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Abstract: This paper discusses the general conditions relating to ballistic head protection,
analyzing the risks that may occur on contemporary battlefields. A thorough literature review
has enabled us to present development trends for helmets used in the largest armies in the world.
The authors have focused on impacts to the helmet shell, overloading the entire helmet-protected
head–neck system. The main objective of this study is to investigate the protective capability of
a helmet shell when subjected to projectile–helmet contact, with contact curvature taken as being
an indicator of the impact energy concentration. Blunt head trauma was estimated using backface
deformation (BFD). The Wz.93 combat helmet was used for testing. Analytically, dependencies were
derived to determine the scope of BFD. A five-parameter model of the helmet piercing process was
adopted, thus obtaining the optimal BFD range. Verification of theoretical considerations was carried
out on a specially developed research stand. In the ballistic tests, dynamic deflection of the helmet’s
body was registered using a speed camera. On the impact testing stand, a fragment of the helmet
was pierced, producing results in the low impact velocity range. Data have been presented on the
appropriate graph in order to compare them with values specified in the relevant standard and
existing literature. Our results correlate well with the norm and literature values.

Keywords: ballistic impact; blunt trauma; ballistic protection; bulletproof helmet testing

1. Introduction

The modern approach to promoting the survival of soldiers on the battlefield involves a series
of processes related to the design of appropriate personal protective ballistic shields. This must be
assessed comprehensively for all scenarios where, on the one hand, a soldier’s body is affected by
impact energy and, on the other hand, the energy is absorbed in such a way that it gets distracted by a
suitable absorber (a helmet or bulletproof vest, etc.), designed to protect human body surface from
exposure to serious blunt injuries caused by the inertia forces of ballistic shields influencing a human
body. In this case, firstly, the procedure shown in Figure 1 must be followed when setting out to design
an effective ballistic shield.
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Figure 1. Factors affecting the efficient construction of personal ballistic protective covers. 

To understand the problem, reference should be made to the risks generated on modern 
battlefields and the development trends of ballistic shields, in conjunction with a detailed analysis of 
injuries in physical, biomechanical, and medical terms. Furthermore, this work will focus attention 
on analysis of head protection in terms of blunt trauma caused by shots to domestically produced 
helmets from small firearms. The authors undertook an assessment of the protective capabilities of 
the Wz.93 composite combat helmet, designed for land forces. An assessment of the effectiveness of 
this head protection was based on a backface deformation (BFD) identification index. So far, military 
helmets have only been tested in terms of resistance to perforation. In the approach proposed here, 
assessment of the effectiveness of the protective helmet also takes into account the phenomenon of 
blunt head injury. 

2. Analysis of Risks and Their Minimization 

Analysis of the literature [1–5] shows that 90% of gunshot wounds are those caused by 
fragments, and only 10% of wounds are inflicted after a direct hit from various types of ammunition 
projectiles. Most wounds affect limbs (approximately 61% to the head and neck, approximately 12% 
to the abdomen and chest, and approximately 27% to limbs and other parts of the body (see Table 
1)). It can be argued that limb wounds are most traumatic for soldiers on the battlefield and further 
work should be aimed at reducing these injuries. However, head and neck injuries have the most 
dramatic consequences. As shown in Table 1, the percentage of head injuries has increased in recent 
armed conflicts. This is a consequence of changes in the tactics of contemporary armed conflict, where 
firing may come from a previously unrecognized direction, in which case the current assessment of 
helmet protective capability should be supplemented with new types of risks. Figure 2 shows the 
typical zones where penetrating injuries are concentrated [6]. 

 
Figure 2. Areas most commonly associated with head injuries resulting from typical hazards 
generated on the battlefield. 

Figure 1. Factors affecting the efficient construction of personal ballistic protective covers.

To understand the problem, reference should be made to the risks generated on modern battlefields
and the development trends of ballistic shields, in conjunction with a detailed analysis of injuries in
physical, biomechanical, and medical terms. Furthermore, this work will focus attention on analysis of
head protection in terms of blunt trauma caused by shots to domestically produced helmets from small
firearms. The authors undertook an assessment of the protective capabilities of the Wz.93 composite
combat helmet, designed for land forces. An assessment of the effectiveness of this head protection
was based on a backface deformation (BFD) identification index. So far, military helmets have only
been tested in terms of resistance to perforation. In the approach proposed here, assessment of the
effectiveness of the protective helmet also takes into account the phenomenon of blunt head injury.

