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Abstract: With the increased use of image acquisition devices, including cameras and medical
imaging instruments, the amount of information ready for long term storage is also growing. In this
paper we give a detailed description of the state-of-the-art lossless compression software PAQ8PX
applied to grayscale image compression. We propose a new online learning algorithm for predicting
the probability of bits from a stream. We then proceed to integrate the algorithm into PAQ8PX’s
image model. To verify the improvements, we test the new software on three public benchmarks.
Experimental results show better scores on all of the test sets.

Keywords: lossless; image compression; ensemble learning; contextual information; probabilistic
method; geometric weighting

1. Introduction

Why is compression a difficult problem? In general, when it comes to predicting something, you
need to understand the process behind the result. This requires the acquisition of knowledge about the
environment and the potential dynamics. For example, if you know the English language, it will be
rather easy to predict the letters missing from a truncated sentence. Predicting the value of the pixels
in an image requires a deep understanding of what is represented in the image. The predictor needs to
create an internal representation of segments that correspond to features of the image, like shapes,
patterns, textures, borders, and then make a guess based on which part of the segmented image it is
currently in.

An important application of image compression is in the field of medical imaging. Whether the
images come from radiography, magnetic resonance imaging, ultrasonography, or by other methods,
the number of acquired images is growing, which makes it increasingly necessary to use advanced
compression methods. There are two important operations that require improvement: the storage of
images, be it for long or short term (archiving), and the transmission of images via networks. When it
comes to quality, lossy methods need to keep the quality of the image high to prevent mispronounced
diagnostics. There may be cases where medical law is involved and the legislation would state
that a copy of the medical images should be long term stored in lossless mode to allow diagnostic
reconsideration in case of legal proceedings.

In this paper, we describe the state-of-the-art image compression method called PAQ8PX and
introduce a new algorithm for online automated learning. We tailored the implementation for our
proposed method by integrating it with PAQ8PX, which resulted in an improved 8 bpp grayscale
model. We tested our implementation and obtained improvements on four datasets belonging to
three benchmarks.
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2. Related Work

Since compression is a difficult problem, the techniques used come from many branches of
algorithmics. We provide a review of some of the algorithms that appeared in the literature in recent
years and some of the algorithms that use a similar contextual method as ours.

Wavelet compression involves decorrelating the neighboring pixel values by convoluting them
with a basis function and then entropy encoding the resulting coefficients. The Burrows–Wheeler
transform involves applying a reversible sorting algorithm to the data, making it compressible using
simple operations. Since these methods remove the contextual correlation in the data stream, the data
compression falls into the category of non-contextual methods. There is ongoing research in the area of
non-contextual methods applied for two-dimensional or three-dimensional images.

Lossless wavelet compression was improved in [1] by introducing a new family of
update-then-predict integer lifting wavelets. In [2], the authors extended the Burrows–Wheeler
transform to two dimensions. The bi-level Burrows–Wheeler compression algorithm applies the
well-known block sorting algorithm on the rows of the image and then on the columns, for an improved
homogeneity in the 2D space. It then uses a modified kernel move-to-front for the 2D subspace before
the entropy coding stage.

A mixture of lossless and lossy wavelet-based color image compression has been described in [3],
where the region of interest based on the saliency of the image is taken into account when sending the
image progressively through the communication network. It was applied for wildlife photography
where the images are sent through a limited bandwidth channel. The Region of Interest (ROI) is
extracted using a convolutional neural network to create a mask. Two wavelet encoding types are then
used: for the lossless part SPIHT coding, for the lossy one EZW coding.

Deep learning for residual error prediction has been described in [4]. Here, a residual-error
predictive convolutional neural network (REP-CNN) is introduced with the scope of refining the
prediction of the LOCO-I and CALIC predictors. In total, three REP-CNN are trained, one for direct
prediction and two for predicting the residuals of the aforementioned predictors. The big disadvantage
of such a method is that, in order for a decoder to work, the entire trained neural network needs to be
sent along with the compressed representation.

Contextual methods are still the basis for both lossless and lossy image compression. There is a
lot of diversity in the literature about the choice of context and how it is used. An example of a lossy
image compression applied for medical ultrasound images relies on contextual vector quantization, as
shown in [5]. In this algorithm, a separation method based on region growing distinguishes a region of
interest in the image starting from a seed point. Different vector sizes are chosen for background and
the contextual ROI. The regions are then encoded with high and low compression ratios respectively,
and, then, are merged in a final result.

Another lossy image compression for medical imaging [6] relies on the contextual prediction of
the quantized and the normalized sub-band coefficients after a discrete wavelet transform was applied.

Extending the prediction by partial matching for two dimensions for lossless compression of
indexed raster images has been presented in [7]. Context models for sparse order lengths are created
and stored in an AVL-tree structure. A parallelization of the coding algorithm is presented by splitting
the image into independent blocks and compressing them individually.

Context-based predictor blending (CBPB) for lossless compression of color images is described
in [8], which is an extension of the algorithm CBPB [9], where the image is interpreted as an interleaved
sequence generated by multiple sources so that non-stationary signals are better predicted. The blending
prediction weights are selected based on the texture of the surrounding pixels and a Pearson correlation
coefficient is computed for adjusting these weights. The final prediction also takes into account a
template matching prediction. The CBPB algorithm was also ported to parallel execution via a CUDA
implementation [10].

Vanilc is a lossless image compression framework described in [11] for 8 bpp, multichannel color
images, and 16 bpp medical 3D volumes. The main contribution of the paper is a pixel probability
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distribution predictor based on a weighted least squares approach that uses a weighting function that
generalizes some of the proposed contextual schemes in the literature and provides good results when
it comes to the non-stationarities in the image while having only a few tuning parameters.

