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Abstract: Information communication technology (ICT)-based mine safety management systems are
being introduced at numerous mining sites to track the location of equipment and workers in real
time and monitor environmental changes. This paper presents the results of a case study in which
the big data created by an ICT-based mine safety management system are used for simulating truck
haulage operations. An underground limestone mine located in Danyang, South Korea was studied,
and the data generated over three months, from October 1 to December 31, 2018, were analyzed.
Truck tag packet data recognized by relays were extracted and analyzed to calculate the averages
and standard deviations of the truck travel times of each mine segment. A discrete event simulation
program that simulates truck haulage operations in the study area was developed. Haulage times,
the number of haulage operations, production output, and truck delay times were predicted, and
results were compared with the actual operation results that were obtained on January 2 and 9, 2019.
The difference between the predicted and actual results for the total amount of loaded ore was 30 tons
for January 2 and 0 tons for January 9. The mean absolute error between the predicted and observed
truck travel times was 0.13 min for January 2 and 0.14 min for January 9. The truck travel times that
were measured differently according to the data aggregation period were set as temporal factors, and
truck haulage simulations were performed. The results showed that more reliable simulation results
were obtained as data accumulation time increased.

Keywords: underground mine; mine safety management; big data; truck travel time; truck
haulage simulation

1. Introduction

1.1. Mine Safety Management System for Underground Mines

Fatal worker accidents frequently occur in underground mines owing to their dark and enclosed
workspaces. According to the mining statistics analyzed by the Centers for Disease Control and
Prevention (CDC), the fatal worker accidents that occurred in the underground mines in the United
States have accounted for 390 deaths over 10 years (2008–2017) [1]. To prevent fatal worker accidents
in underground mines, information communication technology (ICT)-based mine safety management
systems are being developed in the mining industry, and these systems are being implemented in
underground mining sites worldwide [2–9]. In a mine safety management system, a wireless network
environment is built within an underground mine [10–18]. The system tracks equipment and worker
locations in real time and monitors the mine operational environment [19–26]. Commercial mine safety
management systems include Mine Site Technologies’ IMPACT [27], Strata’s STRATACONNECT™ [28],
Becker Mining Systems’ MineView® [29], and ORBCOMM’s Real-time Location System [30]. The benefit
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of mine safety management system is that it can predict the occurrence of worker accidents and
makes it possible to promptly respond to accidents by identifying the location of all workers in
underground mines.

1.2. Mine Big Data Analytics

In the past few years, a massive amount of data has been generated through various platforms.
These data are referred to as “big data” [31,32]. The volume of big data is between 1 terabyte and 1
petabyte, and they are composed of various types of structured and unstructured data. Moreover,
big data are rapidly generated and collected in the cloud and then processed and analyzed according
to the purpose of various fields [33].

In recent years, innovative technologies have been developed for mineral exploration and equipment
management using big data. For instance, Goldcorp Inc. has developed an artificial-intelligence-based
technology that can rapidly search for promising exploration targets and accurately calculate geological
models using a vast amount of data such as core samples, 3D geologic models, maps, and seismic
surveys [34,35]. In addition, Newtrax Technologies Inc. has proposed Mobile Equipment Telemetry
solutions that can predict the appropriate maintenance time of mining equipment through machine
learning using the big data collected from the add-on sensors on the equipment [36,37]. However,
negligible attention has been paid to utilizing the data acquired by mine safety management systems.
In case of mine safety management systems, an extremely large amount of data is accumulated by
continuously and rapidly transmitting structured log data to web servers for a long period. Therefore,
these data can be classified as big data. Currently, the big data acquired by safety management systems
are only used to visualize information on a dashboard for environmental monitoring. Therefore,
there is a requirement to develop new methods in which the equipment operational records that are
collected in the big data can be used to plan and manage mine production operations.

1.3. Utilization of Mine Big Data for Efficient Mine Operation

In recent years, a variety of simulation techniques have been actively developed to simulate
underground mine truck haulage systems to design optimized production tasks and establish usage
plans for haulage equipment [38,39]. The truck haulage simulations provide a variety of functions such
as selecting optimal equipment combinations [40–46], establishing equipment dispatch plans [47–49],
and analyzing optimal haulage paths. Normally, trucks’ travel time measurement data are used as the
input data in truck haulage simulations. Until now, three types of time study methods have been used
for measuring truck travel times in underground mines.

