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Abstract: Attribute reduction is a challenging problem in rough set theory, which has been applied
in many research fields, including knowledge representation, machine learning, and artificial
intelligence. The main objective of attribute reduction is to obtain a minimal attribute subset that can
retain the same classification or discernibility properties as the original information system. Recently,
many attribute reduction algorithms, such as positive region preservation, generalized decision
preservation, and distribution preservation, have been proposed. The existing attribute reduction
algorithms for generalized decision preservation are mainly based on the discernibility matrix and
are, thus, computationally very expensive and hard to use in large-scale and high-dimensional
data sets. To overcome this problem, we introduce the similarity degree for generalized decision
preservation. On this basis, the inner and outer significance measures are proposed. By using
heuristic strategies, we develop two quick reduction algorithms for generalized decision preservation.
Finally, theoretical and experimental results show that the proposed heuristic reduction algorithms
are effective and efficient.

Keywords: artificial intelligence; feature selection; rough sets; heuristic algorithms; attribute
reduction; generalized decision preservation

1. Introduction

Originating from the mathematician Pawlak in the early 1980s, rough set theory (RST) [1]
has been regarded as an effective tool for the processing of inconsistent or uncertain information.
It has been extensively utilized in research fields such as uncertainty reasoning [2,3], knowledge
representation [4], feature selection, and machine learning [5–7]. Attribute reduction [1,8–10] plays a
crucial role in RST. The main purpose of attribute reduction is to find a minimal attribute subset which
has the same classification or discernibility properties as the original information system. Different
attribute reductions can leave different classification or discernibility properties of information systems
unchanged. For example, positive region preservation reduction [11] can leave the positive region
of a target decision unchanged. Generalized decision preservation reduction [12,13] can leave the
generalized decision of each object in the universe unchanged. Mutual information preservation
reduction [14] can leave mutual information, with respect to the decision attributes, unchanged. In
the last twenty years, many methods for attribute reduction have been studied, such as discernibility
matrix-based attribute reduction methods [15–20], heuristic attribute reduction methods [10,21–23],
metaheuristic attribute reduction methods [24–30], and so on.

In attribute reduction, the discernibility matrix is an important technique for obtaining all reducts
from data sets. Skowron et al. [8] first proposed a discernibility matrix which can obtain all reducts from
an information system. To extend the classical discernibility matrix, many methods of discernibility
matrix-based attribute reduction have been studied. Based on the similarity relation, Kryszkiewicz [13]
proposed discernibility matrices in incomplete information systems. By using maximal consistent
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blocks in incomplete information systems, Leung et al. [31] proposed a more efficient computational
method for attribute reduction. Miao et al. [32] introduced an attribute reduction method which can
leave maximal consistent blocks unchanged in an interval-valued information system. To obtain the
reducts, with respect to one decision class instead of all decision classes, Liu et al. [33] constructed
discernibility matrices regarding lth lower approximation reduction, lth decision class reduction, and
β-reduction of the lth decision class. Miao et al. [12] proposed a theoretical framework for discernibility
matrix-based attribute reduction. Based on this framework, the generalized discernibility matrix
was constructed.

As mentioned above, all reducts can be found by using discernibility matrices. However, finding
all reducts from a decision system based on a discernibility matrix has been proved to be an NP-hard
problem. Therefore, the aforementioned methods based on discernibility matrices are inefficient and
difficult to apply in large-scale data sets. To increase the efficiency of attribute reduction, many methods
of heuristic attribute reduction and metaheuristic attribute reduction have been researched extensively.
Hu et al. [11] first introduced a heuristic method for positive region reduction. Using the mutual
information, Miao et al. [14] proposed a bottom-up reduction algorithm. Qian et al. [34] closely
focused on increasing the efficiencies of heuristic reduction algorithms, and adopted a positive
approximation strategy to accelerate heuristic reduction algorithms. Dai et al. [35] used a variant
form of conditional entropy to design an attribute reduction algorithm for an interval-valued decision
system. Many attribute reduction algorithms based on metaheuristic methods [24–30,36,37] have been
developed recently. Chebrolu et al. [26] used a genetic algorithm to obtain a global minimal reduct
in a decision-theoretic rough set model. By using ant colony optimization, Chen et al. [29] gave a
feature selection algorithm which can find minimal subset of the features. Min et al. [30] investigated
a partial-complete searching method for ant colony optimization and developed an algorithm for
time-cost sensitive attribute reduction. Jia et al. [36] researched minimum cost attribute reduction
by using simulated annealing and genetic algorithms. Metaheuristic attribute reduction is an active
and important research field in attribute reduction. Compared with heuristic attribute reduction
methods, some significant research results by using metaheuristic attribute reduction methods have
been achieved. Chebrolu et al. [25] developed a metaheuristic attribute reduction algorithm for
real-valued data, called the hybrid ABC-EFTSBPSD. Comparative experiments were conducted to
verify the performance of the hybrid ABC-EFTSBPSD and the following two conclusions were obtained:
(1) The length of a reduct calculated by the hybrid ABC-EFTSBPSD was shorter than those of reducts
calculated by the heuristic reduction algorithms (ACO-RST [27], Q-MDRA [38], and IMCVR [39]),
in most cases. (2) By employing C4.5 and SVM classifiers, the hybrid ABC-EFTSBPSD had higher
classification accuracies than the heuristic reduction algorithms (Q-MDRA, ACO-RST, and IMCVR).
Compared with the heuristic attribute reduction methods MIBR [14] and QUICKREDUCT [24], the
algorithm RSFSACO, based on ant colony optimization, proposed by Chen et al. [29] could obtain a
minimal reduct in most cases.