2. Analysis of Risks and Their Minimization

Analysis of the literature [1–5] shows that 90% of gunshot wounds are those caused by fragments,
and only 10% of wounds are inflicted after a direct hit from various types of ammunition projectiles.
Most wounds affect limbs (approximately 61% to the head and neck, approximately 12% to the abdomen
and chest, and approximately 27% to limbs and other parts of the body (see Table 1)). It can be argued
that limb wounds are most traumatic for soldiers on the battlefield and further work should be aimed
at reducing these injuries. However, head and neck injuries have the most dramatic consequences.
As shown in Table 1, the percentage of head injuries has increased in recent armed conflicts. This is a
consequence of changes in the tactics of contemporary armed conflict, where firing may come from a
previously unrecognized direction, in which case the current assessment of helmet protective capability
should be supplemented with new types of risks. Figure 2 shows the typical zones where penetrating
injuries are concentrated [6].
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Table 1. Relative distribution of general injuries to different parts of the human body surface (%) [1,2,4,5].

Specification Body surface World War II Korea Vietnam Iraq
Afghanistan

Head and neck 12 21 21 16 30
Chest 16 14 10 13 6

Abdomen 11 8 9 10 9
Limbs and other parts of the body 61 58 60 61 55

As has been shown in recent armed conflicts [2], the main threats causing head injuries can be
divided into three groups: ballistic, blunt, and explosive (see Table 2).

Table 2. Categories of risk adopted from [2]. IED: improvised explosive device.

Risks Sources Potential Head Injuries

Ballistic and fragmentation
impacts on the helmet

Small arms, fragmentation
artillery ammunition, IEDs

Penetrating injuries, from the
so-called blunt injuries resulting
from deformation of the ballistic

cover (helmet)

Blunt: during vehicle transport,
falls on a hard surface,

penetration of buildings, etc.

Falls, collision of vehicles, shock
waves, other potential sources

Open and closed head injuries, skull
fractures, hematoma, brain

contusions

Explosions Bombs, artillery, IEDs
Brain trauma, meningeal

hematomas, contusions, axonal
injuries

These result from war operations, namely, detonation of unclassified explosives, ballistics,
and fragmentation impacts and injuries suffered during typical maintenance activities and operation
of weaponry, as well as random accidents in everyday soldier life, including car accidents, etc.
Their characteristic operation time is depicted in Figure 3.
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These categories vary depending on the duration of the impulse of force during which an injury
is sustained, and the distance from the epicenter of an event. As pointed out [2,4,6–9], traumas arising
from blast impact are experienced within 3 to 100 microseconds of an event and, with a ballistic impact,
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within about 200 microseconds. In this case, high temperature is also an additional element of trauma.
Blunt impact is a consequence of the two abovementioned categories, and the time in which it appears
is determined by many factors, such as the velocity of wave propagation in a medium (place), etc.
If injuries are associated with the use of arms or soldier operations in conditions involving difficult
terrain (defined as ergonomic), the time they take to affect the human body is currently counted in
units per day or per year. However, it should be emphasized that blunt trauma resulting from blast or
ballistic impacts can also be revealed after a certain time since processes occurring in the brain are very
difficult to diagnose (see Figure 2).

As the head is the most important human organ, it needs particular protection. For this purpose,
helmets [10,11] are used with the aim of reducing the effects of so-called traumatic brain injury (TBI) as
a result of projectile impact (see Figure 4).
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Figure 4. The mechanism causing blunt force brain injuries.

Helmets have been commonly worn to protect the head since antiquity, and have evolved in line
with the development of technology and materials engineering. Earlier solutions were based on a shell
(a body) made of suitable steel. In the first half of the twentieth century, after the first fiber composites
had been developed, helmet shells started to be constructed using modern materials solutions [12–18].
Modern structures largely reflect existing knowledge, not only in the sense of physical analyses but
also in the search for mathematical models through which biomechanical issues can be explored [19].
There has also been a great leap forward in medicine in terms of the development of neurosurgery,
which can explain many of the injuries presented in Table 2. This concentration is highlighted in the
development trends of modern head coverings (see Figure 5) [20–22].
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3. Formulation of the Problem