A lossless image compression algorithm is described in [12]. It is based on multi-resolution
compression for progressive transmission. It improves on prior work from [13], where the image
is decomposed into a pyramidal data structure and an edge adaptive hierarchical interpolation is
applied for coding and progressive transmission. The prediction accuracy is improved here by using
context-conditioned adaptive error modeling and by passing the estimates through an error remapping
function. In this way, it improves both the final bitrate and the visual quality of the reconstructed
images at intermediate stages.

Another lossless medical imaging compression algorithm using geometry-adaptive partitioning
and least square-based prediction is described in [14]. Because of the similarities of the images obtained
from the same imaging method, a prior segmentation via geometry adaptive partitioning and quadtree
partitioning of the image allows a good selection of a least squares optimized predictor for sections of
the image.

For lossless compression of 3D medical images, an extension of the minimum rate predictors from
2D to 3D has been developed in [15]. Here, 3D-shaped predictors were introduced to benefit from
the volumetric redundancy, and, then, volume-based optimizations are applied, and hybrid 3D block
splitting and classification is done. The algorithm was also extended from 8 bpp images to 16 bpp
images because they provide better diagnostic quality.

Lossless compression of multi-temporal hyperspectral images can also exploit the temporal
correlations besides the spatial and spectral ones. In [16], the fast lossless predictor, a variation of
the least means square applied to the causal context [17], has been extended to 4D to incorporate the
temporal aspect in the prediction. The residuals are computed as the difference between the prediction
and the current pixel and are then encoded using the fast Golomb-Rice coding.

3. PAQ8PX Algorithm for Lossless Image Compression in Detail

3.1. Introduction

PAQ is a series of experimental lossless data compression software aiming at the best compression
ratio for a wide range of file types without a focus on using few computing resources or keeping
backward version compatibility. It was started by Matt Mahoney and later developed by more than
20 developers in different branches of compression. PAQ8PX is a branch of PAQ started by Jan Ondrus
in 2009 and that has recently adopted the best image compression models in the series with the help of
Márcio Pais. In short, we refer to version 167 of PAQ8PX.

A detailed description of the software in its current phase is not available in the literature.
The reason may be the everchanging filetype specific models and the amount of version branching this
software receives, from simplified models for fast compression to platform-specific optimization tests
and the generalization of the algorithms used. However, a description of the PAQ series of compressors
from the perspective of machine learning is available at [18].

The description of the overall compression algorithm and the techniques used can be found in [19]
and [20]. The PAQ8PX version has a development thread that can be found at [21]. The source code is
written in the C++ programming language and is contained in only one file with more than 12000 lines
of code. The logic was not broken into different files in order to make it easier to compile to any
platform. The big downside of this is that it makes the code very difficult to read. Another thing that
makes the code difficult to develop is that numerous optimization techniques were inserted along the
code, which can slow down the understanding of what is going to execute and when.
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3.2. General Aspects

Compressing a file goes through four main stages: preprocessing, model prediction, context
mixing, and probability refining. An optional pre-training phase can be activated via command line
parameters. The pipeline for image compression has been described schematically in Figure 1.Appl. Sci. 2019, 9, x 4 of 19 
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The preprocessing phase is also split into three parts. At first, it searches through the file to be
compressed for known stream types. Based on these types, different models are activated for the
second stage of compressing. For example, it searches for image (1 bpp, 4 bpp, 8 bpp, 8 bpp grayscale,
24 bpp, 32 bpp, png 8 bpp, png grayscale 8 bpp, png 24 bpp, png 32 bpp), jpeg, gif, text, audio (8
and 16-bit mono and stereo), exe, base64, zlib streams, file containers, and others. After this stage,
an optional transform phase is applied for certain stream types such as text, where an end of line
transform can be applied, or EXE, where certain instructions are replaced with others. The transform
phase is then applied in reverse and if the result matches the original stream, the transform is kept.

In the case of images, the preprocessing phase extracts the file header, which is compressed
separately, and the byte stream containing the pixel values of the image. The width and the bit depth
of the image are extracted from the header and the width is passed on to the image model selected by
bit depth.

The model prediction and context mixing phase happen consecutively. Probabilities of individual
bits from the input stream are predicted by many specialized models. All the probabilities are combined
into one probability via the context mixing algorithm. The output probability is refined using a network
of adaptive probability maps. The final prediction is used to encode the bit from the stream using a
binary arithmetic coder. The algorithm is symmetrical, meaning that both the coder and the decoder
do the same operations ending up with the same final probability. The decoder uses the probability to
decode the bit from the compressed stream.

3.3. Modeling

The term model is used with double meaning throughout the compressor. At first, it is used
to denote the unit of the algorithm that outputs a probability that will participate in the mixing
phase. One can interpret this as an “elementary” model. The second meaning is the collection of
units that are modeling a given type of data. The output of such models is, evidently, a collection of
probabilities. Example models are TextModel (for language-specific language stemming and word
modeling), MatchModel (for repeatable long matches of data), RecordModel (for data structured
in records), SparseModel, JpegModel (for specific jpeg data), WavModel, ExeModel, DmcForest (a
collection of dynamic Markov coding models), XmlModel, PpmModel (various order prediction by
partial matching), ImageModels (for different bit depth image data), and many more. One or more of
this type of model is selected according to the input stream type and compression parameters.

It is outside of the scope of this paper to explain models unrelated to image compression. These can
be further detailed in a general compression paper.
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3.4. Image Compression

In the case of image streams, the match model can be optionally activated and can bypass the
image model if there is a long match found. But our focus will be set on the 8 bpp image model.
The output of this model contains predictions for four types of input streams: 8 bpp indexed color or
grayscale and 8 bpp png indexed or grayscale. If the stream is png, a part of the filtering scheme used
is undone in order to obtain the true pixel value.

