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Featured Application: This paper presents a new path planning model that combines the global
path planning and the local path planning for the large-scale complex marine environment.
Meanwhile, the online learning swarm hyper-heuristic algorithm (SHH) is proposed to solve
this model with real-time performance and stability.

Abstract: Autonomous underwater vehicles (AUVs) as an efficient underwater exploration means
have been used to perform various marine missions. However, limited by the technologies of
underwater acoustic communications and intelligent autonomy, the most current and advanced
AUVs only perform a limited number of tasks in the small-scale area and the known underwater
environment. Therefore, in this paper, a one path planning model was proposed combining the global
path planning and the local path planning for the large-scale complex marine environment. More
specifically, the B-spline curve was used to represent the smooth path for the requirement of kinematic
constraints of AUVs. After considering the various constraints, such as the energy/time consumption,
the turning radius limitation, the marine environment, and the ocean current, the path planning was
abstractly modeled as a multi-objective optimization model with the time cost, the curvature cost, the
map cost, and the ocean current cost. The swarm hyper-heuristic algorithm (SHH) with the online
learning ability was proposed to solve this model with real-time performance and stability. The
results showed that the proposed online learning SHH algorithm had obvious advantages in terms
of time efficiency, stability, and optimal performance compared with the results of two traditional
heuristic algorithms, both particle swarm optimization (PSO) and firefly algorithm (FFA). The time
efficiency of the online learning SHH algorithm improved at least 20% compared with PSO and FFA.

Keywords: AUV; path planning; swarm intelligence; swarm hyper-heuristic algorithm; online
learning

1. Introduction

In recent years, many scholars and engineers are committed to developing various autonomous
underwater vehicles (AUVs) because of the increasing application demands [1], such as marine
environment exploration [2], marine resource monitoring [3], pelagic survey [4], seabed resource
exploitation [5,6], military mission [7], and so forth. With the rapid development of more available
advanced technologies, such as processing capabilities and high-density power supplies, more and
more AUVs are now indeed being used for executing those high risk and repetitive tasks instead of
people [8]. With the roles and missions constantly evolving, AUVs, instead of people performing
missions in the unknown large-scale complex underwater environment, are an inevitable trend
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because of AUVs’ inherent advantages. However, until recently, limited by its autonomy and acoustic
communication abilities, AUVs can only conduct and implement a limited number of tasks in the
offshore area in a relatively known environment. AUVs are needed for higher performance on
autonomy and intelligence, such as decision-making planning, situational awareness, path planning,
and simultaneous localization and mapping (SLAM), etc [9]. Path planning technology of AUVs is
a significant technology that improves the AUVs’ autonomy and promotes their applications in the
large-scale complex marine environment [10].

It is desirable for a path planner to have an effective path planning model and an online learning
algorithm to adapt the model’s complexity. On the one hand, it is still a challenge to build this effective
path planning model that satisfies the various constraints, such as the energy/time consumption, the
turning radius limitation, the marine environment, and the ocean current. On the other hand, real-time
performance and stability of planning the path is also an important issue. In fact, the autonomous path
planning problem can be recognized as a search problem under multiple constraints, which principally
includes two sub-questions: How to represent and model the path, and what algorithms efficiently
find the optimal path. The following part first summarizes the commonly used path representation
methods and then summarizes the various path planning algorithms.

There are many ways to represent the motion path of AUVs in the underwater environment.
Common representation methods are straight lines, Dubin-curves, polynomial curves, and spline
curves. The straight-line representation [11] treats the path as a series of segments that are connected
end to end. This representation is simple, but the line segments need to be smoothed for the kinematic
constraints and controllability of AUVs. The Dubin-curve representation [12] uses a circle for smoothing
straight-lines at the line segment connection, which is widely used in the field of mobile robots [13],
but the Dubin-curve representation is computationally intensive and is not suitable for real-time
path planning [14]. The polynomial and spline curves can represent more complex and smooth
paths [15,16] using fewer parameters (or control points), which have been increasingly used in robot
path representations in recent years. In this paper, the B-spline curve is proposed to represent the
smooth path for the requirement of kinematic constraints of AUVs.

The path planning algorithm can be simply divided into two categories according to the optimality
of the solution result. One class emphasizes the optimality of the solution results. These algorithms are
represented by the graph search algorithms, while the other class emphasizes that the optimal feasible
solutions are obtained with the greatest possibility under reasonable computational costs, such as
sample-based algorithms, artificial potential field (APF), bioinspired meta-heuristics [17], and artificial
intelligence based (AI-based) algorithms. Li et al. [18] also summarized AUV path planning methods
based on the geometric model search algorithms, probabilistic sampling algorithms, artificial potential
field algorithms, and intelligent algorithms.

The graph search algorithm is a classic path planning method in the robotic field. The graph
search algorithm uses the D or A* algorithm and their various variants to search for the optimal
path between the start point and the goal point by representing the environment as a raster map or
a topological map with a smaller amount of data. Arinaga et al. [19] applied the D algorithm to the
global path planning problem of AUVs in the underwater environment, and the algorithm generated a
path without collision. Carroll et al. [20] represented the marine environment as a quadtree map and
used the A* algorithm to search for the optimal path in the map. Carsten et al. [21] applied the 3D
Field D* algorithm to solve the three-dimensional space path planning problems.