Based on the literature review [2,23–26], it can be stated that the selected parameters for the
requirements of bodily injury criteria (including the head) have been developed for car accidents [27–29].
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Adopting these for ballistic impacts requires some correlations. Although there are similar physical
characteristics in both cases (a car accident and a ballistic impact), predictions regarding injuries are
different. The application of parameters, such as head injury criteria (HIC) or acceleration [14,30–33],
when assessing a head injury is not the ultimate criterion. The relationship between energy level and
injury severity when determining the blunt criterion (BC) [34–37] should also be taken into account
when considering a ballistic impact. The main problem with defining the BC parameter is determining
the local curvature of a striking projectile and a head (which greatly complicates the estimation of this
criterion [38]) and the probability of determining the extent of trauma suffered in accordance with the
Abbreviated Injury Scale (AIS). This scale ranges from 1 to 6 (see Table 3), where 1 is a minor injury
seldom requiring medical treatment, and 6 stands for a 100 percent probability of death. Any injury
greater than AIS level 3 is considered life-threatening.

Table 3. Levels of the Abbreviated Injury Scale adopted from [38].

Level AIS Injury Specification AIS % prob. of Death

1 minor superficial laceration 0
2 moderate fractured sternum 1−2
3 serious open fracture of humerus 8−10
4 severe perforated trachea 5−50
5 critical ruptured liver with tissue loss 5−50
6 maximum total severance of aorta 100

When a helmet protecting a head is impacted by a projectile, kinetic energy is transferred within a
small area and the helmet simultaneously undergoes deformation. Propagation of the deformation
(in the form of deflection) in the rear part of a helmet is defined as a BFD, and may be brought into
contact with a part of the skull, causing extensive load [39,40]. Shock waves affecting the helmet surface
transfer the load further inwards and indirectly influence the skull. The significance of this influence is
the result of the deformation value of the helmet’s shell [41]. As the BFD parameter increases, the risk
of serious head injuries in the form of TBIs [42,43] and skull fractures also increases. This type of helmet
is designed to reduce traumatic brain injuries (TBIs), and the criterion for assessing the protective
properties of this TBI-based helmet relates to medical aspects of the brain injury. Some studies [44,45]
have undertaken in-depth analysis of the correlation between head kinematics and the response
of brain tissue. This effect often manifests itself after a long delay (see Figure 3) and requires a
neurosurgical assessment. In this article, the TBI parameter has been accentuated due to its importance
in a comprehensive assessment of head injury. Authors [46–48] have indicated that such injuries
require analysis using a medical approach, but this article is limited to the identification in mechanical
and biomechanical terms, leaving aside the medical aspect.

The first studies [49,50] focused on determining the value of the force required to cause a skull
fracture with deflection off the frontal bone. The author of the work [49] carried out a preliminary
study involving shooting at the helmet surface with 9 mm ammunition in order to estimate the BC
for a head. Initial results confirmed assumptions made about the possibility of experiencing a blunt
head injury from BFD impact. However, this problem requires accurate analyses because much
uncertainty remains.

Estimating the BC for a head constitutes a complex problem. Determining the scope of a helmet’s
BFD (the value specified in the National Institute of Justice (NIJ) Standard for Ballistic Helmets) as
the contact geometry (the curvature of contact between a helmet and a projectile) poses considerable
problems associated with determining the actual diameter of the surface [51] (see Figure 6).
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Changing local collision during impact of a projectile on a helmet complicates the issue [42,52].
The scope of deflection results from the energy of the ballistic impact on a helmet. Starting from the
general mathematical model of the BC [36] expressed in the form of

BC = ln
(

mv2

2M
1
3 td

)
, (1)

where

m—mass of the projectile;
v—velocity of the projectile;
M—mass of the helmet and head;
t—thickness of the body wall;
d—diameter of the projectile;

the limits of the surface range can be estimated as a function of the dynamic deflection.
Put more simply, on the basis of interdependences appearing according to the accepted mechanism

for estimating a head injury (see Figure 7).
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Deformation energy (Edef) is computed as

Ede f = D·M
1
3 ·tH·eBC, (2)

where
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D—effective diameter;
DH—body diameter;
DBFD—flat limit of diameter;
xBFD—range of depth;
d—diameter of the projectile;
tH—thickness of the helmet wall.

After the conversion of Equation (2), the deformation energy can be saved as

Ede f =
mv2

2M
1
3 ·tH·eBC

(
1−

m
m + MEM

)
, (3)

where MEM is effective mass according to [53].
Given the contact diameter (D) for a given impactor mass and velocity (kinetic energy),

the minimum allowable impactor diameter (d) can be calculated by

d =
D2

4xBFD
(
1− D−2tH

DBFD−2tH

) + xBFD

(
1−

D− 2tH

DBFD + 2tH

)
, (4)

where 2t < D ≤ DBFD. Given the impactor diameter, we calculate the depth of the depression (xBFD) to
be:

xBFD =
d + DH

2
−R, (5)

where R is the distance between the sphere centers (see Figure 7).
On the basis of Relation (4), when d tends to infinity, parameter D is approaching the range DBFD.