Depending on the type of image, different correlations can be expected and, thus, exploited
by specific modeling. Before describing the specific contexts, we should describe which types of
operations are possible with the contexts. Three major types of models can be identified: direct,
indirect, and least squares modeling. All of these models expect byte level context values (as data
coming from a file comes in byte chunks) and can output direct probabilities, stretched probabilities, or
both. The context mixing stage expects probabilities in the logistic domain (stretched probabilities)
and different operations are applied to probabilities to fit or skew them into this domain.

3.4.1. Direct Modeling

Direct modeling is implemented with the use of stationary context maps. This type of map takes
as input a context value and outputs a weighted stretched probability and a weighted probability
centered around zero (skewing). It is implemented using a direct lookup table where each entry stores
a probability (which is then stretched and skewed) and a hit counter. On the update phase, an error
is computed as the difference between the stored probability and the value of the bit. The error is
weighted with a value dependent on the hit counter. Fewer hits on the context value indicate a more
rapid update rate. This is implemented via a lookup table containing the values of an inverse linear
function of the hit count.

For each context that requires direct modeling, a new map must be created. This protects the
contexts from colliding with each other.

3.4.2. Indirect Modeling

Unlike direct modeling, which updates the probability based on the last probability predicted,
indirect modeling tries to learn the answer based on a similar sequence from the past.

Indirect modeling is implemented with the use of indirect context maps, which use two-step
mapping. An optional run context map is also included, which is used for modeling runs of bits.

The first mapping is between a context value and a bit history called state. The state is modeled
as an 8-bit value with the following meaning: A zero value means the context value was never seen
before. States from 1 to 30 map all the possible 4-bit histories. The rest of the states represent bit counts
of zero and one or an approximation of the ratio between zeroes and ones if the number of previously
seen bits exceeds a count of 16. The states are used as indexes in a state table which contains transitions
to the next state depending on the value of the next bit. The states were empirically chosen to try to
model non-stationarity and different state maps were proposed in other compression programs [22].

The states are kept in a hash map implemented as a table with 64-byte entries to fit in a cache line.
The entries contain checksums for the context value to prevent collisions and up to seven state values.
Since the map expects byte data, at bit 0, 2, and 5, the bucket for a context value is recomputed via a
dispersion function. The seven state values can hold information about no bits known (one value), one
bit known (two values), and two bits known (four values). At bit zero, only three states are needed
and, as an optimization, the next four bytes implement a run map that predicts the last byte seen in the
same context value, logarithmically weighted by the length of the run. The hash map implements a
“least frequently used” eviction policy and a “priority eviction” based on the state of the first element
in the bucket. States are indexed based on the total number of bits seen, and, therefore, the more
information available is favored.
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The next mapping is between the state and one or more probabilities. This is done in a similar
manner as in direct modeling by using a state map. For each input, four probabilities are returned, one
stretched, one skewed, and two depending on the bit counts of zero and one for that state. The fifth
probability out of the indirect context map comes from the run map.

Unlike stationary maps, more contexts can be added to the indirect map, meaning that they share
the same memory space and are identified by an index. Each context has its own state map accessed by
the index. Having states modeled as 8-bit values makes them more memory efficient than the 32-bit
representation for stationary maps.

3.4.3. Least Squares Modeling

An ordinary least squares modeling is used to predict the value of the next pixel (not bit prediction)
based on a given set of context values and acts as a maximum likelihood estimator. The prediction is a
linear combination of the regressors, which are the explanatory variables. The update phase tries to
minimize the sum of squared differences of the true pixel value and the predicted value. Finding the
values of the weight vectors is done online by the method of normal equations that uses a Cholesky
decomposition that factors the design matrix into an n by n lower triangular matrix, where n is the
number of regressors. The matrix is then used to analytically find the weight values. The bias vector
and the covariance matrix are updated using parametrized momentum.

The value of the prediction is not used directly, but is used in combination with the known bits of
the current byte and the bit position in the byte as a key into a stationary context map.

3.4.4. Correlations

Different types of correlations are exploited for the type of images supported since we have
varying expectations of what the byte values from the input stream represent in the image. It is difficult
to describe all the operations used and only a minimal description will be provided. This section does
not cover png modeling.

The neighboring pixels are the best estimators for searching correlations. They form the causal
pixel neighborhood. Various notations are used for representing the position of the pixels. A simple
and meaningful representation is obtained by using the cardinal points on a compass (see Figure 2).
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Figure 2. Causal pixel neighborhood.

Each time a cardinal point is mentioned, a step of the size of the pixel is taken into the direction
relative to the pixel that is being predicted.

Palette color indexed images, as the name suggests, use the byte value to index the true RGB
color in the palette table. This means that the direct values cannot be used with linear predictors
because a linear combination will also be an index and might end up suggesting a completely different
color. Another problem is that quantizing the values will also result in different indexes that are not
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matched to the expected texture in the image. Moreover, since we know that we have 8-bit indexes,
we expect that only a small portion of the entire color plane is used. This makes the use of indirect
context maps useful and context values will be computed, for example, by hashing the W, N and NW
values together.

Grayscale images or individual color planes in color images require different modeling that is
dependent on what the content of the image represents. If the source of the image is artificial (meaning
computer generated, renders, drawings or screenshots), hard edges and continuous tone regions
may be expected. Photographic images may present noise, which makes the process of prediction
more cumbersome.

Of course, like for palette images, texture tracking via indirect context maps is useful. Contexts
can now be computed also by quantizing the values or computing intensity magnitude levels using
logarithm functions of direct values or of logarithms of the difference of quotient of two values.

Additionally, modeling for the expected pixel value is needed. The results are used as keys into
stationary maps. Various prediction techniques work in many directions, including horizontal, vertical,
and diagonals.

Inspired from video compression schemes, half-pixel, quarter pixel, and n-th pixel interpolation
and extrapolation provide predictions and can be combined with other predictions by averaging
gradients and other interpolation techniques.

