External Robotic Arm vs. Upper Limb Exoskeleton: What Do Potential Users Need?
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Survey Development and ADL Items
2.2. Participants
2.3. Procedure
2.4. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Unilateral Impairment Group
3.3. Bilateral Impairment Group
3.4. Unilateral Impaired Group vs. Bilateral Impaired Group
3.5. External Robotic Arm vs. Upper Limb Exoskeleton
4. Discussion
5. Conclusions
Author Contributions
Funding
Declaration
Conflicts of Interest
Appendix A. Survey for Potential Users’ Demand on Assistive Robots.
- 0.
- Please check your gender and age: M/F/Age: _____
- 1.
- Please check on the disease category that caused your impairment.
- 1) Stroke
- 2) Spinal cord injury
- 3) Muscular dystrophy
- 4) Motor neuron disease
- 5) Peripheral nerve injury
- 6) Others: ____________________________
- 2.
- When was the onset of the impairment? Year ___________ Month ____ (____ years ago)
- 3.
- How well do you use your upper extremities?
- 1) I can use both arms functionally (at least partially)
- 2) I only use one arm functionally
- 3) I can hardly use both arms functionally
- 4.
- Please check on your gait status.
- 1) I can walk independently without any assistive tools.
- 2) I can walk independently using some assistive tools.
- 3) I need another person’s assistance (regardless of assistive tool use)
- 4) I hardly can walk despite any kind of help from others.
- 5.
- Is a wheelchair your main method of moving? Y/N
5-Likert Scale | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Dependence | Totally dependent | Mostly dependent | Moderately dependent | Mostly dependent | Totally dependent |
Importance | Unimportant | Of little importance | Moderately important | Important | Very important |
Necessity | Not necessary | Of little necessity | Moderately necessary | Necessary | Highly necessary |
ADL Items | External Robotic Arm | Upper Limb Exoskeleton | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Washing face | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Brushing teeth (including squeezing toothpaste) | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Hairdressing | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Dressing (putting on or taking off clothes) | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Eating | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Handling foods (i.e., peeling a banana, opening a bottle cap, etc.) | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Cleaning (cleaning one’s desk) | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Moving close items | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Smartphone (using a smartphone or a tablet) | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Computer (using a computer: keyboard and mouse) | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Making phone calls (dialing and receiving a phone call) | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Writing | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Switch control | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Purse (putting in and taking out bills and cards from a purse/wallet) | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Nec | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Transfer (assisting bed to chair, chair to standing, etc.) | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | ||||||
Nec | 1 | 2 | 3 | 4 | 5 | ||||||
Toilet use | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | ||||||
Nec | 1 | 2 | 3 | 4 | 5 | ||||||
Self-exercise (of the upper extremity) | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | ||||||
Nec | 1 | 2 | 3 | 4 | 5 | ||||||
Wheelchair control (both manual and electric) | Dep | 1 | 2 | 3 | 4 | 5 | |||||
Imp | 1 | 2 | 3 | 4 | 5 | ||||||
Nec | 1 | 2 | 3 | 4 | 5 |
References
- Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev. 2015, 11, CD006876. [Google Scholar] [CrossRef] [PubMed]