In the most common stopwatch method, a person directly boards a truck and measures travel
time while the truck performs haulage operations [43–45]. Jung and Choi [50] proposed a reverse
radio-frequency identification (RFID) system-based method that measures travel time using the
instances at which a reader device attached to a truck recognizes RFID tags in various places within
an underground mine. Finally, Jung and Choi [51] and Baek et al. [49] proposed Bluetooth beacon
system-based methods that measure travel times using the instances when a smartphone in a truck
recognizes the signals transmitted by Bluetooth beacons installed along a truck path. Baek et al. [52]
compared the performance of the Bluetooth beacon and RFID system in an open space to compare the
accuracy of measuring truck travel time.

As a new method for time study, this work uses the big data generated by an ICT-based mine
safety management system. Truck travel times can be quantitatively measured by extracting only
mine equipment recognition time factors from the big data acquired via the mine safety management
system. In addition, it is possible to simulate truck haulage operations more accurately by calculating
statistical truck travel time using the time factor values that have been accumulated over a long period.
However, the method has not yet been developed for extracting the time factors required to measure
truck travel times from the big data acquired from a mine safety management system when performing
time studies.
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1.4. Objective

The goal of this study is to use the big data acquired through a mine safety management system to
perform a time study for measuring truck travel times and to use the measured times to perform a truck
haulage simulation. An underground limestone mine with a mine safety management system was
selected as the study area, and the big data acquired from the study area were used to quantitatively
measure truck travel time. A discrete event simulation algorithm was designed to simulate the study
area’s truck haulage system, and a Windows-based program was developed to run the simulation.
This study presents the results of quantitatively measuring truck travel times using big data and the
results of using the measured times as input when running a simulation.

2. Study Area

In South Korea, mining companies are actively introducing safety management systems to mining
sites. At an underground mine, wireless access points (APs) have been installed at various locations
within the mine to create a wireless communications network. The current locations of haulage
equipment are transmitted to a web server in real time via the wireless communications network, and
the transmitted data are visualized on a dashboard in a situation room located outside the mine.

This study selected Baek Kwang Mineral Products Co., Ltd.’s Yeongcheon underground mine
(37◦4′14”, 128◦18′46”) located in the city of Danyang in the Chungcheong province of South Korea as
the study area. This mine produces 1.2 million tons of high-grade limestone ore annually through a
room and pillar mining method. Figure 1 shows the arrangement of the five operation sites, which
consist of a drift and three levels, and the location of the outdoor crushing sites. The drift’s average
altitude above sea level is 313.4 m, and the lowermost level’s (Level 3) average altitude above sea level
is 221.6 m.
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Figure 1. Aerial view of the study area showing drifts inside the mine and outside facilities. (Image
source: National Geographic Information Institute of South Korea).

At the Yeongcheon mine, 30-ton trucks travel back and forth between the loading sites and outdoor
crushing sites to haul the ore. Production operation managers analyze ore production amounts,
dispatch dump trucks in real time, and inform truck drivers of their destinations. The truck drivers
follow haulage paths and travel to the loading sites located within the mine. The loaders that are
waiting at the loading sites load the ore into the dump trucks. The dump trucks move to the outdoor
crushing site, and the amount of ore that is piled in the crusher is checked. If this amount is below the
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limit capacity, the ore is dropped in the crusher. If the ore exceeds a fixed capacity, the ore is piled at an
outdoor storage site. The truck that dropped off the ore receives another destination from a production
operation manager and moves to the mine entrance.

Figure 2 shows the components of the mine safety management system installed in the study
area. To create the wireless communications network, 37 ultra-wideband (UWB) wireless APs were
installed in the mine and three 900-MHz wireless APs were installed at the crushing site and the
outdoor storage site outside the mine. Through the wireless communications network, the locations of
the production equipment in the mine could be visualized in real time on the dashboard installed in
the mine’s exterior office.
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Figure 2. Components of the mine safety management system installed in the study area: (a) main
dashboard showing the location of dump trucks and loaders; (b) wireless APs.