With increasing impact velocity, increased deformation energy must be distributed over a larger contact
surface in order to keep the ratio of injuries at the desired level. The adopted value of the BFD index
constitutes a restriction, and its excess (over 50%) is associated with the probability of a serious head
injury (skull fracture). In the literature [42], it is assumed that 76 joules of energy (as the maximum
allowable deflection during impact with a density of about 1.6 J/cm2) is the threshold value.

4. Subject and Scope of the Study

The subject of this study is the composite combat helmet, model Wz.93, in domestic production
(see Figure 8), which was subjected to shooting with 9 mm full metal jacket (FMJ)-type Parabellum
cartridges with a weight of 8 g. The purpose of this study is to define the value of the BFD parameter,
thereby answering the question as to whether (and to what extent) dynamic deflection specified as
BFD can cause injury to a protected head.
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Ballistic tests were performed on a ballistic track with a specially designed helmet mounting
system while maintaining appropriate rigidity (see Figure 9). Applied restrictions involved firing
at a helmet installed with appropriate equipment but without a headform. In a subsequent stage,
the impact machine was used to simulate impact of a projectile on the helmet shell coating. The impact
machine used in the study was the Instron Dynatup 9250HV (see Figure 10). The characteristic features
of the machine are as follows:

- maximum velocity with the forced drive: 20 m/s;
- maximum simulated drop height: 20.4 m;
- impact energy range: from 4.5 to 1600 J;
- impact standard head: energy range from 4.5 to 940 J;
- impact heavy head: energy range from 25 to 1600 J;
- environmental test chamber: temperature range from −51 ◦C to 177 ◦C.
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The helmet was scanned before tests and after each shot (see Figure 8b) in order to obtain a
three-dimensional image of deformations using an Absolute Arm scanner.

5. Results and Discussion

After firing, the results were obtained in the form of shadow photography images taken by the
high-speed camera, as shown in Figure 11.
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Based on a visual inspection, it was observed that all the hits were stopped, and the deformed
projectiles were stuck in the shell. The expected value of xBFD was obtained at 20 mm for shot number 1
and at 22 mm for number 2. The estimated dynamic deflection recorded by the fast camera was within
BFD tolerance since it did not exceed 25.4 mm. The measured BDF parameter values are summarized
in Table 4. Perforations of the laminate in the inner part of the helmet were observed for the third and
fourth shots (see Figure 12). This method was used to assess the protective capability of the helmet’s
shell in a series of gunshots. The size of the firing area was kept constant, and shots were arranged
in a circle with a diameter of 100 mm. Shot number 3 produced 28 mm dynamic deflection values,
and shot number 4 produced 34 mm dynamic deflection values. The BFD range for the third and
fourth shots did not fall within the accepted range for safe dynamic deflection. The helmet did not
retain its parameters (xBFD) when subjected to a series of shots.
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The parameters of damage (taken by the scanner using a reverse engineering technique) were
applied to compare damage from the ballistic tests. After the fourth shot, global deformation of the
helmet’s durable shell (recorded with a 3D scanner) was found to measure approximately 14 mm
(see Figure 13). The lowest estimated global deformation value registered by the camera was about
10 mm. The difference is 28%, and relates to an error in interpreting the recorded shadow photography.
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The impact machine recorded the maximum force and energy values of piercing by the cartridges,
as well as duration of impact, and dynamic and stable deflection of the helmet. The tests were carried
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out under piercing conditions identical to those of gunfire, and the diameter of the circle remained
at 100 mm. In this case, dynamic deflection results for the helmet shell were twice as large as those
from the ballistic tests. This is mainly related to the speed of deformation of the shell helmet during
dynamic tests and impulse loads. An example of registered parameters, including maximum force and
maximum piercing energy, is shown in Figure 14.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 16 
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The obtained parameters (estimated during the ballistic tests and testing on the impact machine),
are shown in Table 4. In order to make it possible to estimate the BFD parameter in the function
of the contact surface of an impact and a head, the deformation of a projectile must be examined
carefully. As shown in Figure 15, the contact surface increases along with penetration into the helmet
shell. A desirable solution would be to mushroom the bullet as much as possible in the first phase of
deflection of the dynamic helmet shell.