- Maheu, V.; Frappier, J.; Archambault, P.S.; Routhier, F. Evaluation of the JACO robotic arm: Clinico-economic study for powered wheelchair users with upper-extremity disabilities. IEEE. Int. Conf. Rehabil. Robot. 2011, 2011, 5973597. [Google Scholar]
- Sale, P.; Franceschini, M.; Mazzoleni, S.; Palma, E.; Agosti, M.; Posteraro, F. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J. Neuroeng. Rehabil. 2014, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Klamroth-Marganska, V.; Blanco, J.; Campen, K.; Curt, A.; Dietz, V.; Ettlin, T.; Felder, M.; Fellinghauer, B.; Guidali, M.; Kollmar, A.; et al. Three-dimensional, task-specific robot therapy of the arm after stroke: A multicentre, parallel-group randomised trial. Lancet Neurol. 2014, 13, 159–166. [Google Scholar] [CrossRef]
- Masiero, S.; Armani, M.; Ferlini, G.; Rosati, G.; Rossi, A. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabil. Neural Repair 2014, 28, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Elsner, B.; Werner, C.; Kugler, J.; Pohl, M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 2013, 7, CD006185. [Google Scholar]
- Babaiasl, M.; Mahdioun, S.H.; Jaryani, P.; Yazdani, M. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil. Rehabil. Assist. Technol. 2016, 11, 263–280. [Google Scholar] [CrossRef] [PubMed]
- Lajeunesse, V.; Vincent, C.; Routhier, F.; Careau, E.; Michaud, F. Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil. Rehabil. Assist. Technol. 2015, 11, 535–547. [Google Scholar] [CrossRef]
- Wall, A.; Borg, J.; Palmcrantz, S. Clinical application of the Hybrid Assistive Limb (HAL) for gait training-a systematic review. Front. Syst. Neurosci. 2015, 9, 48. [Google Scholar] [CrossRef]
- Bedaf, S.; Gelderblom, G.J.; De Witte, L. Overview and Categorization of Robots Supporting Independent Living of Elderly People: What Activities Do They Support and How Far Have They Developed. Assist. Technol. 2015, 27, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Jarrasse, N.; Proietti, T.; Crocher, V.; Robertson, J.; Sahbani, A.; Morel, G.; Roby-Brami, A. Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients. Front. Hum. Neurosci. 2014, 8, 947. [Google Scholar] [CrossRef]
- Collinger, J.L.; Wodlinger, B.; Downey, J.E.; Wang, W.; Tyler-Kabara, E.C.; Weber, D.J.; McMorland, A.J.; Velliste, M.; Boninger, M.L.; Schwartz, A.B. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 2013, 381, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Kwak, N.S.; Muller, K.R.; Lee, S.W. A lower limb exoskeleton control system based on steady state visual evoked potentials. J. Neural. Eng. 2015, 12, 056009. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, S.W.; Yeom, H.G.; Bang, M.S.; Kim, J.S.; Chung, C.K.; Kim, S. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals. Biomed. Eng. Online 2015, 14, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.; Vanclay, F.; Cooper, B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J. Clin. Epidemiol. 1989, 42, 703–709. [Google Scholar] [CrossRef]
- Chumney, D.; Nollinger, K.; Shesko, K.; Skop, K.; Spencer, M.; Newton, R.A. Ability of Functional Independence Measure to accurately predict functional outcome of stroke-specific population: Systematic review. J. Rehabil. Res. Dev. 2010, 47, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Collinger, J.L.; Boninger, M.L.; Bruns, T.M.; Curley, K.; Wang, W.; Weber, D.J. Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury. J. Rehabil. Res. Dev. 2013, 50, 145–160. [Google Scholar] [CrossRef]
- Huggins, J.E.; Moinuddin, A.A.; Chiodo, A.E.; Wren, P.A. What would brain-computer interface users want: Opinions and priorities of potential users with spinal cord injury. Arch. Phys. Med. Rehabil. 2015, 96, S38–S45.e5. [Google Scholar] [CrossRef]
- Huggins, J.E.; Wren, P.A.; Gruis, K.L. What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2011, 12, 318–324. [Google Scholar] [CrossRef]
