HMT-Controlled Synthesis of Mesoporous NiO Hierarchical Nanostructures and Their Catalytic Role towards the Thermal Decomposition of Ammonium Perchlorate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of NiO Nanostructures
2.2. Sample Characterization
2.3. Catalytic Role Study
3. Results and Discussion
3.1. Characteriziaton of Phase Structure and Microstructure
3.2. Catalytic Role of NiO Addtives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, T.J.; Xu, J.; Elmas, S.; Mange, Y.J.; Skinner, W.M.; Xu, H.L.; Nann, T. NiO nanofibers as a candidate for a nanophotocathode. Nanomaterials 2014, 4, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.B.; Wu, L.L.; Zou, K. Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid. Mater. Res. Bull. 2011, 46, 2427–2432. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, P.F.; Li, Y.H.; Zu, M.Y.; Li, X.; Jiang, Z.; Wang, Y.; Zhao, H.; Yang, H.G. N-modified NiO surface for superior alkaline hydrogen evolution. ChemSusChem 2018, 11, 1020–1024. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.X.; Jiang, X.H.; Lu, L.D.; Yang, X.J.; Wang, X. Study on the catalytic effect of NiO nanoparticles on the thermal decomposition of TEGDN/NC propellant. J. Hazard. Mater. 2009, 168, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Luan, V.H.; Tien, H.N.; Hur, S.H.; Han, J.H.; Lee, W. Three-dimensional porous nitrogen-doped NiO nanostructures as highly sensitive NO2 sensors. Nanomaterial 2017, 7, 313. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.P.; Giri, S.D.; Sarkar, A. Mesoporous NiO with different morphology: Synthesis, characterization and their evaluation for oxygen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 15639–15649. [Google Scholar] [CrossRef]
- Yan, X.Y.; Tong, X.L.; Wang, J.; Gong, C.W.; Zhang, M.G.; Liang, L.P. Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application. J. Alloy Compd. 2014, 593, 184–189. [Google Scholar] [CrossRef]
- Shenashen, M.A.; Kawada, S.; Selim, M.M.; Morsy, W.M.; Yamaguchi, H.; Alhamid, A.A.; Ohashi, N.; Lchinose, I.; El-Safty, S.A. Bushy sphere dendrites with husk-shaped branches axially spreading out from the core for photo-catalytic oxidation/remediation of toxins. Nanoscale 2017, 9, 7947–7959. [Google Scholar] [CrossRef]
- Emran, M.Y.; Mekawy, M.; Akhtar, N.; Shenashen, M.A.; EL-Sewify, I.M.; Faheem, A.; El-Safty, S.A. Broccoli-shaped biosensor hierarchy for electrochemical screening of noradrenaline in living cells. Biosens. Bioelectron. 2018, 100, 122–131. [Google Scholar] [CrossRef]
- Emran, M.Y.; Shenashen, M.A.; Abdelwahab, A.A.; Khalifa, H.; Mekawy, M.; Akhtar, N. Design of hierarchical electrocatalytic mediator for one step, selective screening of biomolecules in biological fluid samples. J. Appl. Electrochem. 2018, 48, 529–542. [Google Scholar] [CrossRef]
- Emran, M.Y.; Shenashen, M.A.; Mekawy, M.; Azzam, A.M.; Akhtar, N.; Gomaa, H.; Selim, M.M.; Faheem, A.; El-Safty, S.A. Ultrasensitive in-vitro monitoring of monoamine neurotransmitters from dopaminergic cells. Sens. Actuators B Chem. 2018, 259, 114–124. [Google Scholar] [CrossRef]
- Emran, M.Y.; Khalifa, H.; Gomaa, H.; Shenashen, M.A.; Akhtar, N.; Mekawy, M.; Faheem, A.; El-Safty, S.A. Hierarchical C-N doped NiO with dual-head echinop flowers for ultrasensitive monitoring of epinephrine in human blood serum. Microchim. Acta 2017, 184, 4553–4562. [Google Scholar] [CrossRef]
- Akhtar, N.; Emran, M.Y.; Shenashen, M.A.; Khalifa, H.; Osaka, T.; Faheem, A.; Homma, T.; Kawarada, H.; El-Safty, S.A. Fabrication of photo-electrochemical biosensors for ultrasensitive screening of mono-bioactive molecules: The effect of geometrical structures and crystal surfaces. J. Mater. Chem. B 2017, 5, 7985–7996. [Google Scholar] [CrossRef]
- Liu, W.Y.; Wu, J.; Yang, Y.; Yu, H.; Dong, X.T.; Wang, X.L.; Liu, Z.L.; Wang, T.T.; Zhao, B. Facile synthesis of three-dimensional hierarchical NiO microflowers for efficient room temperature H2S gas sensor. Nano J. Mater. Sci. Mater. Electron. 2018, 29, 4624–4631. [Google Scholar] [CrossRef]
- Zhou, Q.; Lu, Z.R.; Wei, Z.J.; Xu, L.N.; Gui, Y.G.; Chen, W.G. Hydrothermal synthesis of hierarchical ultrathin NiO nanoflakes for high-performance CH4 sensing. Front. Chem. 2018, 6, 194. [Google Scholar] [CrossRef] [PubMed]