The sampling-based method mainly includes the probabilistic roadmap algorithm (PRM) and
random trees algorithm (RRT) [22] and its various variants, which are used to quickly obtain feasible
solutions for complex path planning problems. The PRM algorithm first generates a network graph
by a series of random position points, and then uses the A* algorithm to search for the path from
the start point to the goal point. McMahon et al. [23] successfully applied the PRM algorithm to the
path planning problem under the complex constraints of AUVs in a 3D underwater environment and
carried out experimental verification. RRT uses a special incremental sampling search method, which
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is more efficient than PRM in single-request planning and has a good performance in high-dimensional
space planning problems. Carreras et al. [24] used the RRT* algorithm in the path planning problem of
AUV in a real-time two-dimensional environment. The simulation results showed that the method had
excellent adaptability in the real marine environment.

The artificial potential field method mainly includes APF and BUG algorithms, and this kind
of algorithm is suitable for real-time obstacle avoidance. Kruger et al. [25] modeled the AUV path
planning problem as an optimization problem under multiple constraints and solved the model by
APF algorithm. Putra et al. [26] used the BUG algorithm for AUVs local emergency obstacle avoidance
and performed the simulation verification.

AI-based algorithms (or biological heuristic algorithms) mainly include particle swarm
optimization (PSO) [27,28], ant colony algorithms (ACO) [29], genetic algorithms (GA), tabu search
(TS) algorithms, or bioinspired self-organizing maps [30]. In recent years, such algorithms have drawn
increasing attention to the solution of AUVs path planning problems [31]. Sun et al. [32] applied the PSO
algorithm to the AUV path planning problem. The simulation results showed that the algorithm was
simple and easy to implement, with high robustness and fast convergence. Wang et al. [33] proposed
an adaptive ACO algorithm to solve the AUV path planning problem, which solved the shortcomings
of slow convergence and easy to fall into the local optimal solution. Alvarez et al. [34] applied a genetic
algorithm (GA) to the AUV path planning problem to minimize the energy consumption of the path
considering ocean current information.

Differing from these omnidirectional ground robots and quadrotors, most of the AUVs are typical
underactuated systems, which only rely on the propeller of the tail to generate power. The search
method for discrete paths by rasterizing environmental maps is difficult to apply in underactuated
AUVs. The AUV path planning method puts forward the higher requirements on the smoothness of
planned paths. The path not only needs to be smooth, but also cannot exceed its maximum turning
radius of the kinematic constraints and controllability of AUVs. The search-based algorithm has a good
performance in the case of fewer constraints and a small-size problem. However, once the problem
constraints increase or the problem size becomes larger, the search efficiency will drop sharply, which
is not conducive to the practical application. Although the artificial potential field method can quickly
solve the optimization problem under multi-constraint conditions, it is easy to fall into the local optimal
solution and sacrifice the stability. AI-based algorithm solves the path planning problem, multiple
constraints can be considered in the optimization model, and the better feasible solutions satisfying the
constraints are obtained in an acceptable time. However, real-time performance and robustness of
such intelligent algorithms still seriously restrict the extension and utilization of AI-based algorithms.

In this paper, a path planning model was proposed to implement the application in the large-scale
complex marine environment, and the online learning swarm hyper-heuristic algorithm was proposed
to meet the requirements of the real-time performance and robustness. There are two main contributions
in this paper. Firstly, the proposed path planning model which combines the global path planning with
the local path planning is suitable for the large-scale complex marine environment. After considering
the various constraints, such as the energy/time consumption, the turning radius limitation, the marine
environment, and the ocean current, the path planning was abstractly modeled as a multi-objective
optimization model with the time cost, the curvature cost, the map cost, and the ocean current cost.
Secondly, the swarm hyper-heuristic algorithm (SHH) with the online learning ability was proposed to
solve the proposed path planning model with real-time performance and stability.

The structure of this article is as follows. The autonomous decision-making system is described in
Section 2. Then, in the following Section 3, the modeling method of AUV path planning is introduced.
Following this, the swarm hyper-heuristic algorithm is proposed to solve this problem in Section 4.
Finally, the results of different algorithms are compared and analyzed to verify the correctness and
effectiveness of the model.
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2. Overview of Autonomous Decision-making System

With the aim of improving the AUVs’ autonomous ability, this study proposed and developed
the autonomous decision-making system (ADS) of AUVs. As shown in Figure 1, the proposed ADS
comprises five closely related components, which includes the decision layer, the navigation layer, the
control layer, the monitoring unit, and the communication unit.

The decision layer is responsible for advanced decision-making and task management, such as
task scheduling, emergency control, and permission management. The navigation layer provides path
planning, environment mapping, and situation awareness to support autonomous navigation. In the
navigation layer, the AUV uses the electronic chart data to conduct the online path planning under
the multi-constraints, and according to the real-time data obtained by various sensors to construct
the environment map and re-plan the path. The control layer is used to generate control commands
that control the AUV traveling along the planned path or uses reactive behavior to obtain real-time
responsiveness of the AUV system. The communication unit is a bridge for data exchange between the
AUV and the command center system.
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Figure 1. The system architecture of autonomous decision-making system (ADS). 
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The navigation layer can plan the voyage paths according to the AUV’s missions and the
environmental information. At present, many available AUVs still need to download the workflow for
a certain task to the control computer with a pre-programmed form before the start of the task. At the
stage of task execution, human intervention is required at any time to ensure the security of the AUV
and the reliability of the task execution. This traditional operation procedure cannot handle large-scale,
highly dynamic and complex marine environments, and has low adaptability to new environments,
which can easily lead to the loss of the AUV or the failure of mission’s execution. Advanced AUVs are
often equipped with expensive sensors so that the price and maintenance costs of AUVs are relatively
high, and the loss or failure to complete tasks is unacceptable.

Therefore, AUVs must have the ability to adapt to the large-scale, highly dynamic marine
environments to ensure their own safety and the accuracy of mission’s completion. Planning is an
effective way to deal with complex environments. Path planning and path re-planning generate the
trajectory of the AUV navigation to ensure collision-free, safe and energy-saving and to adapt to
dynamic and complex marine environments. The path planning achieves the autonomy of the AUV,
ensuring the security of the AUV and the reliability of task execution. The following is an analysis of
the constraints that need to be considered for AUV navigation path planning.