Table 4. Summary of test results obtained.

No.
Hit/Shot

Results from the Impact Machine Ballistic Results

Max. Value
of the Force
Fmax (kN)

Max. Value of
the Energy

Emax (J)

Duration of
the Strike
Time (ms)

Dynamic
Deformation

xdef (mm)

Durable
Deformation

xd (mm)

Kinetic
Energy Ek (J)

Dynamic
Deformation

xdef (mm)

Durable
Deformation

xd (mm)

1 4.29 227.7 11.46 47.0 10.00 476.1 20 4.3
2 4.80 233.3 11.50 40.0 11.40 490.0 22 7.2
3 4.13 176.9 9.50 31.8 10.72 504.1 28 11.0
4 5.41 324.3 22.40 63.0 13.93 481.6 34 17.0
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The summarized correlations of the scope of penetration as a function of velocity for the 9 mm
Parabellum projectile with the Wz.93 combat helmet (see Figure 16) compare favorably for speeds
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of 350 m/s. At higher pistol projectile speeds, this helmet no longer meets modern criteria, as shown
in the graph (see Figure 16). Even though the helmet had exceeded its service life, it still had some
good protective properties but only at level II of the standard [54]. The current standard is level III
for 420 ± 15 m/s. Its penetration in the function of time is presented in Figure 17, in order to enable
estimation of the duration of the event. In this case, the following results were achieved: the shortest
time was recorded for a force value of 4.13 kN where the event time was 9.5 ms. The longest time of
22.4 ms was recorded for a force value of 5.41 kN. The xBFD range grew linearly over time.

The helmet, subjected to piercing using the impact machine, retains all of the capabilities of ballistic
protection. The presented graphs show that the BFD parameter depends on the speed of impact.
In view of the above, ways should be sought to increase the levels of helmet protection by increasing
the field of impact energy dissipation. In an era of materials engineering development, detailed
analysis of the process of destruction is required (in physical terms) to promote protectiveness without
increasing the weight of the helmet. Helmet weight reduction is dictated by overload protection of the
head–neck system.
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6. Conclusions

Based on the analysis of development trends for combat helmets currently used in the largest
army in the world (the United States) and the Polish armed forces, it has been concluded that the
helmets used for protection purposes in our army are capable of withstanding only the first two threats
(see Table 2). In the case of blast explosives, there is a very high risk of the wearer suffering a traumatic
brain injury from the acoustic effect of propagation of the free explosion wave. The helmets used in
our army correspond to the American Advanced Combat Helmet (ACH) and Future Assault Shell
Technology (FAST) programs (2005–2010), which means that they are from three generations ago with
helmet electronics and display system (heads-up), and future (ballistic/blast/blunt trauma) or the latest
standard intelligent hypersensor processing system (IHPS).

Nonetheless, based on the obtained results, it can be stated that the analyzed structure is only
capable of dealing with a single strike. If hits like those of the multi-hit model were recorded,
the standards (xdef) would be exceeded. The obtained dynamic deflection and permanent deflection
results did not exceed the limit values (see Table 4). As shown in Figure 11b, the estimated dynamic
deflection for shot number three or four could cause serious skull trauma, although other results from
the firing were within the tolerance limits of current standards (see Figure 18) [51]. In comparison
with data received from the impact machine, dynamic deflection was found to be outside the desired
range. The duration of the event was within the required range and (based on [30]) did not exceed
15 m/s. Estimating the depth of the deflection (xBFD) when determining the BC, where the limit of
permanent deflection was estimated to be approximately 7–15 mm [38], the registered deflections (see
Figure 18) were on the borderline of skull injury (fracture). Referring to Table 3, the likelihood of injury
occurrence is, therefore, AIS 3+ for BC.
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Figure 18. Estimation of deflection xBFD as a function of speed from the ballistic test in the light of
standards and literature.

The results presented in this paper were performed on the helmet only, and are burdened with
error, future studies should endeavor to estimate headform injuries using standardized equipment.
A detailed analysis of changes in the impactor surface (mushroom projectile) is planned as it would be
a mistake not to consider increasing the diameter of the surface involved in the process of absorbing
impact energy when estimating actual indicators of the BC.
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BC blunt criterion
BFD backface deformation
ECH Enhanced Combat Helmet
FAST Future Assault Shell Technology
FMJ full metal jacket
HEaDS-UP Helmet Electronics and Display System-Upgradeable Protection
HIC head injury criterion
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