In a decision system, objects with the same condition attribute values may have different decision
values. To keep these decision values unchanged, Miao et al. [12] proposed an attribute reduction
method for generalized decision preservation based on the discernibility matrix. Based on this method,
one can find all reducts for generalized decision preservation from a decision system. In constructing a
discernibility matrix and translating a conjunctive normal form (CNF) into a disjunctive normal form
(DNF) in a discernibility function, discernibility matrix-based reduction algorithms for generalized
decision preservation are computationally time-consuming and impractical when dealing with large
amounts of data. To address this problem, we introduce the similarity degree for generalized decision
preservation. By using the inner and outer significance measures, we develop two quick reduction
algorithms for generalized decision preservation. Theoretical analyses and experimental results show
that two proposed algorithms are feasible and efficient.

The novelties and contributions of this paper can be summarized as follows: First, a similarity
measure for generalized decision preservation has not yet been proposed so far. Hence, in order to
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measure the similarity of attributes for generalized decision preservation, we introduce a novel
monotonic similarity degree in this paper. Second, to evaluate the significance of an attribute
for generalized decision preservation, we propose two significance measures (the inner and outer
significance measures for generalized decision preservation), based on the proposed similarity degree.
Third, we use the add-deleting and deleting strategies to design forward and backward greedy
reduction algorithms for generalized decision preservation (FGRAG and BGRAG). If m denotes
the number of condition attributes and n indicates the number of objects, the time complexities of
FGRAG and BGRAG are O(m3n) and O(m2n), respectively. The time complexity of the discernibility
matrix-based reduction algorithm for generalized decision preservation (DMRAG) proposed by

Miao et al. [12] is O(mCdm/2e
m + mn4). The running time of DMRAG increases distinctively when

the number of attributes and objects increase. Meanwhile, the running time of FGRAG (BGRAG) is
less than that of DMRAG, relatively. Thus, the proposed reduction algorithms (FGRAG and BGRAG)
are more efficient. Experimental results indicate the subset calculated by FGRAG (BGRAG) is a reduct
for generalized decision preservation in a decision system. Compared with DMRAG, FGRAG and
BGRAG are more efficient when dealing with the same amount of attributes or objects. By avoiding
calculating the core, BGRAG is usually more efficient than FGRAG, in many cases. Our work in this
paper indicates how to simplify a decision system more quickly. Meanwhile, the generalized decision
of each object in the universe is unchanged. These research results will be useful for multi-attribute
decision analyses in practical applications.

The structure of this study is presented as follows: Some basic notions related to rough
approximations and generalized decision preservation will be reviewed in the following section.
In Section 3, the inner and outer significance measures are introduced to develop heuristic attribute
reduction algorithms for generalized decision preservation. Then, forward and backward heuristic
reduction algorithms are proposed. Comparative experiments are conducted to verify monotonicity
of the similarity degree, correctness, and efficiency of the proposed heuristic reduction algorithms in
Section 4. Finally, the entire work is summarized in Section 5.

