Phthalates (or phthalate esters, PAEs) and bisphenol A (BPA) are widely used in various industries, particularly in the fields of cosmetics and packaging, and they increase the malleability and workability of materials. As a result of their use, some international health organizations have
[...] Read more.
Phthalates (or phthalate esters, PAEs) and bisphenol A (BPA) are widely used in various industries, particularly in the fields of cosmetics and packaging, and they increase the malleability and workability of materials. As a result of their use, some international health organizations have begun to study them. In this study, the authors developed a methodology for the simultaneous determination of dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DiBP); dibutyl phthalate (DBP), bis(2-ethylhexyl) phthalate (DEHP); di-n-octyl-phthalate (D
nOP) and bisphenol A (BPA) from drinking and non-potable waters. The extraction of PAEs and BPA was performed using a solvent-based dispersive liquid–liquid microextraction (SB-DLLME) method. The analytical determination was performed using a gas chromatography–ion trap mass spectrometry (GC-IT/MS) analysis. The entire procedure was validated as recoveries were studied according to the volume and the extraction solvent used, pH, and ionic strength. Dynamic linearity ranges and linear equations of all the compounds were experimentally determined as well as the limit of detection (LOD) (1–8 ng mL
−1) and the limit of quantification (LOQ) (5–14 ng mL
−1), reproducibility, and sensitivity. The method was applied to 15 water samples (mineral water and tap water) for determining PAEs and BPA released from the plastic container. After the release simulation, four PAEs (i.e., DiBP, DBP, DHEP, and D
nOP) were determined at very low concentrations (below 1.2 ng mL
−1) in two water samples from (sport) bottles.
Full article