Linear pixel value combinations are used, such as averaging or gradients. For example, if the
two pixels from above have values 60 and 50, a combination of the form N*2–NN will output 40.
An averaging combination of the form (N + NN)/2 and will output 55. Another type of combination
can be a Lagrange polynomial used for extrapolating, like NNN*3–NN * 3 + N. Extrapolated values
from different directions are then combined by linear combinations for new predictions. The result of
a prediction can be negative or above the maximum value of 255, and, therefore, two functions are
applied to the result. The clip function restricts the value in the [0, 255] interval. The clamp function is
similar to the strategy employed by the LOCO predictor for keeping the prediction in the same plane
as the neighboring pixel values that are also passed as parameters to the function.

Color images exploit the same correlations as the grayscale images, but include modeling for the
spectral correlation of the color planes. This means that an increased gradient in the red color plan can
also mean increased gradients in the other planes. The magnitude of the change in a previous plane
can be used to make predictions in a current plane or a prediction in the current plane can be refined
based on the residual of the prediction in the previous plane.

3.4.5. Grayscale 8 bpp

In the analyzed version of PAQ8PX, a number of 62 stationary maps are used for grayscale images.
Five of them are used in conjunction with OLS modeling, in order to model quadrants of the causal
pixel neighborhood of different lengths. The others accept as keys various clipped and clamped
predictions. An indirect context map is used which accepts 27 entries as keys computed as hashed
predictions. This means that the estimated number of probabilities which are the output of the image
model for grayscale images is 62 * 2 + 27 * 5 = 259.

3.5. Context Mixing

Encoding of a bit needs only one probability and the bit to code. Modeling produces many
probabilities that need to be combined to obtain a final probability. One option would be to do a linear
combination of the probabilities and adjust the weights accordingly after the true value is available.

The solution in the PAQ8 family of compressors is to use a gated linear network, and context
mixing is one implementation of such a network. The details of GLNs are described in detail in [23],
which also include the mathematical proof of the convergence guarantee. The description of the
network is split into three parts: geometric mixing, gated geometric mixing, and gated linear networks.
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Geometric mixing is an adaptive online ensemble that was analyzed in depth and whose properties
are described in [24–26]. The main difference to linear mixing, which implies weighting the probabilities
directly, is that the probabilities are first transformed into the logistic domain using the logit function
(sometimes referred to as stretch in the paper).

logit(x) = log (
x

1− x
) (1)

They are then linearly combined and then the result is transformed back into a probability using a
sigmoid function (sometimes referred to as squash in the paper).

σ(x) =
1

1 + e−x (2)

The weights are updated using an online gradient descent together with a logarithmic loss. In
this way, a weighted redundancy minimization in the coding space can be achieved (minimized
Kullback–Leibler divergence) [25].

An advantage of this method when compared to regular probability weighting also comes with
the fact that weights do not need to be normalized or clipped to the positive domain.

Gated geometric mixing means adding a context selector. So far, we have a neuron that takes
as input stretched probabilities and has weights associated with the input. If, instead, we had a set
of weights from which we select one based on an index, we would create a gate. The index can be
computed as a function of a context or as additional information. We can now say that the neuron has
specialized weights.

Gated linear networks are a network of stacked gated geometric mixing layers of neurons.
The output of a gated geometric mixing neuron is a probability. A set of neurons that works on the
same input forms a layer. The set of outputs of one layer form the input for another layer. A final
probability is obtained when a layer contains only one neuron. At first glance, the network looks
similar to a multi-layer perceptron, but, in this case, the learning is not done via backpropagation.
Instead, each neuron output tries to approximate the end probability, and, since each layer constructs
on the output of the previous, it further improves the result.

In the following paragraph, we present some important considerations. The loss function is
convex, which implies a simplified training of a deep network. The network rapidly adapts to the input,
making it a perfect candidate for online learning. Weights can be initialized in more ways and random
assignment is not necessary because of the convexity of the loss function. The PAQ8 compressors
initialize all the weights to zero with the implication that no predicting model has any importance in
the beginning and allowing a rapid update towards selecting the best specialist. Clipping the weights
and regularization techniques are also presented in [23], but are not used in PAQ.

PAQ8PX uses a network with two layers for image compression, the first layer has seven neurons
and uses functions of immediate pixels and column information as contexts, which means that the
pixel position in the image is taken into account.

3.6. Adaptive Probability Maps

Adaptive probability maps (APM), sometimes referred to as secondary symbol estimation, have
a probability and a context value as inputs, and a probability as output. The context value serves
as an index in a set of transfer functions. Once selected, a set of interpolation points are available.
In the initial state, they should map the input probability to the same value. The input probability is
quantized between two points of the set; the output value is the linear interpolation of the value of the
points weighted by the distance from them. In the update phase, the two end values are updated so
that the output probability is closer to the value of the predicted bit.

There are variations of the APM. One of them, which is used in PAQ8, has a stretched probability
as an input with the benefit of having more interpolation points towards the zero and one probability,
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where compression benefits from the fine-tuning. Other compression programs use APM with two
quantized predictions as inputs with a 2D interpolation plane.

It is not necessary to use only a single APM since they can be connected in a network. PAQ8PX
uses different architectures based on the type of stream detected. For 8 bpp grayscale images, three
APMs are used. Two of them take the output of the context mixing phase as an input and have
functions as contexts, including the current known byte bits, the number of mispredictions in the past,
and whether the prediction falls in a neighborhood plane or not. The output of the first APM is again
refined and the final prediction is a fixed weight linear combination of the three probabilities.