Trajectory dynamics constraints. When the actual AUV travels, there are dynamic constraints,
such as the maximum radius of gyration, the maximum speed, the maximum acceleration, etc.
The planned path should satisfy these constraints, which requires adding corresponding constraints in
the algorithm to limit the generation space of the track. The path generated by the local path planning
module should satisfy the dynamic constraints, and there should be no turning radius which is too
small or other conditions that do not satisfy the dynamic constraints.
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Obstacle and current constraints. Obviously, the path planned by the path planning algorithm
needs to meet the collision-free constraint. In addition, the motion of the AUV should also take into
account the influence of the water flow. The tangential water flow will cause the AUV to deviate from
the original path and result in motion errors. The reverse flow will increase energy loss. Therefore,
the path planning algorithm should plan as far as possible to avoid the collision and meet the path of
certain water flow constraints.

3. Modeling of Path Planning

The conventional path planning method mainly relies on discretizing the environment and using
the A* and other search algorithms to obtain the path between the start point and the end point. This
obtained path is the absolute shortest path at the high resolution of the environment map. Although
the path obtained by the A* and other search algorithms is the absolute shortest path, either it is
not necessarily a smooth path due to the low-resolution environment map, or those methods would
consume much time to search in the high-resolution map. It is difficult to track the unsmooth path
for AUVs due to its ontology structure design. In recent years, many scholars have begun to study
the path planning method that satisfies the requirements of the smoothness, and the shortest path
simultaneously. In this section, the A* algorithm was first used to find the global path, and then
modeled the local path planning based on the global path planning, considering the time, turning
radius, obstacles, and ocean current constraints. The authors provided a detailed description of the
problem mathematical definition and the optimization criteria for the local path planning.

3.1. Global Path Planning

The global path planning in the navigation layer generates a global network node path for AUV
navigation based on the task execution sequence generated by the decision layer. The task execution
sequence generated by the decision layer has three disadvantages for the following path planning.
Firstly, the generation procedure of task sequence does not consider the influence of environment in
detail. This will result in the length of the planned path being larger than the distance of two task
points. Secondly, the distances between two task points are usually too long, especially for the scattered
tasks in the large-scale marine environment. This characteristic will lead to the long computing time of
calculating the optimal path and go against real-time planning and re-planning. Thirdly, the distances
between two task points largely differ so that it brings difficulties to the real-time path planning and
path re-planning.

Therefore, in the global path planning stage, this study expressed the task execution sequence as
one task network graph GT = (VT, ET). VT is the task node set of the task network graph (including
one start point, one goal point, and lots of task points). ET indicates the edge set of the task network
graph. Some discrete intermediate points with roughly uniform length are randomly added to the
task node set VT. Combined with the task node set VT, one path node set VP and one path network
graph GP = (VP, EP) can be generated. The new edge set EP can be easily obtained by trying to connect
all the added nodes by straight lines. If the straight line connecting two nodes is passed through the
land or danger area, the A* algorithm is used to search for the shortest path in the path network graph.
The A* algorithm should not take much time to explore the shortest path in this path network graph
since it does not concern itself about other constraints, except for the environment. However, it can
obtain a discrete path with the shortest distance. The distance between two arbitrary path points is
approximately the same that will benefit the real-time path planning and path re-planning. By this way,
this global path planning overcomes the above three disadvantages of the task execution sequence
generated by the decision layer. As shown in Figure 2, the left picture is the task execution sequence
generated by the task planning algorithm, and the right picture is the refined global planning path
generated by the discrete path points with uniform spacing distances.
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3.2. Mathematical Definition of the Problem

The sailing of the AUV is easily affected by ocean currents due to its small inertia. On the one hand,
the ocean current will interfere with the navigation of AUVs, causing its navigation drift. On the other
hand, the rational use of ocean currents can assist AUVs to reduce energy consumption. Considering
two extreme cases, if the AUV’s navigation direction is consistent with the ocean current direction,
the ocean currents will provide the positive work for the AUV’s navigation. In this case, the ocean
current assists the AUV to sail. When the AUV’s navigation direction is opposite to the ocean current,
in such case the ocean currents do negative work to the AUV, and the currents hinder the AUV’s sailing.
Therefore, if the ocean current information of the known environment is considered in the local path
planning stage, the influence of ocean currents on the AUV navigation can be utilized to some extent
to assist the AUV navigation.

The ocean current information is modeled as a two-dimensional ocean map, which represents
the seawater flow information. This simplification is reasonable because the variation in the vertical
direction is small relative to the horizontal size scale, and the movement of the water flow in the vertical
direction is much smaller than the movement in the horizontal direction (because of the rotation of the
earth). Under these two assumptions, the ocean dynamics model in the horizontal plane is described
by the two-dimensional Navier- Stokes equation [35]:
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where
→
r 0 is the center position vector of the vortex; Γ and δ are the intensity and radius parameters of

the vortex. The physical model represented by the Equation (2) is used to analyze the velocity field of
the surrounding water flow environment [35].