Table 1 shows the communication protocol format of the packet data acquired by the mine safety
management system. The packet data can be classified as tag recognition data and environment
monitoring data, and each types of data occupies 20 bytes. When packet data are transferred to the
web server, they are preceded by the transmission date, time, and the IP address of the wireless AP
that transmits the data. The communication protocol places STX and ETX, which indicate the packet’s
start and end, at the front and end of the packet data. CHKSUM is included, which is the sum of all the
values from after STX to before the check sum. Command packets include useful information acquired
by the wireless APs. Tag recognition packet data include the data category, presence of an emergency
situation, tag recognition sequence, recognized tag’s ID, and distance between the wireless AP and tag.
The tag sequence consists of a number between 0 and 255, and it is incremented by 1 in 1 s. After 255,
it changes back to 0. In other words, this value indicates the order of tag recognition and how much
time has elapsed since the previous tag recognition occurred. As 15 tags were attached to the dump
trucks and other equipment in the study area, it is essential to extract only the ID of the tag attached on
the dump truck in tag recognition packet data to measure truck travel time.

The environment monitoring packet data include the data category, temperature, humidity,
presence of earthquakes in the underground mine, presence of power supply equipment or battery
use, battery level, and presence of the LED lights of wireless APs. Tag recognition packet data
are transmitted once per second while the wireless AP recognizes the tag that is attached to the
production equipment. During a single month, approximately 200,000 packets accumulate on the web
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server. Environment monitoring packet data are transmitted to the web server once every minute.
Approximately 57,600 packets accumulate per day and approximately 173 million packets per month.

Table 1. Communication protocol frame of the packet data.

Protocol
Tag Recognition Packet Environment Monitoring Packet

Bytes Frame Bytes Frame

Start of text 1 STX 1 STX

Command

1 Data type 1 Data type
1 Emergency type 2 Temperature
1 Tag sequence 2 Humidity
6 Tag ID 2 Earthquake

1 Distance or power
1 Electric power
1 Battery
1 LED on/off

7 Null 7 Null

Checksum 1 CHKSUM 1 CHKSUM

End of text 1 ETX 1 ETX

3. Methods

Truck travel time was measured using big data through the following process. First, only truck
tag recognition packet data were extracted from the big data that accumulated on the web server.
Then, the data were classified according to the number of truck haulage operations considering tag
recognition time, wireless AP’s IP address, etc. Next, the differences in tag recognition times were
calculated to obtain truck travel times according to the number of haulage operations. In this study,
a truck haulage system simulation algorithm that uses measured truck travel times as input data was
designed and a new program was developed for running the simulation.

3.1. Measuring Truck Travel Times from Big Data

Only truck tag recognition packet data were extracted to consider only the temporal parameters
required to measure truck travel times from big data. Then, the truck tag recognition packet data were
classified according to the number of haulage operations. Figure 3 shows the features of the wireless
APs that are passed while a truck is hauling ore in the underground mine.
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Figure 3. Diagram showing the sequence of wireless APs in the underground mine.

The last number in a wireless AP’s IP address is the same as the order in which the wireless AP
was installed. W01 at the underground mine’s entrance was installed first, and therefore, the last
number in its IP address is 1. The deeper the wireless AP is located within the mine, the larger the last
number in its IP address. In other words, as a truck hauls ore, the last numbers in the IP addresses of
wireless APs in the tag recognition data increase from 1 to the maximum and then decrease back down
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to 1. Therefore, the 1st wireless AP tag recognition time was searched for, and then, the 1st wireless AP
tag recognition time was searched for again. The data that existed between the two time instances
were classified as having occurred during the same haulage operation. The data that were classified
according to the number of truck haulage operations were combined with the tag recognition packet
data obtained from the crushing site (see Figure 4). When trucks loaded with ore travel away from
W01 to the crushing site, the wireless AP installed at the crusher (WC) recognizes the trucks. When a
truck drops the ore off in a hopper and then re-enters the portal of the underground mine to load ore,
W01 recognizes the truck. The time at which WC recognizes the truck must be larger than the time at
which W01 finally recognizes the truck in the previous haulage operation, and it must be less than the
time at which W01 first recognizes the truck in the subsequent haulage operation. If this principle was
satisfied, the data were combined. If not, it was determined that the time parameters for measuring
truck travel times could not be extracted from the two data, and they were deleted.
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obtained from the crushing site, and measuring the 4 types of truck travel time.