3.7. Other Considerations

Predictions need to be perfectly identical when compressing and decompressing, because,
otherwise, the decoder will rely on false data. Floating point operations cannot guarantee cross
compiler, cross processor, and cross-operating system this hard constraint. It became even more
important to have fixed rules when support for streaming instructions like SSE and AVX was added.
It was decided that fixed point arithmetic will be used across all operations. Even setting initial values
for lookup operation tables like stretching, squashing or logarithm was done by interpolation of initial
integer values or by numerical integration. Components described here use fixed-point values with
varying point position. The representation can be on 16 bit or 32-bit integers. For example, representing
the weights of the context mixing algorithm in 16 bit is useful when using vector instructions, since
more values fit into operands. Some exceptions to this rule were made for the sake of maximum
compression for the wav model and the ordinary least squares algorithm used in image compression.

Another unintuitive part is that the update part of each model takes place right before the
prediction part. The first prediction is by default 0.5 since it relies on no information. Afterward, each
time the predictor is queried, it does the update with the known bit and then computes a prediction.
This is done as an optimization since the accessed memory locations during the update might still be
loaded in the cache and the prediction might need the same locations.

4. The Proposed Method–Contextual Memory

The idea behind the algorithm is to encode probabilities in a memory-like structure.
The probabilities are accessed by using a set of keys computed on a known context. Resilience
to noise (since lossless compression for photographic images will mostly have to deal with noise)
would be handled by allowing that not all the keys will find a match in the memory.

4.1. Context Modeling

When it comes to predictive compression, we need to decide what best describes the part of the
image we are currently trying to predict. This means that we need to look around the target pixel in
the hope that the information will be enough to help a decision mechanism recognize which part of the
image we are in and choose to use the appropriate representation of the internally created segmentation
of the image.

Before continuing, we need to define the terms used in Figure 3. The word context represents the
region of the image that participates in the prediction mechanism. “Context value” is the numeric
value of the context, either a direct value or a function of that value, which will be used as an index
in the memory structure. The algorithm makes no assumption about the memory structure, but we
provide some implementation details. The output of indexing the memory is the “memory value”.
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We choose a simple model for contexts for predicting the bits of the pixels. We use rays in four
directions and with various lengths, and the quantized derivatives along the rays. Since the pixels
of the image are predicted from left to right, top to bottom, the only information we can rely on are
known pixels, which means the directions are to the west, 45 degrees north-west, north, and 45 degrees
north-east. The rays are depicted as gray background in Figure 4. We choose rays of varying lengths
from length 1 to 7, but use this as a parameter. The derivative with respect to the intensity value
is computed as the difference between the consecutive pixels of the ray and quantizing is done by
masking the lower order bits from the derivative. We use three levels of quantizing, each cutting out
one more bit than the other. The current pixel participates in the contexts only with the currently
known bits.

Appl. Sci. 2019, 9, x 10 of 19 

 

Figure 3. Block scheme of the proposed method. 

We choose a simple model for contexts for predicting the bits of the pixels. We use rays in four 
directions and with various lengths, and the quantized derivatives along the rays. Since the pixels of 
the image are predicted from left to right, top to bottom, the only information we can rely on are 
known pixels, which means the directions are to the west, 45 degrees north-west, north, and 45 
degrees north-east. The rays are depicted as gray background in Figure 4. We choose rays of varying 
lengths from length 1 to 7, but use this as a parameter. The derivative with respect to the intensity 
value is computed as the difference between the consecutive pixels of the ray and quantizing is done 
by masking the lower order bits from the derivative. We use three levels of quantizing, each cutting 
out one more bit than the other. The current pixel participates in the contexts only with the currently 
known bits. 

 

Figure 4. Contexts as rays. 

In order to compute the context value from the contexts, we use a hashing function. We chose 
Fowler–Noll–Vo hash function (FNV) that is a non-cryptographic one byte at a time, designed to 
compute fast and with a low collisions rate. It is found to be particularly suited for hashing nearly 
identical strings [27]. 
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In order to compute the context value from the contexts, we use a hashing function. We chose
Fowler–Noll–Vo hash function (FNV) that is a non-cryptographic one byte at a time, designed to
compute fast and with a low collisions rate. It is found to be particularly suited for hashing nearly
identical strings [27].
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As an optimization, since we know that we will need to compute hashes for rays, we exploit the
fact that FNV computes one byte at a time hashes and pass as input only the longest ray and output all
the intermediate results. We apply the same optimization for the quantized derivatives of the rays.

4.2. Description of the Contextual Prediction

4.2.1. Model Prediction

To make a prediction, we propose the following algorithm (simplified from the original proposed
algorithm [28], which had a probability refinement phase):

1. We obtain a value from the memory for each context. One way to do that is to index the hash of
the “context value” in a table

2. We average all the obtained “memory values”
3. Convert the average into a probability using the sigmoid function

p = σ

 k
n

n∑
i=0

vi

, vi = M[i][hash(ci)] (3)

p is the output probability (that a bit is one),
n is the number of input contexts,
ci is the context value of the i-th context,
vi is the memory value from the memory M for context i,
k is some ad-hoc constant
σ is the sigmoid function.

4.2.2. Interpretation of Values

Logistic regression is a way of combining probabilities when they are fed as inputs to the algorithm.
Using stretched probabilities as inputs (applying logit function to them), logistic mixing becomes
optimal for minimizing wasted coding space (Kullback–Leibler divergence) [24] because the weighting
becomes geometric.

β0 + β1x1,i + β2x2,i + · · ·+ β0xk,i (4)

where x j,i is a probability, becomes

β0 + β1t1,i + β2t + · · ·+ β0tk,i (5)

where
t j,i = logit(x j,i) (6)

The update formula for minimizing the relative entropy is:

β j = β j + α ∗ t j ∗ (yi − pi) (7)

The set of weights carries a part of the predictive part of the ensemble, and they get updated to
better represent the potential of individual components. In the case of PAQ8, the components gather
statistics independently and the network independently mixes the statistics. Adding more weights to
the mixer can result in improved predictive power since the model can better discriminate between
the contexts. But what if instead of separating the mixer from the statistics we move the mixing
information towards the components? How can we pass the mixing information to the weak learners
of the ensemble?
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So far, we know that the memory value vi is taken from a memory structure. The index in the
memory is computed based on the context value. But the feature is the context, not the memory value.
We can assume that the memory value is

vi = βi ∗ ti (8)

with ti a stretched probability and β the weight of the probability in the ensemble. Computing the
output probability resembles logistic regression, with the main difference being that we apply averaging.
The average in itself is a weighted stretched probability

k
n

n∑
i=0

(βi ∗ ti) (9)

which is converted into a regular probability by applying the sigmoid function.