The position, radius, and velocity of the Lamb vortex in practice are analyzed using data obtained
by the horizontal acoustic doppler current profiler (H-ADCP). The number of Lamb vortices and the
center of the vortex are estimated using the following method. Assuming that the velocity measured
by H-ADCP is the tangential velocity produced by the nearest vortex, the vertical direction of this
velocity is the radial direction of the vortex, using adjacent velocity information can obtain the center
of the vortex. Figure 3 shows a schematic diagram of a water flow Lamb vortex.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 22 
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Since the AUV rarely changes its depth when navigating in large-scale marine, in this paper, the
authors only considered the two-dimensional path of AUV. The B-spline curve was used to represent
the two-dimensional local path of AUV. Compared with the Bezier curve, the number of control points
of the B-spline curve is independent of the order of the curve. The local characteristics of the curve
can be adjusted by adjusting the position of the local control point. This explains why it is more and
more applied in the robot path representation. The position of the control points can be defined as
C =

{
ci = (ϑi

x,ϑi
y)

∣∣∣ci ∈ R2, i = 1, 2 . . . , n
}
. The curve order is K and Bi,K(t) is the basic function of the

B-spline curve, then an AUV path can be expressed in the form of the equation:
X(t) =

n∑
i=1

ϑi
x × Bi,K(t)

Y(t) =
n∑

i=1
ϑi

y × Bi,K(t)
(3)

Therefore, the local path planning problem of AUV can be described as finding the control points
of the B-spline curve, so that the obtained curve path satisfies the non-collision, the whole path satisfies
the minimum turning radius constraint, and the path direction follows the direction of the ocean
current as much as possible. This problem can be modeled as an optimization problem under multiple
constraints, using intelligent algorithms.

3.3. Optimization Criteria

The optimization cost functions are the functions related to the B-spline path. Given a curve path,
the cost function can be used to calculate a comprehensive cost value that combines the time cost,
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the path curvature, the environment map, and the ocean current. A discrete B-spline path ℘ can be
expressed as the set comprised by the discrete points shown in the formula (4).

℘ =
{
℘1, . . . ℘i, . . . ℘h

∣∣∣∣1 ≤ i ≤ h,℘i =
(
Xi, Yi,ψi

)
,℘i
∈ R3

}
(4)

where h is the number of discrete points on the path; Xi, Yi are the position of the AUV at the i discrete
point; ψi is the direction of the AUV at the i discrete point, also named as the yaw angle, which can be
calculated using the following equation:

ψi = tan−1


∣∣∣Yi+1

−Yi
∣∣∣∣∣∣Xi+1 −Xi
∣∣∣
 (5)

The time cost is one optimization criteria that requires the shortest sailing time, and usually is
proportional to energy consumption. The time cost is obtained by dividing the total length of the
accumulated path by the average velocity, as shown in the Equation (6).

Tcos t =
h−1∑
i=1

∣∣∣℘i+1
x,y −℘

i
x,y

∣∣∣
|v|

(6)

where h is the total number of points in the discrete path, and v is the average velocity. The time cost is
used to constrain the traveling time. Minimizing the time cost under certain conditions can result in a
path that has the shortest distance and satisfies certain conditions.

The curvature cost is obtained by accumulating the approximate curvature at each discrete point
on the path, as shown in the Equation (7).

ρcos t =
h−1∑
i=1

∣∣∣∣℘i+1
ψ −℘i

ψ

∣∣∣∣∣∣∣℘i+1
x,y −℘

i
x,y

∣∣∣ (7)

The curvature cost is used to constrain the spatial curvature of the path, that is, the turning radius
(curvature radius) on the path. The curvature and the turning radius are inversely proportional. A legal
path should not have a turning radius less than the minimum turning radius, and the path that satisfies
the AUV turning radius constraint can be obtained by minimizing the curvature cost.

The map cost is obtained by the map information at each discrete point on the path, as shown in
the Equation (8). If the point is on a map danger area (land, island, etc.), the map cost for that point is
1, otherwise 0. Minimizing the cost of the map is used to constrain the path from colliding with the
danger area of the map and ensure the non-collision of the path.

Mcos t =
h∑

i=1

 1

0

℘i
x,y ∩DangerArea

otherwise
(8)

The ocean current cost is one optimization criteria obtained by accumulating the dot product of
the ocean current vector and the path direction vector at each discrete point on the path, as shown in
Equation (9)

Ocos t =
h∑

i=1

∣∣∣∣∣∣→ν℘i
x,y

∣∣∣∣∣∣ · θ(→ν℘i
x,y

,
→
τ℘i

x,y

)
(9)

where
→
ν℘i

x,y
is the ocean current vector at the point ℘i

x,y;
→
τ℘i

x,y
represents the path unit direction vector

at the point ℘i
x,y; θ(·) is the angle between the two vectors

→
ν℘i

x,y
and

→
τ℘i

x,y
.

The path planning is a multi-objective optimization problem. The optimal path evaluation
criterion includes the shortest path time Tcost, the smallest cumulative curvature ρcost, the map cost
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Mcost, and the ocean current cost Ocost. The multi-objective optimization problem can be converted
into a single-objective optimization problem by summing the weighted four cost value, as shown in
the following equation:

min℘cost = ω1 · Tcost +ω2 · ρcost +ω3 ·Mcost +ω4 ·Ocost (10)

where ω1, ω2, ω3, ω4 ∈ R are the weights of different cost values respectively. The values of weights
are determined by the expert system and application demands.