To measure truck travel times, this study extracted the tag recognition times of all wireless APs
from the data that were classified as having the same number of haulage operations. When a truck is
stopped within a tag recognition range for a long time, the tag is continually recognized by a single
wireless AP, and a large amount of tag recognition temporal data accumulate. In such cases, distance
packet information was used to extract tag recognition time as the time when the distance between the
wireless AP and truck was the minimum. The difference in tag recognition times was calculated, and
truck travel time was measured. The four types of calculated truck travel times are as follows:

• the time during which a truck travels from one wireless AP to another;
• the time during which the truck is stopped at the loading site to load ore;
• the time during which the loaded truck travels from the mine entrance to the outdoor crushing site;
• the time during which the truck travels back to the mine entrance after finishing the ore drop-off

operation at the crushing site.

A new program was developed to perform the time study. Only truck tag recognition packet
data were extracted from the big data, and then, they were entered into the program in ASCII format.
The program consists of a module that classifies truck tag packet data according to the number of
haulage operations and a module that extracts tag recognition times and calculates truck travel times.
When the calculations are complete, the truck travel time calculation results are produced in ASCII
format (Table 2).
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Table 2. Description of the input data and output data of the program developed for measuring truck
travel data.

Heading Data Name Data Type

Inputs
Two type of truck tag ID (UWB & 900 MHz frequency) Constants

Original packet data obtained in the underground mine ASCII
Original packet data obtained in the crushing zone ASCII

Outputs Tag recognition time ASCII
Truck travel time ASCII

3.2. Truck Haulage Simulation

In this study, a discrete event simulation that can simulate the truck haulage system in the study
area is developed. The simulation’s algorithm is based on the truck cycle time theory proposed by
Suboleski [53]. In the truck cycle time theory, individual trucks’ operation times are expressed as in
Equation (1):

TCT = STL + LT + TL + STD + DT + TE + AD (1)

where TCT is the truck cycle time; STL is the time during which a truck is accessed by the loading
equipment; LT is the time during which the ore is loaded; TL is the time during which the loaded truck
travels to the crushing site; STD is the time during which the truck is accessed by the crusher (outdoor
storage site); DT is the time during which the ore is dropped off; TE is the time during which the truck
travels to the loading site after performing the ore drop-off operation; AD is the time during which the
truck waits during ore loading and drop-off.

Figure 5 shows the algorithm of the truck haulage system simulation. When the simulation
begins, a truck’s destination is assigned by a real-time dispatching method. The truck departs from
the crushing site and travels to the W01 AP located at the mine entrance (TE1). Then, it travels to
the W01-W02 segment (TE2) and W02-W03 segment (TE3). The truck travels toward the assigned
destination from the crossroads located close to W03. It performs the ore loading operation and returns
to W03 (K). Then, it travels to the W03-W02 segment (TL1) and W02-W01 segment (TL2), and it travels
from the mine entrance to the WC located at the crushing site (TL3).
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The truck that arrives at the crushing site checks whether there are trucks waiting to perform the
ore drop-off operation. If there are trucks waiting, the truck waits until the waiting trucks complete the
ore drop-off operation (AD). If there are no trucks waiting, the truck drops the ore off in the hopper
(DT). This operation also includes cases where the truck travels to the outdoor storage site and drops
the ore off if the amount of ore in the crusher hopper exceeds the limit capacity. The user-specified
simulation end time and the simulation’s absolute time are compared to determine whether the truck
will perform the loading operation again or whether the simulation will end.

The Windows-based truck haulage simulation program employed in this study consists of a
graphical user interface (GUI) and a simulation engine. Through the GUI, a user can enter the
simulation factors (operation days, daily operation time, number of trucks, truck weight, etc.) and
temporal factors (truck operation time, ore drop-off time, etc.) that are required to run the simulation.
Table 3 lists the input and output data of the program. The averages and standard deviations of
the temporal factors are calculated through statistical analysis using the truck travel times for all
haulage cycles obtained in Section 3.1. The simulation engine runs when the user finishes inputting
the simulation factors and clicks the ‘Run’ button. The simulation results can be seen by clicking the
‘View’ button.