4.2.3. Updating the Model

In order to pass mixing information to the weak learners, we propose a dual objective minimization
function (as depicted in Figure 5):

• In respect to the output of the network–global error
• In respect to the output of the individual nodes (side predictions)–local error
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Like PAQ8, we use reinforcement learning. Since we do not know the true value of the probability
that a bit is 0 or 1 in a given context, we cannot use supervised learning. We backpropagate the
binary outcome in the network and try to minimize the cumulative logistic loss in an online manner.
The square loss can be also used, but we are trying to minimize the wasted coding space.

For minimizing the logistic loss, the formula we used for the global error is

Eg = βg(p− y) (10)

If we wanted to minimize the square loss, the formula would be

Eg = βg(p− y) ∗ p ∗ (1− p) (11)
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with Eg as the global error, βg the global error learning rate, p is the output probability of the entire
network, and y the binary ground truth.

The local error is computed for each memory value in a similar fashion to the global error.

El = βl ∗ (pi − y), pi=σ(kv ∗ vi) (12)

with El as the local error, βl the local error learning rate, pi is the output probability for the i-th context
(side prediction) multiplied by an ad-hoc value kv, computed as the sigmoid of the memory value vi,
and y is the binary ground truth.

All the “memory values” are then updated by subtracting the local and global errors:

vi = vi − El − Eg (13)

Instead of updating weights of the mixture, we update directly the values that contribute to the
average. We have no layer to separate the context weights from the input probabilities, making the
method different from the context mixing algorithm.

4.3. Memory Implementation and Variations

The algorithm makes no assumption on how to organize the memory structure. We describe here
potential implementation and give more details to the implementation we chose to use. The proposed
implementations are based on hash tables since they give fast retrieval, given the fact that the context
values are computed by hashing series of pixel values. We chose the 32-bit FNV hashing with table
sizes the power of two so that indexing an entry will be done by masking. We use separate tables for
each context so we have collision independence. The difference between the memory types comes
from the way collisions and new entries are treated.

• simple lookup–we ignore the potential collisions and average the memory values, multiply the
result by an ad-hoc constant, and then apply the sigmoid function,

p = σ(sum ∗ c), c =
k
n

(14)

where n is the number of contexts and k is an ad-hoc constant. Once the number of contexts
becomes known, c becomes a constant and can be computed only once.

• tagged lookup–for each memory value a small tag is added that is computed by taking the higher
order bits of the context value. If a table address size is less than 32 bits, the remaining bits still
can bring value to the indexing. If the tag matches, we can use the value for the average.

p = σ(
sum ∗ k

nt
) (15)

where nt is the number of tag matches. In an empirical study we concluded that instead of simply
averaging the values, we can get better results by dividing the sum by the average of the number
of contexts and the number of tag matches. The formula becomes

p = ρ

 sum ∗ k
nt+n

2

 (16)

This is an approximate weighting of the confidence of the output based on how many inputs
participate in the result. On update, we update the tag of the location where it does not match.
The value of the location can be reset to zero or the old value can be kept and the regular updated
formula used. Keeping the old value sometimes gives better results and we believe this is because
the collisions generated by noise can reset a very biased context value. This method uses more
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memory and has a more complex update rule, but gives better results than the simple lookup
with the cost of improved computing complexity.

• bucket lookup–the context value indexes a bucket with an array of tagged values. The selection
of the memory value is done by searching the bucket for a matching tag. In this way, we can
implement complex replacement rules for the values inside the bucket. We provide a “least bias”
eviction rule when no tag is matched in the bucket. This means kicking the location with the
value closest to zero. In this way, we keep the values that can bring benefits to the compression.
Computing the output and the update rules are the same as in tagged lookup. If the bucket size
is kept small (4 to 8 entries), the linear search is done in the same cache line, making the speed
comparable to the tagged lookup.

The tests we performed yielded different results for the proposed memory implementations.
Each implementation should be chosen by taking into account the balance of speed versus the
quality of prediction (from the first to the third).

As an optimization, instead of having the memory values represented as floating point numbers
that occupy 32 bits, we quantize the value to a fixed-point represented by a short integer that only uses
16 bits. In the future, we could replace this representation with the FP16 standard. For tagged values
we have found that 8-bit values are enough, making the whole tag-value pair to be 24 bits. In this way,
we can use lookup tables for computing the local error, since we know that the values are constricted
to 65536 possibilities and we avoid the multiply and squash operations.

Memory implementations consider the 8 bits per byte structure of the image. This means that the
buckets should be indexed using a proximity function for faster memory access. We used the XOR
function of the initial context value hash with the partial known nibble (4 bits of a byte) to create a new
index. This ensures that the new context value will fall inside the same (or at most another) cache line
of 64 bytes. After 4 bits, a new hash is computed with the known full nibble.

5. Experimental Results

5.1. PAQ8PX Contextual Memory Implementation Details

We implemented the contextual memory algorithm for the 8 bpp lossless image compression.
This section describes the architecture and some of the implementation details of the application.

The application is implemented in the C++ programming language, since the PAQ8PX was
already implemented in this language. The code is compiled in Visual Studio and separates the original
code, the changes required for compilation and the additional implementation into different commits,
making clear which part is which.

The source code containing a full implementation of the algorithm will be publicly available at
the GitHub page [29] repository [30].