4. Swarm Hyper-heuristic Algorithm

4.1. Swarm Hyper-heuristic Algorithm

As shown in Figure 4, the hyper-heuristic algorithm is an advanced type of intelligent computing
method appearing in the early 2000 s, which provides a high-level strategy (HLS) that manipulates or
manages a set of low-level heuristics (LLH) to improve the searching efficiency and performance. The
hyper-heuristic algorithm works in a higher abstraction layer than the meta-heuristic algorithm, and
the hyper-heuristic algorithm selects which low-level heuristic method to use at a particular moment
through state of the problem solving [36]. Swarm hyper-heuristics algorithm searches a kind of good
solution to the problem rather than the best solution of the problem directly, which is independent of
the specific problem domain or background issues.
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The swarm intelligence, derived from the observation of insect swarms in nature, is the behavior
characteristics exhibited by swarm organisms through cooperation. Swarm intelligence is an increasing
focus in the field of metaheuristic algorithms, and the efficiency, and effectivity in solving complex
problems has drawn much attention in recent years. However, some scholars believe that these similar
algorithms lack novelty. Some algorithms have similar operations, by taking the different names and
simulating the characteristics of another natural organism. The performance of the metaheuristic
algorithm depends on how the algorithm balances two basic search mechanisms, intensification and
diversification. The intensification gets the algorithm to perform a detailed search in the local, and the
diversification prevents the solution from entering the local optimum prematurely. These two basic
mechanisms include a variety of group operations. For example, fireflies’ movements according to the
light intensity and lightness in the firefly algorithm are intensification, and the random movement of
fireflies is diversification.
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Therefore, Tilahun et al. [37] proposed a swarm hyper-heuristic algorithm framework, trying to
integrate the swarm meta-heuristic algorithm with a general hyper-heuristic framework, where the
updating operators were recognized as low-level heuristics and guided by a high-level hyper-heuristic.
Different learning methods are used to determine the intensified and diversified behavior of the
algorithm. According to whether or not to learn, it can be divided into three categories, no learning
SHH1, offline learning SHH2, and online learning SHH3. According to the conclusion of [37], the
performance of the online learning method SHH3 was better than the other methods.

The swarm-based meta-heuristic algorithm is a swarm-based algorithm, in which the individual in
the swarm interacts with each other through different update operators and achieves their own updates.
The efficiency and effectivity of swarm hyper-heuristic algorithms are determined by two steps,
including the heuristic selection and the heuristic generation. The heuristic selection is the method for
choosing or selecting the appropriate heuristic at each iteration, while the heuristic generation is the
procedure that generates various heuristics [36].

4.1.1. Heuristic Generation

Heuristic generation is the procedure that generates various heuristics. A heuristic, usually named
as an operator, is one operation procedure that inputs a solution and outputs a new solution after
an iteration. Assuming an operator is expressed as O〈·〉, the new solution xt+1 is the map using the
operator O〈·〉 after receiving an input xt, which can be expressed as the equation:

xt+1 = O
〈
xt
〉

(11)

To a certain extent, the performance of the algorithm depends on these heuristic operators. Many
scholars carried out related research and proposed new heuristic operators for heuristic algorithms.
Swarm intelligent operators mimic the different swarming behaviors of different swarm organisms.
Some outstanding examples are the foraging swarming behavior from ants (the ant colony optimization)
or flies (fruit fly optimization algorithm), and the gathering behavior from fireflies (firefly algorithm)
or masses (binary gravitational search algorithm such as ants). However, some heuristic operators
have similar operations, just taking the different names and simulating the characteristics of another
natural organism. The widely used operators are summarized in the following Table 1. There may be
more types of updating operators in the future, but the swarm hyper-heuristic algorithm framework
does not depend on the specific type of operator, and it is convenient to add new types of operators.
Various operators comprise an operation set of operators, denoted as O = {O1, O2, . . . , Ok}. Different
operators in this operation set have the different searching characteristics of increasing the degree of
diversification or intensification. The diversified operator provides the search strategy away from the
explored neighborhood region, whereas an intensified operator accelerates the convergence to the
promising area.
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Table 1. Some widely and recently used operators.

Operator Name Operator Formula Note to Explain

Random move in the
neighborhood xi := xi + λmin · rand · u λmin is an intensification step length

Following better solutions xi := xi + λ · rand ·
(
x j − xi

)
∀x j, f

(
x j

)
≤ f (xi)

Following the best solution xi := xi + λ · rand · (xb − xi) xb is the best solution in population

Following own best xi := xi + λ · rand ·
(
xbest

i − xi
) xbest

i is the best performance of the
solution xi in history

Random long jump xi := xi + λmax · u λmax is a diversification step length
Mutation xi := m(xi) m is a variation function

Run away from the worst xi := xi + λ · rand · (xi − xw) xw is the worst solution in population
Run away from worse solution xi := xi + λ · rand ·

(
xi − x j

)
∀x j, f

(
x j

)
≥ f (xi)

Improving local search xi := xi + λmin · rand · u
u = argmin

{
f (xi + λmin · rand · u)

: u ∈
{
u1, u2, . . . , ui, . . . , um,

→

0
}
}

4.1.2. Heuristic Selection

Heuristic selection is the procedure of using one high-level strategy (HLS) to manipulate or
manage a set of low-level heuristics (LLH). It is noted that the performance of the swarm hyper-heuristic
algorithm depends mainly on how to balance the two basic search mechanisms of intensification and
diversification. There are two issues for this problem, including how to evaluate the intensification
and diversification performance after one iteration and what strategy is used to select the operator
according to the intensification and diversification performance. The without learning SHH uses
the strategy of giving equal probability to select each operator in each iteration, whereas the online
learning SHH has the ability to evaluate probabilities of choosing which operators before or after an
iteration. In this paper, online learning SSH was chosen to improve the adaptability. The intensification
and diversification of the algorithm are measured by a certain, and then the selection probabilities of
the centralized and diversified operations are adjusted so that the intensification and diversification
are more balanced.

The degree of intensification is determined by the value of the best cost function before and
after one iteration. For a minimization problem, the algorithm is more intensified in this iteration if
f (xt−1

b ) > f (xt
b). The degree of diversification can be measured by the sum of the distances between

solutions and the central solution, as shown in the following equation:

d =
N∑

i=1

‖xi − xc‖ (12)

where xc =
∑N

i=1 xi/N is the central solution. For a minimization problem, the algorithm is less
diversified in this iteration if dt−1 > dt.