The simulation engine was developed based on GPSS/H, which is a typical simulation language.
Please refer to Sturgul [54,55] for a detailed description of the GPSS/H language. The simulation engine
performs three functions. First, it generates the simulation’s input data based on the simulation factors
and time factors entered by the user in the GUI. Next, it uses the generated input data to run the
simulation and produces the results in a text file format. The produced simulation results include the
total simulation running time, total amount of hauled ore, crusher utilization, and the time that trucks
spent waiting at the crushing site. When the simulation finishes running, the simulation results are
visualized in the program GUI.

Table 3. Description of the input and output data of the truck haulage system simulation.

Type Data Unit

Inputs

Simulation parameters

Total simulation time Days
Daily working time Minutes
Number of trucks Number

Initial truck generating time Minutes

Truck dispatch interval Minutes
Capacity of a truck Tons

Time parameters

Travel time of the empty truck
TE1 Minutes
TE2 Minutes
TE3 Minutes

Travel time of the loaded truck
TL1 Minutes
TL2 Minutes
TL3 Minutes

Working time K1 Minutes
K2 Minutes

Dumping time DT Minutes

Outputs

Total simulation time Minutes
Total amount of the loaded ore Tons
Utilization rate of the crusher Percentage

Average waiting time for dumping Minutes

4. Results

Big data were collected for three months, from October 1 to December 31, 2018. The overall
number of packet data was 7,065,591. Of these, the number of truck tag recognition packet data was
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808,130. Only tag recognition packet data were extracted from the big data, and they were classified
according to the number of truck haulage operations. Table 4 shows the tag IDs for the UWB and
900 MHz tags attached to the 4 trucks that performed haulage operations in the study area, and it
shows the number of haulage operations performed by each truck. The number of haulage operations
performed by the 4 trucks was 579, which was comprised of 268, 277, and 34 operations performed in
October, November, and December, respectively. When the number of haulage operations was found
to be 0, it was because the truck performed haulage operations at a different operation site during
that month.

Table 4. Tag ID information attached to 4 trucks and the number of haulage operations during 3 months.

Tag ID No. of Haulage Operations

UWB 900 MHz 2018-10 2018-11 2018-12

10151307 0000000118010034 100 30 0
101513019 0000000117080029 3 0 25
101513022 0000000117080030 0 0 7
101513027 0000000117080031 165 247 2

Sum 268 277 34

To measure truck travel time, this study extracted the times at which the wireless APs recognized
the tags for each number of haulage operations, and then, it calculated their differences. However,
as measured truck travel times include the times that occur as exceptions, such as meals and excessive
waits, it was necessary to remove the abnormal values that deviated considerably from the average.
In this study, the average and standard deviation were calculated for each unit of travel time. The data
that exceeded the mean value by more than three standard deviations were considered to be abnormal
values and removed. The cumulative relative frequency of the data was calculated, and the values
with a cumulative relative frequency of less than 0.05 or larger than 0.95 were deleted.

Table 5 shows the results of using statistical analysis to calculate the quantity, average, and
standard deviation of measured truck unit travel time data. Regarding the time during which a truck
left W03 and performed the load operation and then returned to W03, two data sets (K1, K2) were
classified according to the distance to the loading site. K1 is the case in which a truck travels from W03
to a relatively close loading site, and K2 is the case in which a truck travels from W03 to a long-distance
loading site. There were relatively fewer data for the TE1 time compared with other times because
the TE1 times could not be obtained as there were no times at which the crushing site wireless APs
recognized the truck tags during the beginning of the day’s first haulage operations.

Table 5. Results of measuring truck travel time through statistical analysis.

Statistics

Truck Travel Time (min)

TE1 TE2 TE3 K1 K2 TL1 TL2 TL3

(WC→W01) (W01→W02) (W02→W03) (W03→W03) (W03→W03) (W03→W02) (W02→W01) (W01→WC)

No. of data 422 518 515 88 426 506 522 523
Mean (min) 3.21 0.43 0.36 5.96 19.78 0.45 0.53 5.52
STD 1 (min) 0.82 0.05 0.04 0.84 3.17 0.06 0.05 0.57