5.2. Evaluation on the Benchmarks

In order to test the effectiveness of the algorithm, we applied the augmented version of the
PAQ8PX algorithm with contextual memory to four test sets. The command line option for the
compression for all the images selects memory level 8 and adaptive learning rate (-8a).

The Waterloo image compression benchmark [31] contains two test sets with image sizes from
256 x 256 pixels up to 1118 x 1105. For this benchmark, we used as parameters for the contextual
memory ray length 5 and memory size 20. The results are presented in Tables 1 and 2. A newer
benchmark, Sachin Garg’s test images corpus [32], contains images ranging from 2268 x 1512 pixels up
to 7216 x 5412. For this benchmark, we used ray length 7 and memory size 23 as parameters for the
contextual memory. The results are presented in Table 3. We also included the Squeezechart 8 bpp
grayscale images test set [33] where four of the five images are medical images. For this benchmark,
we used ray length 6 and memory size 20 as parameters for the contextual memory. The results are
presented in Table 4. The best results in the table are highlighted using bold font weight.
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Table 1. Waterloo gray test set 1.

Set JPEG 2000 JPEG-LS MRP ZPAQ VanilcWLS D Paq8px167 Paq8px167+CM
(proposed)

bird 3,6300 3,4710 3,2380 4,0620 2,7490 2,6073 2,6077
bridge 6,0120 5,7900 5,5840 6,3680 5,5960 5,5074 5,5037
camera 4,5700 4,3140 3,9980 4,7660 3,9950 3,8176 3,8173

circles11 0,9280 0,1530 0,1320 0,2300 0,0430 0,0281 0,0282
crosses1 1,0660 0,3860 0,0510 0,2120 0,0160 0,0176 0,0171

goldhill1 5,5160 5,2810 5,0980 5,8210 5,0900 5,0220 5,0197
horiz11 0,2310 0,0940 0,0160 0,1220 0,0150 0,0139 0,0140
lena1 4,7550 4,5810 4,1890 5,6440 4,1230 4,1302 4,1293

montage1 2,9830 2,7230 2,3530 3,3350 2,3630 2,1505 2,1501
slope1 1,3420 1,5710 0,8590 1,5040 0,9600 0,7186 0,7194

squares1 0,1630 0,0770 0,0130 0,1770 0,0070 0,0129 0,0128
text1 4,2150 1,6320 3,1750 0,4960 0,6210 0,1053 0,1052

Average 2,9510 2,5060 2,3920 2,7280 2,1310 2,0109 2,0103

_1 Non-natural/artificially generated image

Table 2. Waterloo gray test set 2.

Set JPEG2000 JPEG-LS MRP ZPAQ VanilcWLS D Paq8px167 Paq8px167+CM
(proposed)

barb 4,6690 4,7330 3,9100 5,6720 3,8710 3,9319 3,9297
boat 4,4150 4,2500 3,8720 4,9650 3,9280 3,8165 3,8145

france1 2,0350 1,4130 0,6030 0,4220 1,1590 0,0992 0,0966
frog 6,2670 6,0490 _2 3,3560 5,1060 2,4656 2,4581

goldhill2 4,8470 4,7120 4,4650 5,2830 4,4630 4,4227 4,4214
lena2 4,3260 4,2440 3,9230 5,0660 3,8680 3,8608 3,8604

library1 5,7120 5,1010 4,7650 4,4870 4,9110 3,3253 3,3200
mandrill 6,1190 6,0370 5,6790 6,3690 5,6780 5,6364 5,6339
mountain 6,7120 6,4220 6,2210 4,4930 5,2150 4,0799 4,0744
peppers2 4,6290 4,4890 4,1960 5,0950 4,1740 4,1493 4,1470
washsat 4,4410 4,1290 4,1470 2,2900 1,8900 1,7478 1,7466

zelda 4,0010 4,0050 3,6320 4,9200 3,6330 3,6437 3,6435

Average 4,8480 4,6320 4,3680 3,9910 3,4316 3,4288

_1 Non-natural/artificially generated image _2 Supported image size only multiple of eight

Table 3. Imagecompression.info 8 bpp gray new test images.

Set JPEG2000 JPEG-LS MRP ZPAQ GraLIC VanilcWLS D Paq8px167 Paq8px167+CM
(proposed)

artificial1 1,1970 0,7980 0,5170 0,6730 0,4464 0,6820 0,3188 0,3186
big_building 3,6550 3,5920 _2 4,3350 3,1777 3,2430 3,1250 3,1216

big_tree 3,8050 3,7320 _2 4,4130 3,4080 3,4680 3,3823 3,3803
Bridge 4,1930 4,1480 _2 4,7250 3,8700 3,8420 3,7958 3,7953

cathedral 3,7100 3,5700 3,2600 4,2390 3,1900 3,3020 3,1539 3,1519
Deer 4,5820 4,6590 _2 4,7280 4,3116 4,3760 4,1788 4,1750

fireworks 1,6540 1,4650 1,3010 1,5550 1,2500 1,3640 1,2324 1,2325
flower_foveon 2,1980 2,0380 _2 2,4640 1,7761 1,7470 1,6944 1,6943

hdr 2,3440 2,1750 1,8540 2,5890 1,9197 1,8730 1,8330 1,8327
leaves_iso_200 4,0830 3,8200 3,4000 4,7430 3,2630 3,5370 4,0509 4,0473
leaves_iso_1600 4,6810 4,4860 4,1860 5,2600 4,0720 4,2430 3,2168 3,2130

nightshot_iso_100 2,3000 2,1300 1,8390 2,5760 1,8240 1,8750 1,7811 1,7805
nightshot_iso_1600 4,0380 3,9710 3,7430 4,2680 3,6610 3,7820 3,6295 3,6272

spider_web 1,9080 1,7660 1,3490 2,3640 1,4441 1,4220 1,3498 1,3502
zone_plate1 5,7550 7,4290 2,8340 5,9430 0,8620 0,9110 0,1257 0,1257

Average 3,3400 3,3190 3,6580 2,5650 2,6500 2,4579 2,4564

_1 Non-natural/artificially generated image _2 Supported image size only multiple of eight
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Table 4. Squeezechart 8 bpp grayscale.