Therefore, for a minimization problem, the relationship between intensification and diversification
after one iteration is shown in Figure 5. In the iterative process, the degree of diversification and
intensification of the algorithm should be maintained at a considerable level. If the trend of algorithm
diversification is detected to decrease, the selection probability of diversified operator in the algorithm
should be appropriately increased.
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The change of the degree of intensification or diversification can be achieved by modifying
the selected probability of each operator. Consider an increase of the degree of diversification of
search behavior, and the probability modifiers for all diversified operations by Pt(oi) = γPt−1(oi). The
probability modification factor is γ > 1 corresponding to all diversified operations. Then, the selection
probability vector is normalized by P = P/

∑
P.

4.2. Problem Solving

4.2.1. Initialization of B-spline Curve

In this paper, the path planning method uses the B-spline curve to represent the path of AUVs.
The variable control point of a set of B-spline curves is an individual. Let the swarm size be imax, the
dimension of each individual is M, then an individual in the swarm can be represented as a set of
control points.

xi =
{(

rp1,i, rp2,i, . . . rpk,i, . . . rpM,i
)∣∣∣∣rpk,i ∈ R2, 1 ≤ i ≤ imax, 1 ≤ k ≤M

}
(13)

Considering that the path generally does not appear to be distorted and intersected, the order of the
control points is generally along with the start point to the goal point. Therefore, in the initialization
phase, the equidistant point is generated on the line connecting the start point and the goal point, and
the perpendicular line of the line segment is made on each equidistant points to obtain a vertical line,
and a random point is generated on each vertical line. Thus, the entire initialized swarm is obtained,
and the random point is calculated as shown in equation: rpk,i,x = cpk,x + dist× rand + rand

rpk,i,y = dk,y −
(rpk,i,x−dk,x)

slope + rand
(14)

where dist is the end point of the vertical line to the left of the bisector, the distance between the start
point S and the goal point D in the direction, slope is the slope of the vertical line and rand is a random
value and rand ∈ [−0.5,0.5]. The swarm obtained by initialization is shown in Figure 6a.
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The fixed control point is used to control the start and end directions of the local path curve to be
the same as the start and end directions of the AUV. The increase mode is to start from the starting
point S and add a fixed control point p1 along the starting direction of the AUV by a short distance.
Starting from the end point D, a fixed control point p2 is added to a short distance along the opposite
direction of the end direction of the robot.{

p1,x = Sx + d · cosθ1

p1,y = Sy + d · sinθ1{
p2,x = Dx − d · cosθ2

p2,y = Dy − d · sinθ2

(15)

where S, D ∈ R2 is the start point and goal point respectively. θ1 is the starting direction and θ2 is the
end direction. Figure 6b shows the schematic diagram of fixed control points.

4.2.2. Procedure of Optimization

The online learning swarm hyper-heuristic algorithm was used to solve the optimization problem
proposed in formula (10). The pseudocode of the path planning using online learning SHH algorithm
is shown in Algorithm 1. The method first sets the algorithm parameters, such as the number of
iterations tmax, the probability modification factor γ, the number of individual swarms imax and the
parameters of the B-spline curve. According to the equations from Table 1, the set of basic operators O
is determined. Each operator Oi has an equal probability of being selected in the first iteration. In this
way, the initial value of the selection probability vector P is determined. Then initializing the swarm,
an individual xi is represented by a set of variable control points of the B-spline curve, and the initial
generation value of each individual is calculated using the cost function shown in the formula (10).
Then, enter the iteration of the swarm until the number of iterations reaches the set value tmax, and
the optimal individual (the optimal control point) is used to generate the optimal local path. In each
iteration step, one operator is selected from the set of basic operations for each individual in turn. The
operator is applied to the individual, and the individual’s cost value is updated until all individuals in
the swarm have completed one operation. After each iteration, the degree of diversification can be
evaluated by (12), and the selection probabilities of the basic operators are updated according to the
four cases shown in Figure 5, making the trend of intensification and diversification more balanced in
the next iteration.
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Algorithm 1: Pseudocode of swarm hyper-heuristic algorithm for path planning

Input: S, θ1, D, θ2, imax, tmax

Output: Path
1. initialize: Set the parameter of algorithm and B-spline curve;
2. initialize the population basic operation set O, and its selection probability vector P;
3. initialize the population according to the formula (13) and (14).
4. for t = 1; 2; ; tmax do
5. for i = 1; 2; ; imax do
6. Selects the basic operation corresponding to the maximum value in the population basic operation

selection probability vector Oi;
7: operates on individual i using the operation Oi;
8: Updates the value of the individual i according to the Equation (10);
9: end for
10: Caculates the degree of diversification dt according to the Equation (12);
11: According to the Figure 5 to evaluate the degree of intensification and diversification of this iteration,

and update the operation selection probability vector Pt;
12: end for
13: Output optimal Path;

5. Results and Discussion

The software running environment was Intel i7-8700K, 3.7 GHz. The operating system was ubuntu
16.04, and the algorithm was implemented by C++ language. The global path planning phase simply
generates the discrete path points and obtains the shortest path points according to the A* algorithm,
all of which can be completed in a relatively short time. The local path planning uses the B-spline
curve to represent the path. Combined with time, map, curvature, and ocean current constraints, the
local path planning problem is modeled as the nonlinear optimization problem with multi-constraint
conditions shown in the formula (10). Then, the online learning SHH is adopted to solve this problem.
In this section, three scenarios with the different marine environment, including only ocean current
information, only dangerous area information and both ocean current information and dangerous
area information contained, were simulated to test and analyze the running effectiveness of the model
and algorithm. The general metaheuristic algorithms, such as particle swarm optimization (PSO) [27],
firefly algorithm (FFA) [17], were used in the path planning problem. The FFA algorithm proved to
have better performance compared with other algorithms in [17]. In this paper, the results of online
learning SHH were compared with the PSO and FFA.