1 Standard deviation.

Figure 6 shows histograms for truck unit travel time data. All truck travel time data are shown in
the form of a normal distribution. The GPSS/H simulation codes were modified to obtain the time
spent on each unit operation according to a normal distribution in the simulation. In the simulation,
the probability that a truck will travel for K1 and K2 times was set as 17% and 83%, respectively,
according to the ratio of the number of data in K1 and K2 that occurred over the three months.
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The calculated averages and standard deviations of truck travel times were entered as time factors,
and the truck haulage system simulation was performed. To verify the simulation, the simulation
factors were set to be the same as the haulage operation environment on January 2 and 9, 2019.
Following the haulage operation records for January 2, 2019, the simulation was performed by setting
the total simulation time as 1 day, the daily operational time as 6 h and 50 min (400 min), the number
of trucks as 1, and the truck loading capacity as 30 tons. Following the haulage operation records for
January 9, 2019, the simulation was performed by setting the total simulation time as 1 day, the daily
operational time as 5 h (300 min), the number of trucks as 1, and the truck loading capacity as 30 tons.
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After ore loading operations, a loaded truck exits the mine and arrives at the crushing area,
drops off ore, and then re-enters the mine. At this time, the W01-WC-W01 wireless APs continuously
recognize the tags attached on the truck, and the TL3 time and TE1 time can be measured by calculating
the difference between tag recognition times. The calculated TE1 time also includes the time spent on
ore dumping. However, there was a limit to extracting exact dumping time through the wireless AP
system installed in the study area. Thus, it was assumed that the time during which trucks dropped
off ore was the same in all underground mines, and a time of 0.59 ± 0.11 min was used, which was
measured by Choi et al. [45] using a stopwatch.

Table 6 shows a comparison of the simulation results and actual haulage operation records.
On January 2, the predicted and actual number of times that trucks dropped off ore were 13 and 12,
respectively. However, the time during which trucks waited at the crushing site did not occur in either
of the results. On January 9, the predicted and actual results for the number of ore loads, loaded ore’s
weight, and loading wait times were the same. However, there was a difference of 1 in the number of
occurrences of K1 time and K2 time.

Table 6. Comparison of the simulation (predicted) results and the haulage operation results (observed)
obtained on January 2 and 9, 2019.

Statistics
2019-01-02 2019-01-09

Predicted Results Observed Results Predicted Results Observed Results

No. of load (times) 13 12 10 10
No. of occurrences of K1 (times) 1 0 1 0
No. of occurrences of K2 (times) 12 12 9 10
Total amount of loaded ore (tons) 390 360 300 300

Avg. waiting time (min) 0 0 0 0

Figure 7 presents the correlation between the mean truck travel times derived from the simulation
results and the actual truck haulage operation results.
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In both cases, the coefficient of determination is 0.99, which suggests that there is a high correlation
between the predicted and observed mean truck travel times. After calculating the mean and standard
deviation of the truck travel times measured from the simulation results and the actual truck haulage
operation results, the absolute error between the two results was calculated (see Table 7). The mean
absolute errors between the predicted and observed truck travel times were 0.13 min for January 2 and
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0.14 min for January 9. It was found that the truck unit haulage operation times obtained through the
simulation were almost the same as the time spent during actual haulage operations.

Table 7. Results of absolute error for truck travel times derived from simulation results and the haulage
operation performed on January 2 and 9, 2019.

Date Statistics
Absolute Error (min) MAE 2

(min)TE1 TE2 TE3 TL1 TL2 TL3

2019-01-02
Mean 0.08 0.05 0.02 0.01 0.00 0.61 0.128
STD 1 0.34 0.01 0.01 0.00 0.00 0.40 0.127

2019-01-09
Mean 0.26 0.08 0.06 0.06 0.10 0.26 0.137
STD 1 0.34 0.02 0.01 0.34 0.02 0.11 0.140

1 Standard deviation, 2 Mean absolute error.

5. Discussion

5.1. Measurement of Truck Travel Time by Setting Different Tag Recognition Data Aggregation Periods

The changes in truck travel time statistics that occurred when the data aggregation period was
set differently were analyzed in this study. The analyses focused on the tag recognition packet data
acquired from October to December, 2018. The data aggregation period was set as the most recent
day (2018/12/28), 5 days (2018/12/24–2018/12/28), 10 days (2018/12/17–2018/12/28), 1 month (2018/12),
2 months (2018/11–2018/12), and 3 months (2018/10–2018/12). Table 8 shows the statistical values of
truck unit travel time that were found when the data aggregation period was set differently. DT was
assumed to be constant even when the data aggregation period changed. TE1, TE2, TE3, TL1, TL2, and
TL3 maintained relatively fixed times even as the period changed. Therefore, it is possible to calculate
statistical values for these times using data collected during a short period.