- Watkins, C.L.; Leathley, M.J.; Gregson, J.M.; Moore, A.P.; Smith, T.L.; Sharma, A.K. Prevalence of spasticity post stroke. Clin. Rehabil. 2002, 16, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.S.; Park, Y.G.; Paik, N.J.; Oh, B.M.; Chun, M.H.; Yang, H.E.; Kim, D.H.; Yi, Y.; Seo, H.G.; Kim, K.D.; et al. Efficacy and safety of NABOTA in post-stroke upper limb spasticity: A phase 3 multicenter, double-blinded, randomized controlled trial. J. Neurol. Sci. 2015, 357, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Zorowitz, R.D.; Gillard, P.J.; Brainin, M. Poststroke spasticity: Sequelae and burden on stroke survivors and caregivers. Neurology 2013, 80, S45–S52. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.J.; Hogan, N.; Perepezko, E.M.; Krebs, H.I.; Rogers, J.M.; Goyal, K.S.; Dohring, M.E.; Fredrickson, E.; Nethery, J.; Ruff, R.L. Response to upper-limb robotics and functional neuromuscular stimulation following stroke. J. Rehabil. Res. Dev. 2005, 42, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Conroy, S.S.; Whitall, J.; Dipietro, L.; Jones-Lush, L.M.; Zhan, M.; Finley, M.A.; Wittenberg, G.F.; Krebs, H.I.; Bever, C.T. Effect of gravity on robot-assisted motor training after chronic stroke: A randomized trial. Arch. Phys. Med. Rehabil. 2011, 92, 1754–1761. [Google Scholar] [CrossRef] [PubMed]
- McCabe, J.; Monkiewicz, M.; Holcomb, J.; Pundik, S.; Daly, J.J. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2015, 96, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.D. Targeting recovery: Priorities of the spinal cord-injured population. J. Neurotrauma 2004, 21, 1371–1383. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.S.; Lee, W.H.; Seo, H.G.; Kim, Y.J.; Bang, M.S.; Kim, S. Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living. Sensors 2019, 19, 1782. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Yoshikawa, M.; Oyama, E.; Wakita, Y.; Matsumoto, Y. Development of Assistive Robots Using International Classification of Functioning, Disability, and Health: Concept, Applications, and Issues. J. Robot. 2013, 608191, 1–12. [Google Scholar] [CrossRef]
Data | Unilateral Impairment Group | Bilateral Impairment Group | Total |
---|---|---|---|
No. of subjects | 24 | 24 | 48 |
Chronic stroke | 24 | ||
Cervical spinal cord injury | 5 | ||
Duchenne muscular dystrophy | 18 | ||
Amyotrophic lateral sclerosis | 1 | ||
Male:Female (n) | 20:4 | 22:2 | 42:6 |
Average age (years) | 61.2 ± 5.3 | 24.8 ± 17.0 | 42.6 ± 22.2 |
Average duration since onset (months) | 109.5 ± 51.8 | 90.1 ± 56.7 | 99.7 ± 54.6 |
ADL Item * | Dependency a | External Robotic Arm | Upper Limb Exoskeleton | ||||||
---|---|---|---|---|---|---|---|---|---|
Important b | Necessary c | Highly Necessary d | Not Necessary e | Important b | Necessary c | Highly Necessary d | Not Necessary e | ||
Handling foods | 2.6 | 75.0 (1) | 70.8 (2) | 33.3 (4) | 20.8 (11) | 87.5 (1) | 75.0 (1) | 45.8 (3) | 16.7 (13) |
Computer | 2.9 | 75.0 (1) | 54.2 (6) | 33.3 (4) | 25.0 (7) | 70.8 (12) | 50.0 (15) | 25.0 (14) | 25.0 (6) |
Cleaning | 3.4 | 45.8 (11) | 41.7 (11) | 16.7 (10) | 20.8 (11) | 70.8 (12) | 58.3 (12) | 29.2 (12) | 29.2 (4) |
Self-exercise | 3.4 | - | - | - | - | 87.5 (1) | 66.7 (3) | 50 (2) | 8.3 (18) |
Moving close items | 3.5 | 62.5 (6) | 75.0 (1) | 37.5 (2) | 25.0 (7) | 79.2 (7) | 75.0 (1) | 33.3 (11) | 20.8 (11) |
Dressing | 3.5 | 54.2 (9) | 62.5 (3) | 41.6 (1) | 16.7 (14) | 79.2 (7) | 66.7 (3) | 54.2 (1) | 12.5 (16) |
Washing Face | 3.8 | 45.8 (11) | 45.8 (9) | 25 (7) | 29.2 (5) | 83.3 (4) | 66.7 (3) | 41.7 (7) | 12.5 (16) |
Transfer | 3.8 | - | - | - | - | 87.5 (1) | 58.3 (12) | 25 (14) | 25.0 (6) |
Hairdressing | 3.8 | 70.8 (3) | 58.3 (4) | 37.5 (2) | 20.8 (11) | 79.2 (7) | 66.7 (3) | 45.8 (3) | 16.7 (13) |
Brushing teeth | 3.8 | 58.3 (7) | 33.3 (14) | 25 (7) | 37.5 (1) | 70.8 (12) | 66.7 (3) | 41.7 (7) | 16.7 (13) |