The number of B-spline control points was set to 7, where the number of variable control points was
set to 3 and the curve order was set to 3. According to the parameter design method of [37], the number
of iterations of the SHH algorithm was set to 80 times. The number of individual swarms was set to 100,
random long-distance jump and mutation operations λmax = 40, random movement λmin = 20, and
follow-up operations λ = 0.4. Referring to the paper [27], the inertia ω, the personal influence c1 and
the social influence parameters c2 of PSO were set to 0.7298, 1.496, and 1.496 respectively. According
to the reference [17], the number of FFA iterations was set to 80, the number of fireflies was set to
100, the attracting factor γFFA = 0.05, and the random moving factor α = 3. The iterations times and
the number of individual swarms of PSO, FFA, and SHH were set to the same value to compare the
difference in the performance of the three algorithms under the same conditions.

It is worth noting that in the actual program implementation, the operation set only contained the
first 6 operators, and did not contain the last 3 operators. After the inclusion of the runaway operators,
the convergence of the algorithm drops sharply, and the results of the convergence cannot occur many
times in the test. These two operations were not suitable for solving the optimization problem of the
path planning model.



Appl. Sci. 2019, 9, 2654 15 of 22

5.1. Simulation Results

5.1.1. Scenario1: Only Ocean Current Information

As mentioned above, the ocean current has a significant influence on the navigation of AUVs,
affecting navigation accuracy and energy consumption. Therefore, if the planned path can go in the
direction of the ocean current, the ocean current will be used to improve the navigation performance of
the AUV. In this part, this study analyzed the planning effect of the SHH algorithm for the scenario
that only contained ocean current information. The results of the SHH were compared with the path
planning results using two heuristic algorithms, PSO and FFA.

The solid line in Figure 7 was the planning result using the SHH algorithm without considering
the influence of the ocean current. Since there was no danger area, the planning result was a straight
line with the shortest path. The dashed line was the result after considering the influence of ocean
current information. It is evident that the planning path has obvious bending under the influence of
the ocean current. Under the condition of ensuring smoothness, the direction of planned path tried
to follow the direction of the ocean current as near as possible, which proved that the ocean current
constraint in the optimization cost function influenced the planning result.Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 22 
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Figure 8 is a comparison of the results of PSO, FFA and SHH algorithms in the case of only ocean
current information. The solid line was the result of the PSO; the dash-dot line described the result of
the FFA algorithm, and the dashed line was the running result of the SHH algorithm. All of the three
algorithms were planning a bending route because of the influence of ocean currents. The results show
that all algorithms can generate the local paths that basically conform to ocean current information in
scenario 1.
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The results of the three algorithms running 200 times under the same conditions were analyzed.
Table 2 is the result comparison of the PSO, FFA, and SHH in the scenario only containing ocean
current information. The data in the table were the average values obtained after repeatedly running
200 times under the same conditions. The computing time refers to the interval time from the entry to
the completion of the algorithm iteration. The average computing time of PSO, FFA and SHH were
2.2815 s, 1.1834 s, and 0.6214 s respectively. It appeared that the SHH algorithm had the shortest
average computing time compared with the PSO and FFA algorithms because the swarm operations
of the three algorithms were different. The FFA operation was only the darkness individual moving
towards the bright individual. This operation needs to traverse all other individuals when operating
one individual. This process is time-consuming. In addition to the operations of following the better
individual which need to traverse all other individuals, the other operations can be done in constant
time, so it is easily understandable that the SHH algorithm has high computing efficiency. The total
cost value of the final optimization of PSO, FFA, and SHH were 998.8257, 701.4505, and 624.668
respectively. The cost functions of the three algorithm evaluation paths were consistent. Therefore, the
results obtained by the SHH algorithm had the best cost value. It is visible that the SHH algorithm
using multiple operation sets has more advantages in solving the proposed path planning problem.
In addition, although the path length obtained by the SHH is longer, it is smoother and more suitable
for ocean current constraints.

Table 2. Results comparison using PSO, FFA and SHH algorithms in Scenario 1.

PSO FFA SHH

Computing time 2.2815s 1.1834s 0.6214s
Final total cost 998.8257 701.4505 624.6680

Time cost 171.2734 173.3448 176.5915
Curvature cost 73.0122 153.6648 150.5598

Ocean current cost 754.5393 374.4410 297.5167



Appl. Sci. 2019, 9, 2654 17 of 22

5.1.2. Scenario 2: Only Danger Area Information

This section tests the operational effects of the three algorithms in the scenario containing only
danger area information (Scenario 2). Figure 9 compares the results of PSO, FFA and SHH algorithms
in scenario 2. The cost functions in scenario 2 are time, danger area, and curvature. The path is as short
as possible on a smooth and bumpless basis.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 22 
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After running 200 times under the same conditions, the results of the three algorithms were
analyzed. Table 3 shows the statistics of PSO, FFA and SHH algorithms in scenario 2 running under
fixed conditions for 200 times. In terms of computing time, the SHH also had the greatest advantage,
with an average computing time of 0.6217 s, while the average computing time of PSO and FFA were
2.4215 s and 1.2700 s respectively. The final ultimate average cost value of SHH was 306.4266, while
the total average cost value of PSO and FFA were 588.3817 and 322.0653 respectively. This indicates
the SHH algorithm can find the best optimal performance for the proposed model in scenario 2. The
specific time cost and curvature cost of the SHH algorithm were more advantageous than the results
obtained by the PSO and FFA. In addition, the map cost value in the cost function was 0, which
indicated the visible paths had no collision with the environment obstacles.
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Table 3. Results comparison using PSO, FFA and SHH algorithms in scenario 2.