The statistical values for K1 could not be calculated for the last 1 day, 5 days, 10 days, or one month
and could only be calculated for October and November because data collection was not performed
for December. Therefore, to calculate accurate statistical values for the K1 time, it is necessary to use
the data obtained over a long period. It is known that large fluctuations occur in the K2 time in the
statistical results acquired during a period of less than one month. In other words, similar to the K1
time, the statistical values for the K2 time must be calculated using the data acquired over a long period.

Table 8. Results of measuring truck travel time when the statistical data collection period is set differently.

Period Statistics
Truck Travel Time (min)

DT TE1 TE2 TE3 K1 K2 TL1 TL2 TL3

1 day Mean 0.59 2.66 0.43 0.35 - 17.03 0.41 0.54 5.88
STD 1 0.11 0.00 0.04 0.07 - 0.26 0.04 0.01 0.00

5 days Mean 0.59 3.18 0.4 0.35 - 20.21 0.44 0.53 5.34
STD 1 0.11 0.73 0.03 0.04 - 2.79 0.08 0.03 0.46

10 days Mean 0.59 2.82 0.42 0.35 - 20.58 0.44 0.55 5.36
STD 1 0.11 0.52 0.04 0.04 - 3.61 0.06 0.03 0.51

1 month
Mean 0.59 3.4 0.43 0.35 - 20.85 0.43 0.55 5.46
STD 1 0.11 1.18 0.06 0.04 - 3.88 0.05 0.03 0.64

2 months
Mean 0.59 3.18 0.42 0.36 5.89 19.74 0.43 0.52 5.61
STD 1 0.11 0.82 0.05 0.04 1.14 3.03 0.05 0.05 0.61

3 months
Mean 0.59 3.21 0.43 0.36 5.96 19.78 0.45 0.53 5.52
STD 1 0.11 0.82 0.05 0.04 0.84 3.17 0.06 0.05 0.57

1 Standard deviation.
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5.2. Comparison of Truck Haulage Simulation Results Using Different Truck Travel Times

The truck travel times that were measured differently according to the data aggregation period
were set as temporal factors, and truck haulage simulations were performed. The simulation setting
factors were set to be the same as the haulage operation environment on January 9, 2019. Table 9 shows
a comparison of the simulation results and the haulage operation results from January 9, 2019. In a
comparison of the actual haulage operation results and the simulation results obtained using the data
collected during a period of less than 1 month, the K1 time did not occur in both results, but there
was a relatively large difference in the occurrence of the K2 time. Moreover, it was found that ore
production amounts did not accurately match during the period, except for the last day.

In a comparison of the actual haulage operation results and the simulation results obtained using
the data collected during a period of more than two months, there were relatively small differences
in truck travel times, except for the K1 time. The ore production amounts between the simulation
results and actual operation results were in good agreement, but the number of times that K1 and
K2 occurred was different. This is because the probability that the K1 time and K2 time will occur in
the discrete event simulation was set as 17% and 83%, respectively. However, in case of the actual
haulage operation, trucks may drive only the longest haulage road to load the ore. When haulage
simulations were performed using the data acquired over a long period, the overall truck travel
time and production amount could be predicted accurately. More accurate simulation results can be
achieved if the number of times that a truck visits the loading site can be reflected in the simulation
beforehand by performing haulage operation planning.

Table 9. Comparison of the simulation results by data collection period and the haulage operation
performed on 2019-01-09.