Set MRP cmix v14f GraLIC Paq8px167 Paq8px167+CM
(proposed)

blood8 2,1670 2,1600 2,3200 2,1308 2,1304
cathether8 1,5350 1,5351 1,6580 1,5382 1,5380

fetus 4,0650 3,9730 4,1310 3,8236 3,8225
shoulder 2,8660 2,9080 3,1130 2,8697 2,8676
sigma8 2,6870 2,6290 2,7200 2,6266 2,6263

Average 2,6640 2,6410 2,7880 2,5978 2,5970

We used as learning constants global learning rate βg = 0.9 and local learning rate βl = 0.1 and the
constants k and kv were set to 0.4.

The results in Tables 1–4 are expressed in bits per pixel which is an image size independent absolute
measure of the compression ratio. It represents the average number of bits needed to encode the pixel
information from an image. It is computed as the compressed size of the image divided by the number
of pixels. This is not to be confused with bits per byte, which measures the compressed ratio of a general
file, though in our case the two values coincide since the size of a pixel in an 8-bit color depth grayscale
image is one byte. The header of the compressed file should be excluded when computing the bits per
pixel, but it is not always the case since the header is usually a minor payload compared to the content.
However, it should be specified if the header is included or not in computing the bits per pixel so that
the results can be verified.

5.3. Discussion on the Results

The reason for choosing these benchmarks is that they are publicly available and that they
are provided without conflicts of interest. They contain images of various types such as artificially
generated, edited, photographs, and scans. This makes them suitable for publications and there are
published papers using them, such as [11]. We present our results on all the images in the datasets
in order to prove that we did not tune the algorithm to a selected few. The images are compressed
separately (as in not a solid archive) to prevent reusing correlations.

The PAQ8 family of algorithms was designed to achieve good compression ratios at the expense
of a long compression time and a large memory footprint. Even though there are some optimizations
applied, the running time will be much larger than some of the other algorithms. The contextual
memory algorithm also does not contain too many speed optimizations in its provided form. Therefore,
a running time comparison is out of the scope of this paper, but to give the reader a sense of the
execution time scale, we provide a relative comparison on the image lena2 from the Waterloo gray test
set (see Table 5). The algorithms where run on the same processing architecture.

Table 5. Compression running time comparison on image lena2 (expressed in seconds).

Image MRP JPEG 2000 JPEG-LS GraLIC Paq8px167 Paq8px167+CM
(proposed)

lena2 258 s 0.04 s 0.02 s 0.25 s 12 s 24 s

The compression running time does not equal the decompression running time for all the
algorithms. For instance, the MRP algorithm is highly asymmetric due to its multiple pass optimizations,
decompression of the same image taking only 0.6 seconds. The timings were measured using the x64
version of the Timer 14.00 tool created by Igor Pavlov and available for public domain on the 7-cpu
website [34].

Memory requirements depend on the compression parameters. PAQ8PX reports using 2493MB of
memory for command line parameter -8a. The contextual memory algorithm adds to this depending
on the parameters set. We can estimate the memory consumption of the current implementation
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by multiplying the number of rays by ray length, table size (2memory size), 4 (no quantization plus 3
quantized derivatives), 3 (number of bytes per memory location). For ray length 5 and memory size 20,
we estimate that it adds another 240 MB of memory.

The results in Tables 1–3 for all the compressors, except Paq8px167 and the proposed method,
were taken directly from [11], and the results in Table 4 were taken from the PAQ8PX thread [21].
The results missing in the paper for GraLIC and the results for Paq8px167 and the proposed method
are computed using a tool we created for this purpose, available at [35]. The tool does not exclude the
file headers when computing the bits per pixel.

6. Conclusions and Future Work

This paper provides a description of the state-of-the-art compression program PAQ8PX from the
point of view of grayscale image compression. The main contribution of this paper is an application
agnostic algorithm for predicting probabilities based on the contextual information available with
learning done in an online fashion. The usefulness of the algorithm is demonstrated by integrating
it with the PAQ8PX algorithm and testing it on several image compression benchmarks. The results
show an overall compression ratio improvement across all the datasets without special crafted features.
One important difference from existing ensemble mixing algorithms is that, in our algorithm, we
assume that various contexts apply together and the prediction benefits from the synergy of the side
predictions, unlike the ensembles that assume model independence.

In its current state, the algorithm was not applied to color or 16 bpp images. For future
developments, we intend to extend the algorithm for three-dimensional medical image compression
and support 16 bpp depth. Context modeling can be done similarly to the work described in [15].

The architecture chosen for the algorithm does not take into account parallel optimization
techniques that are suitable for hardware implementation like the CCSDS developed image compression
algorithms [17]. Unlike the CCSDS standard, the focus for PAQ8 is set to provide the unconstrained
liberty for exploring techniques to improve the compression ratio. However, if one wants to standardize
an epoch of development, the code can be converted to the ZPAQ open standard [36] that, among
other things, aims for forward and backward compatibility of archives. Although not presented in this
paper, in future releases we can compare the compression ratio with the CCSDS family of algorithms.

In [37], a context function is proposed to statistically discriminate error residual classes of full
pixel prediction, useful for lossless and near-lossless compression schemes. Due to its properties, such
a function could be integrated within the context mixing layer and the adaptive probability maps.

Design space exploration needs to be done for context modeling. Moving contexts from other
modeling types to the contextual memory predictor might also bring benefits. The side predictions of
the algorithm can be also be passed to the context mixing network. Splitting various contexts into two
or more contextual memory structures can also lead to finding better correlations.
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