PSO FFA SHH

Computing time 2.4215s 1.2700s 0.6217s
Final total cost value 588.3817 322.0653 306.4266

Time cost value 185.6156 197.4390 196.8662
Map cost value 0 0 0

Curvature cost value 402.7660 124.6264 109.6048

5.1.3. Scenario 3: Ocean Current and Dangerous Area Information

This part compares and analyzes the operational effects of three algorithms in scenario 3 that
contains both ocean current information and danger area information. Figure 10 compares the results of
PSO, FFA, and SHH algorithms in such a scenario. The solid line was the result of the PSO, the dash-dot
line was the result of the FFA, and the dashed line was the result of the SHH. Apparently, the paths
planned by the three algorithms satisfy the constraints of no collision, smoothness, and to some extent
along the direction of the ocean current.
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Table 4 is the result comparison of PSO, FFA and SHH algorithms in the case of scenario 3. In terms
of computing time, the SHH algorithm used the shortest computing time, with the average time of
0.6241 s, which was 0.1992 s faster than the FFA. The total cost value of the final path using the FFA was
optimized to 935.7844, while for the SHH, the optimal path cost was 893.2590. The SHH had significant
advantages in terms of time cost and ocean current cost, but the FFA had a smaller curvature value.
PSO had the worst performance in the aspect of computing time, final total cost, and curvature cost
value. It shows that the path obtained by the SHH algorithm is shorter and more in line with the ocean
current constraint.
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Table 4. Results comparison using PSO, FFA and SHH algorithms in Scenario 3.

PSO FFA SHH

Computing time 2.4010s 0.8233s 0.6241s
Final total cost 1072.8236 935.7844 893.2590
Time cost value 185.5981 188.2685 187.1679
Map cost value 0 0 0

Curvature cost value 408.0219 232.7617 240.2193
Ocean current cost value 479.2037 514.7541 465.8717

5.2. Stability Analysis

In addition to the analysis of the results and average data of the three scenarios, the stability and
distribution of the results are also statistically analyzed. This subsection compares and analyzes the
running time and the resulting stability of three algorithms.

Figure 11 is a comparison of the running time distribution of the PSO, FFA and SHH algorithm in
term of running 200 times in scenario 3. The left graph is the statistical result of the PSO. It can be
seen that the running time of PSO was concentrated between 2.48 s and 2.35 s, and the median value
was approximately 2.39 s. There were many abnormal points on the upper side of the concentrated
distribution range, and the largest abnormal point reached approximately 2.62 s. The middle graph
is the statistical result of the FFA. Its running time was concentrated between 0.58 s and 1.2 s, and
the median was approximately 0.75 s. There were more abnormal points on the upper side of
the concentrated distribution range, and the largest abnormal point reached approximately 1.80 s.
The right graph is the statistical result of the SHH. It can be seen that the running time of the SHH was
concentrated between 0.61 s and 0.65 s, and the median value was approximately 0.62 s. A small number
of abnormalities appeared on both sides of the concentrated distribution range. More specifically, the
largest abnormal point was approximately 0.69 s, and the smallest abnormal point was approximately
0.60 s. Through comparing the running time distribution from Figure 11, the SHH algorithm that has
the most stable and most concentrated distribution of running time among the three algorithms can be
obtained. The results indicated the SHH algorithm had a good calculation time stability performance
in solving the proposed path planning model in this paper. The time efficiency of the online learning
SHH algorithm improved at least 20% compared with those of PSO and FFA.
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Figure 12 is a statistical comparison of the distribution of the final cost values of PSO, FFA, and
SHH algorithms after running 200 times in the case of scenario 3. The left graph is the running result
of the PSO. It can be seen that the optimal cost was mainly concentrated in the range of 1027 to 1101,
and the median value was approximately 1030. There were some abnormal points on the upper side
of the concentration range, and the maximum value of these abnormal points was approximately
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1195. The middle graph was the running result of the FFA. It can be seen that the optimal cost after
optimization was mainly concentrated between 910 and 965, the median was around 935. A small
number of abnormal points appeared on the upper side of the concentration range. The maximum was
approximately 995. The right graph is the running result of the SHH. It can be seen that the optimal
cost value after optimization was mainly concentrated between 860 and 930, the median was around
890. A small amount appears on both the upper side and the lower side of the concentration range.
Among the abnormal points, the smallest abnormal point was near 840, and the largest abnormal point
was near 980. By comparing the three cost stability analysis graphs, it can be obtained that the cost
value distribution of the SHH and FFA have the consistent ranges, that is, the final cost stability of
the two algorithms is equivalent. However, the overall cost value of FFA exceeded that of SHH to
approximately 50, indicating the SHH algorithm had the best search capability in solving the proposed
path planning model in this paper.
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6. Conclusions

In this paper, a unique model was developed which combined the global path planning with
the local path planning in order to meet the requirements for the large-scale complex environment.
The global path planning only performs the homogenization operation on the task sequence route,
so that the subsequent local path planning solution scale is in a relatively stable range. The local path
planning was modeled as a nonlinear optimization with multi-constraints, including the time, the
danger area, curvature, and ocean currents constraints. The online learning SHH was proposed to
attack the complexity of the path planning model. This paper analyzed the results in three scenarios.
Moreover, our rigorous comparison of the three algorithms, including PSO, FFA, and SHH algorithms,
showed that the online learning SHH algorithm had significant advantages in solving the proposed
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