Phone calls | 3.8 | 58.3 (7) | 37.5 (13) | 16.7 (10) | 33.3 (3) | 79.2 (7) | 37.5 (18) | 16.7 (17) | 37.5 (1) |
Writing | 3.8 | 66.7 (4) | 54.2 (6) | 16.7 (10) | 29.2 (5) | 75.0 (11) | 62.5 (9) | 45.8 (3) | 25.0 (6) |
Wheelchair control | 3.9 | - | - | - | - | 66.7 (16) | 50.0 (15) | 29.2 (12) | 33.3 (3) |
Purse | 4.0 | 54.2 (9) | 50.0 (8) | 25.0 (7) | 25.0 (7) | 66.7 (16) | 54.2 (14) | 25.0 (14) | 25.0 (6) |
Smartphone | 4.0 | 66.7 (4) | 58.3 (4) | 29.2 (6) | 25.0 (7) | 83.3 (4) | 66.7 (3) | 37.5 (10) | 20.8 (11) |
Switch control | 4.1 | 37.5 (14) | 41.7 (11) | 16.7 (10) | 37.5 (1) | 58.3 (18) | 45.8 (17) | 16.7 (17) | 37.5 (1) |
Eating | 4.1 | 45.8 (11) | 45.8 (9) | 16.7 (10) | 33.3 (3) | 70.8 (12) | 62.5 (9) | 41.7 (7) | 29.2 (4) |
Toilet use | 4.3 | - | - | - | - | 83.3 (4) | 62.5 (9) | 45.8 (3) | 25.0 (6) |
ADL Item * | Dependency a | External Robotic Arm | Upper Limb Exoskeleton | ||||||
---|---|---|---|---|---|---|---|---|---|
Important b | Necessary c | Highly Necessary d | Not Necessary e | Important b | Necessary c | Highly Necessary d | Not Necessary e | ||
Toilet use | 1.6 | - | - | - | - | 83.3 (2) | 66.7 (2) | 45.8 (4) | 16.7 (12) |
Hairdressing | 1.7 | 50.0 (6) | 45.8 (5) | 33.3 (1) | 16.7 (14) | 62.5 (16) | 54.2 (13) | 33.3 (12) | 16.7 (12) |
Dressing | 1.7 | 58.3 (2) | 50.0 (2) | 29.2 (3) | 29.2 (11) | 70.8 (9) | 70.8 (1) | 45.8 (4) | 12.5 (14) |
Transfer | 1.8 | - | - | - | - | 83.3 (2) | 66.7 (2) | 58.3 (1) | 25.0 (8) |
Handling foods | 2.0 | 54.2 (4) | 50.0 (2) | 25.0 (5) | 29.2 (11) | 70.8 (9) | 66.7 (2) | 37.5 (10) | 25.0 (8) |
Washing Face | 2.0 | 45.8 (9) | 41.7 (6) | 12.5 (13) | 33.3 (8) | 66.7 (14) | 50.0 (16) | 25.0 (18) | 37.5 (2) |
Self-exercise | 2.1 | - | - | - | - | 79.2 (6) | 62.5 (7) | 41.7 (7) | 8.3 (18) |
Purse | 2.2 | 37.5 (13) | 20.8 (13) | 16.7 (10) | 54.2 (2) | 70.8 (9) | 41.7 (18) | 33.3 (12) | 33.3 (3) |
Cleaning | 2.3 | 54.2 (4) | 58.3 (1) | 29.2 (3) | 33.3 (8) | 66.7 (14) | 62.5 (7) | 29.2 (16) | 12.5 (14) |
Switch control | 2.3 | 41.7 (12) | 41.7 (6) | 25.0 (5) | 41.7 (6) | 62.5 (16) | 54.2 (13) | 29.2 (16) | 20.8 (10) |
Moving close items | 2.4 | 45.8 (9) | 50.0 (2) | 12.5 (13) | 20.8 (13) | 75.0 (7) | 66.7 (2) | 33.3 (12) | 12.5 (14) |
Brushing teeth | 2.6 | 50.0 (6) | 37.5 (10) | 16.7 (10) | 33.3 (8) | 70.8 (9) | 62.5 (7) | 33.3 (12) | 29.2 (5) |
Eating | 2.8 | 70.8 (1) | 41.7 (6) | 33.3 (1) | 45.8 (5) | 83.3 (2) | 62.5 (7) | 41.7 (7) | 29.2 (5) |
Wheelchair control | 3.0 | - | - | - | - | 87.5 (1) | 66.7 (2) | 58.3 (1) | 12.5 (14) |
Phone calls | 3.1 | 58.3 (2) | 41.7 (6) | 25.0 (5) | 41.7 (6) | 83.3 (2) | 62.5 (7) | 45.8 (4) | 20.8 (10) |
Writing | 3.1 | 45.8 (9) | 33.3 (11) | 16.7 (10) | 50.0 (3) | 75.0 (7) | 58.3 (12) | 54.2 (3) | 29.2 (5) |
Smartphone | 3.4 | 37.5 (13) | 20.8 (13) | 20.8 (8) | 58.3 (1) | 62.5 (16) | 45.8 (17) | 37.5 (10) | 41.7 (1) |
Computer | 3.5 | 50.0 (6) | 29.2 (12) | 20.8 (8) | 50.0 (3) | 70.8 (9) | 54.2 (13) | 41.7 (7) | 33.3 (3) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, H.S.; Seo, H.G.; Leigh, J.-H.; Kim, Y.J.; Kim, S.; Bang, M.S. External Robotic Arm vs. Upper Limb Exoskeleton: What Do Potential Users Need? Appl. Sci. 2019, 9, 2471. https://doi.org/10.3390/app9122471
Nam HS, Seo HG, Leigh J-H, Kim YJ, Kim S, Bang MS. External Robotic Arm vs. Upper Limb Exoskeleton: What Do Potential Users Need? Applied Sciences. 2019; 9(12):2471. https://doi.org/10.3390/app9122471
Chicago/Turabian StyleNam, Hyung Seok, Han Gil Seo, Ja-Ho Leigh, Yoon Jae Kim, Sungwan Kim, and Moon Suk Bang. 2019. "External Robotic Arm vs. Upper Limb Exoskeleton: What Do Potential Users Need?" Applied Sciences 9, no. 12: 2471. https://doi.org/10.3390/app9122471
APA StyleNam, H. S., Seo, H. G., Leigh, J. -H., Kim, Y. J., Kim, S., & Bang, M. S. (2019). External Robotic Arm vs. Upper Limb Exoskeleton: What Do Potential Users Need? Applied Sciences, 9(12), 2471. https://doi.org/10.3390/app9122471