, S.-F. Applying two-stage differential evolution for energy saving in optimal chiller loading. Energies 2019, 12, 622. [Google Scholar] [CrossRef]
- ASHRAE 55. Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2017. [Google Scholar]
- Brager, G.S.; de Dear, R.J. Thermal adaptation in the built environment: A liter-ature review. Energy Build. 1998, 27, 83–96. [Google Scholar] [CrossRef]
- Brager, G.S.; de Dear, R.J. Developing an adaptive model of thermal comfort and preference. ASHRAE Trans. 1998, 104, 145–167. [Google Scholar]
- Humphreys, M.A.; Nicol, J.F. Understanding the adaptive approach to thermal comfort. ASHRAE Trans. 1998, 104, 991–1000. [Google Scholar]
- De Dear, R.J.; Akimoto, T.; Arens, E.A.; Brager, G.; Candido, C.; Cheong, K.W.D.; Li, B.; Nishihara, N.; Sekhar, S.C.; Tanabe, S.; et al. Progress inthermal comfort research over the last twenty years. Indoor Air 2013, 23, 442–461. [Google Scholar] [CrossRef]
- Alfano, F.R.d.; Olesen, B.W.; Palella, B.I. Povl Ole Fanger’s Impact Ten Years Later. Energy and Buildings 2017, 152, 243–249. [Google Scholar] [CrossRef]
- Uipiani, G.; Borgognoni, M.; Romagnoli, A.; di Perna, C. Comparing the performance of on/off, PID and fuzzy controllers applied to the heating system of an energy-efficient building. Energy Build. 2016, 116, 1–17. [Google Scholar] [CrossRef]
- Kampelis, N.; Ferrante, A.; Kolokotsa, D.; Gobakis, K.; Standardi, L.; Cristalli, C. Thermal comfort evaluation in HVAC Demand Response control. Energy Procedia 2017, 134, 675–682. [Google Scholar] [CrossRef]
- Daghigh, R.; Adam, N.M.; Sahari, B.; Yousef, B.A.A. Thermal Comfort Study and Ventilation Evaluation of an Office. Adv. Mech. Eng. Its Appl. 2012, 3, 278–283. [Google Scholar]
F1 | N | Z | P | |
---|---|---|---|---|
F2 | ||||
N | 0 | −1 | −2 | |
Z | 1 | 0 | −1 | |
P | 2 | 1 | 0 |
Full-Load Operation | June | July | August |
---|---|---|---|
RT | 176,550.7 | 378,983.8 | 413,532.6 |
kW | 154,125 | 331,933.6 | 289,985.9 |
kW/RT | 0.872979 | 0.875852 | 0.701241 |
Optimal Control Operation | June | July | August |
---|---|---|---|
RT | 253,698.9 | 247,613.1 | 191,023.2 |
kW | 170,202.6 | 166,792.5 | 130,912.7 |
kW/RT | 0.670885 | 0.673601 | 0.685324 |
Comparison | RT | kW | kW/RT |
---|---|---|---|
Full load | 969,067.1 | 776,044.5 | 0.800816 |
Optimization | 692,335.1 | 467,907.9 | 0.67584 |
Energy conservation percentage | 28.56% | 39.71% | 15.61% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-M.; Liu, H.-Y.; Tseng, K.-Y.; Lin, S.-F. Heating, Ventilation, and Air Conditioning System Optimization Control Strategy Involving Fan Coil Unit Temperature Control. Appl. Sci. 2019, 9, 2391. https://doi.org/10.3390/app9112391
Lin C-M, Liu H-Y, Tseng K-Y, Lin S-F. Heating, Ventilation, and Air Conditioning System Optimization Control Strategy Involving Fan Coil Unit Temperature Control. Applied Sciences. 2019; 9(11):2391. https://doi.org/10.3390/app9112391
Chicago/Turabian StyleLin, Chang-Ming, Hsin-Yu Liu, Ko-Ying Tseng, and Sheng-Fuu Lin. 2019. "Heating, Ventilation, and Air Conditioning System Optimization Control Strategy Involving Fan Coil Unit Temperature Control" Applied Sciences 9, no. 11: 2391. https://doi.org/10.3390/app9112391
APA StyleLin, C. -M., Liu, H. -Y., Tseng, K. -Y., & Lin, S. -F. (2019). Heating, Ventilation, and Air Conditioning System Optimization Control Strategy Involving Fan Coil Unit Temperature Control. Applied Sciences, 9(11), 2391. https://doi.org/10.3390/app9112391