Period Statistics
Truck Travel Time (min)

TO 1 N1 2 N2 3
DT TE1 TE2 TE3 K1 K2 TL1 TL2 TL3

2019-01-09
log

Mean 0.59 3.08 0.37 0.30 - 19.91 0.50 0.45 5.15
300 0 10

STD 4 0.11 0.90 0.02 0.03 - 5.06 0.40 0.05 0.60

1 day Mean 0.59 2.66 0.41 0.34 - 17.04 0.42 0.54 5.88
300 0 10

STD 4 0.08 0.00 0.04 0.07 - 0.25 0.04 0.01 0.00

5 days Mean 0.58 3.41 0.38 0.34 - 20.40 0.46 0.51 5.47
270 0 10

STD 4 0.08 0.57 0.03 0.04 - 2.87 0.07 0.04 0.34

10 days Mean 0.58 2.99 0.39 0.34 - 20.83 0.45 0.53 5.57
270 0 10

STD 4 0.08 0.40 0.04 0.04 - 3.72 0.05 0.03 0.37

1 month
Mean 0.58 3.78 0.39 0.34 - 21.11 0.44 0.53 5.63

270 0 10
STD 4 0.08 0.92 0.06 0.04 - 4.00 0.05 0.03 0.47

2 months
Mean 0.57 3.31 0.44 0.36 5.13 20.81 0.40 0.54 5.49

300 1 9
STD 4 0.04 0.56 0.04 0.04 0.00 3.33 0.06 0.03 0.52

3 months
Mean 0.57 3.34 0.45 0.36 5.40 19.93 0.44 0.55 5.41

300 1 9
STD 4 0.05 0.56 0.04 0.04 0.00 4.51 0.06 0.03 0.49

1 Total amount of loaded ore (tons), 2 No. of occurrence of K1 (times), 3 No. of occurrence of K2 (times),
4 Standard deviation.

6. Conclusions

In this work, the temporal factors of truck tag recognition were extracted from the big data acquired
through an underground mine safety management system, and a time study was performed to measure
truck travel times. Additionally, a discrete event simulation that could simulate the truck haulage
system of an underground limestone mine was designed, and a Windows-based simulation program for
was developed running the simulation. Statistical analysis was performed using the big data acquired
in October, November, and December 2018 to calculate the averages and standard deviations of the
time spent on each truck unit operation during 579 truck haulage operations. The statistical values of
truck travel time were used to perform a truck haulage simulation, and the results were compared with
the results of actual haulage operations performed on January 2 and 9, 2019. The difference between
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the predicted and observed results for the total amounts of loaded ore was 30 tons and 0 tons on
January 2 and 9, respectively. Moreover, the mean absolute errors between the predicted and observed
mean truck travel times were 0.13 min and 0.14 min on January 2 and 9, respectively. This comparison
showed that the developed truck haulage simulation could predict truck ore load, total ore production
amounts, and truck wait times, which were in good agreement with actual values.

Tag recognition packet data were extracted from the big data by setting the data aggregation
period as 1 day, 5 days, 10 days, 1 month, 2 months, and 3 months, and then, truck travel times were
measured. The results showed that accurate travel time measurements were possible when using the
data that had been collected over a long period. Further, accurate simulation results were produced
when the statistical values of truck travel time obtained from long-term data were entered in the
simulation. Accurate travel time measurements are possible when using the big data that have been
collected on a web server over a long time by a mine safety management system. Further, specific
simulation designs and accurate simulation results can be produced because the long-term cumulative
time factors for various truck haulage paths can be extracted from big data.

In this study, the probability that the K1 time and K2 time will occur in the discrete event simulation
was set to be the same as the ratio of the quantity of data for which the two times occurred during a
certain period. For this reason, a problem occurred in which the number of occurrences of the K1 and
K2 times was not the same in the actual haulage operation results and simulation results. If a haulage
operation manager can accurately plan the number of visits to the loading site beforehand, the number
of occurrences of the K1 and K2 times can be set as simulation factors, and accurate simulations can
be performed. In addition, truck travel times are currently classified only by the K1 and K2 times
according to the distance from W03 to the loading site. If truck travel times are divided into multiple
times based on the number of loading sites when the simulations are performed, it is possible achieve
better agreement between predicted and actual haulage operation results.

In future, we plan to develop a truck haulage simulation algorithm that can consider the various
truck delay times that occur when a truck stops driving. In an actual haulage operation, there are
various types of truck delay times, such as the time required for an empty truck to yield a loaded
truck on a narrow underground haulage road and the time of waiting for an order of ore loading.
Therefore, it is necessary to identify the types of truck delay times and the locations where the delay
times occur in the study area. Considering these conditions, the existing truck haulage simulation
algorithm, neural networks, and mathematical programming methods should be updated.
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