- Ahirwar, D.; Bano, M.; Khan, I.; Sheikh, M.U.D.; Thomas, M.; Khan, F. Fabrication of hierarchically mesoporous NiO nanostructures and their role in heterogeneous photocatalysis and sensing activity. J. Mater. Sci. Mater. Electron. 2018, 29, 5768–5781. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.G.; Li, Y.Q.; Jin, L.F.; Cui, F.; Song, Z.H. 3D flower-like NiO hierarchical structures assembled with size-controllable 1D blocking units: Gas sensing performances towards acetylene. Front. Chem. 2018, 6, 472. [Google Scholar] [CrossRef] [PubMed]
- Han, K.H.; Huang, H.; Gong, Q.H.; Si, T.T.; Zhang, Z.L.; Zhou, G.W. Temperature-induced hierarchical tremella-like and pinecone-like NiO microspheres for high-performance supercapacitor electrode materials. J. Mater. Sci. 2018, 53, 12477–12491. [Google Scholar] [CrossRef]
- Cai, Y.; Ma, J.M.; Wang, T.H. Hydrothermal synthesis of α-Ni(OH)2 and its conversion to NiO with electrochemical properties. J. Alloy Compd. 2014, 582, 328–333. [Google Scholar] [CrossRef]
- Derbalah, A.; El-safty, S.A.; Shenashen, M.A.; Khairy, M. Hierarchical nanohexagon ceramic sheet layers as platform adsorbents for hydrophilic and hydrophobic insecticides from agricultural wastewater. ChemPlusChem 2015, 80, 1769–1778. [Google Scholar] [CrossRef]
- Shi, M.J.; Cui, M.W.; Kang, L.T.; Li, T.T.; Yun, S.; Du, J.; Xu, S.D.; Liu, Y. Porous Ni3(NO3)2(OH)4 nano-sheets for supercapacitors: Facile synthesis and excellent rate performance at high mass loadings. Appl. Surf. Sci. 2018, 427, 678–686. [Google Scholar] [CrossRef]
- Wang, H.F.; Wu, L.M.; Wang, Y.S.; Li, X.N.; Wang, Y.J. Facile synthesis of Ni nanoparticles from triangular Ni(HCO3)2 nanosheets as catalysts for hydrogen generation from hydrous hydrazine. Catal. Commun. 2017, 100, 33–37. [Google Scholar] [CrossRef]
- Wang, X.S.; Chen, L.; Li, F.; Zhang, S.Q.; Chen, X.C.; Yin, J.J. Synthesis of hollow NiO nanostructures and their application for supercapacitor electrode. Ionics 2018, 25, 697–705. [Google Scholar] [CrossRef]
- Hao, C.; Zhou, S.; Wang, J.J.; Wang, X.H.; Gao, H.W.; Ge, C.W. Preparation of hierarchical spinel NiCo2O4 nanowires for high-performance supercapacitors. Ind. Eng. Chem. Res. 2018, 57, 2517–2525. [Google Scholar] [CrossRef]
- Sietsma, J.R.A.; Meeldijk, J.D.; Versluijs-Helder, M.; Broersma, A.; Dillen, A.J.V.; Jongh, P.E.D.; Jong, K.P.D. Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts: Impregnation, drying, and thermal treatments. Chem. Mater. 2008, 20, 2921–2931. [Google Scholar] [CrossRef]
- Li, Y.W.; Zheng, Y.Y.; Yao, J.H.; Xiao, J.R.; Yang, J.W.; Xiao, S.H. Facile synthesis of nanocrystalline-assembled nest-like NiO hollow microspheres with superior lithium storage performance. RSC Adv. 2017, 7, 31287–31297. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.K.; Srivastava, P.; Singh, G.; Akhtar, M.S.; Ameen, S. Biosynthesized NiO nanoparticles: Potential catalyst for ammonium perchlorate and composite solid propellants. Ceram. Inter. 2015, 41, 1573–1578. [Google Scholar] [CrossRef]
- Wang, Y.P.; Zhu, J.W.; Yang, X.J.; Lu, L.D.; Wang, X. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim. Acta 2005, 437, 106–109. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, S.; Guan, X. HMT-Controlled Synthesis of Mesoporous NiO Hierarchical Nanostructures and Their Catalytic Role towards the Thermal Decomposition of Ammonium Perchlorate. Appl. Sci. 2019, 9, 2599. https://doi.org/10.3390/app9132599
Ye S, Guan X. HMT-Controlled Synthesis of Mesoporous NiO Hierarchical Nanostructures and Their Catalytic Role towards the Thermal Decomposition of Ammonium Perchlorate. Applied Sciences. 2019; 9(13):2599. https://doi.org/10.3390/app9132599
Chicago/Turabian StyleYe, Songzhong, and Xiangfeng Guan. 2019. "HMT-Controlled Synthesis of Mesoporous NiO Hierarchical Nanostructures and Their Catalytic Role towards the Thermal Decomposition of Ammonium Perchlorate" Applied Sciences 9, no. 13: 2599. https://doi.org/10.3390/app9132599
APA StyleYe, S., & Guan, X. (2019). HMT-Controlled Synthesis of Mesoporous NiO Hierarchical Nanostructures and Their Catalytic Role towards the Thermal Decomposition of Ammonium Perchlorate. Applied Sciences, 9(13), 2599. https://doi.org/10.3390/app9132599