2. Preliminaries

2.1. Rough Approximations in a Decision System

In this section, we will review some fundamental notions of RST [1], such as a decision system,
discernibility relation, and rough approximation. Studies of RST typically start with the concept
of a decision system. Assume that U = {x1, x2, . . . , xn} is the universe, C = {a1, a2, ..., am} and
D = {d} are a condition attribute set and a decision attribute set, Va is the domain of attribute values
for all a ∈ AT, and Ia : U × {a} → Va is an information function such that I(x, a) = a(x) ∈ Va

for all x ∈ U and a ∈ AT. Then, the 4-tuple DS = (U, C ∪ D, Va, Ia) is referred as to a decision
system [1] in RST. For brevity, a decision system can be also denoted by a 2-tuple DS = (U, C ∪ D).
For instance, Table 1 shows a decision system DS = (U, C ∪ D, Va, Ia), where the universe is U =

{x1, x2, x3, x4, x5, x6, x7, x8}, the condition attribute set is C = {a1, a2, a3, a4}, and the decision attribute
set is D = {d}.
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Table 1. A decision system.

U a1 a2 a3 a4 d

x1 1 1 2 4 2
x2 1 1 2 4 1
x3 1 1 2 4 1
x4 1 1 3 4 1
x5 1 1 3 4 3
x6 2 2 3 4 2
x7 2 2 3 4 1
x8 2 2 3 4 2

Definition 1. [1] Given a decision system DS = (U, C ∪ D, Va, Ia), for ∀Q ⊆ C, if xi, xj ∈ U, a(xi) and
a(xj) are the values of objects xi and xj, with respect to the attribute a, and the indiscernibility relation regarding
Q is defined as

Ind(Q) = {(xi, xj) ∈ U ×U|∀a ∈ Q, a(xi) = a(xj)}. (1)

Obviously, Ind(Q) is symmetric, transitive, and reflexive. Hence, Ind(Q) is an equivalence
relation and can be calculated as Ind(Q) =

⋂
a∈Q Ind({a}). Ind(Q) divides the universe U

into a collection of indiscernible granules (equivalence classes); that is, U/Ind(Q) = U/Q =

{EIND(Q)(xi)|xi ∈ U} = {EQ(xi)|xi ∈ U}, where EIND(Q)(xi) = EQ(xi) is an indiscernible granule
containing xi. From classical RST, indiscernible granules can constitute two definable sets, called the
lower approximation and the upper approximation. An arbitrary decision class in the universe can be
approximated by the lower and upper approximations, which are defined as follows:

Definition 2. [1] Given a decision system DS = (U, C ∪ D, Va, Ia), ∀Q ⊆ C, Dj ∈ U/D, the lower
approximation (LA) and the upper approximation (UA) of Dj, with respect to Q, are defined as follows:

Apr
Q
(Dj) = {xi|EQ(xi) ⊆ Dj} =

⋃
{EQ(xi)|EQ(xi) ⊆ Dj}, (2)

AprQ(Dj) = {xi|EQ(xi) ∩ Dj 6= ∅} =
⋃
{EQ(xi)|EQ(xi) ∩ Dj 6= ∅}. (3)

For ∀Q ⊆ C, Apr
Q
(Dj) is the union of all EQ(xi) which are included in Dj totally, whereas

AprQ(Dj) is the union of all EQ(xi) which are included in Dj partially. U− AprQ(Dj) is the union of the
EQ(xi) which are not included in Dj completely. The positive region (PR), boundary region (BR), and
negative region (NR) of Dj in the universe are defined, respectively, as follows: PosQ(Dj) = Apr

Q
(Dj),

BndQ(Dj) = AprQ(Dj)− Apr
Q
(Dj), and NegQ(Dj) = U − AprQ(Dj).

The relationship among the three regions (PR, BR, and NR) is presented as follows:

PosQ(Dj) + BndQ(Dj) + NegQ(Dj) = U. (4)

Definition 3. [1] For a decision system DS = (U, C ∪ D, Va, Ia), DS is consistent if and only if⋃|U/D|
j=1 PosC(Dj) = U; otherwise, DS is inconsistent.

In an inconsistent decision system DS = (U, C ∪ D, Va, Ia), there must exist xi, xj ∈ U(i 6= j) such
that (xi, xj) ∈ Ind(Q) but d(xi) 6= d(xj). Rough approximations are closely related to decision rules in
a decision system. The decision rule regarding an object in the positive region is a certainty rule in a
decision system; otherwise, the decision rule is an uncertainty rule.
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2.2. Discernibility Matrix-Based Attribute Reduction for Generalized Decision Preservation

In this section, we review the concept of generalized decision and attribute reduction for
generalized decision preservation based on the discernibility matrix. In inconsistent information
systems, objects with the same condition attribute values may have different decision values. The set
of these decision values is called the generalized decision [12], which is defined as follows:

Definition 4. [12] Given a decision system DS = (U, C ∪ D, Va, Ia), for all xi, xj ∈ U, ∀Q ⊆ C, EQ(xi) ∈
U/Q, the generalized decision for an object xi, with respect to Q, is defined as

δQ(xi) = { f (xj, d)|xj ∈ EQ(xi)}. (5)

For all xi ∈ U, it is easy to observe that 1 ≤ |δQ(xi)| ≤ |U|. For all xi ∈ U, if |δQ(xi)| = 1, then an
arbitrary object in a decision system has a unique decision value. Then, DS is a consistent decision
system (or, we say that DS is consistent); otherwise, DS is inconsistent. In an inconsistent decision
system, there exists at least one object with multiple decision values.

A reduct can provide a minimal attribute subset which contains the same classification properties
as the original condition attribute set. Attribute reduction for generalized decision preservation can
keep the possible decision values of each object unchanged. Therefore, a reduct for generalized decision
preservation [12] can be defined as follows:

Definition 5. [12] Given a decision system DS = (U, C ∪ D, Va, Ia), for all xi ∈ U, ∃xj ∈ U, Q ⊆ C is a
reduct for generalized decision preservation in DS if and only if

(1) δQ(xi) = δC(xi);
(2) ∀P ⊂ Q, δP(xj) 6= δQ(xj).

To get all reducts of a decision system for generalized decision preservation, Miao et al. [12]
described the discernibility matrix and its function for generalized decision preservation, as follows:

Definition 6. [12] Given a decision system DS = (U, C ∪ D, Va, Ia), for all xi, xj ∈ U, a ∈ C, the
discernibility matrix for generalized decision preservation is given by

Mdecision(xi, xj) =

{
{a| f (xi, a) 6= f (xj, a)}, δC(xi) 6= δC(xj).

∅, otherwise.
(6)

Definition 7. [12] Given a decision system DS = (U, C ∪ D, Va, Ia), if Mdecision(xi, xj) 6= ∅, then the
discernibility function of DS can be denoted by

DFdecision(a1, a2, . . . , a|C|) = ∧{∨(Mdecision(xi, xj))|1 ≤ i ≤ j ≤ |U|}. (7)

A discernibility matrix provides a matrix description of discernible attributes. Regarding
discernible attributes as literals in a clause, we construct a discernibility function, which is a conjunctive
normal form. We translate a conjunctive normal form (CNF) into a disjunctive normal form (DNF)
by using Boolean operation laws. For a DNF, the set of literals in a clause is a reduct in a decision
system. Based on the discernibility matrix and its function for generalized decision preservation,
Miao et al. [12] introduced a discernibility matrix-based attribute reduction method for generalized
decision preservation in Algorithm 1.



Appl. Sci. 2019, 9, 2841 6 of 20

Algorithm 1 A discernibility matrix-based reduction algorithm for generalized decision preservation
(DMRAG)

Input: A decision system DS = (U, C ∪ D, Va, Ia)
Output: All reducts for generalized decision preservation of DS

1: Calculate the generalized decision for each object and construct a discernibility matrix Mdecision.
2: Calculate a discernibility function DFdecision corresponding to Mdecision.
3: Simplify the discernibility function DFdecision by absorption law.
4: Transform DFdecision into a disjunctive normal form by Boolean operation laws.
5: Simplify the discernibility function DFdecision by absorption law.
6: Output all generalized decision preservation reducts of DS.

Suppose that m denotes the number of condition attributes and n indicates the number of objects.
Then, the time complexity of constructing a discernibility matrix is O(mn2). The time complexities of
simplifying a discernibility function and converting a discernibility function into a disjunctive normal

form are O(mn4) and mCdm/2e
m . Thus, the time complexity of Algorithm 1 is O(mCdm/2e

m + mn4).
According to Algorithm 1, we can construct a discernibility function of the decision system shown

in Table 1 as DFdecision(a1, a2, a3, a4) = (a3) ∧ (a1 ∨ a2) = (a1 ∧ a3) ∨ (a2 ∧ a3). Hence, the reducts of
DS are {a1, a3} and {a2, a3}.

3. Heuristic Attribute Reduction for Generalized Decision Preservation

In what follows, we start by detailing a monotonic similarity measure between different condition
attributes for generalized decision preservation in Section 3.1. Then, we propose the inner and outer
attribute significance measures and heuristic attribute reduction algorithms for generalized decision
preservation (FGRAG and BGARG) in Section 3.2.

3.1. The Similarity Degree for Generalized Decision Preservation

In studies of heuristic attribute reduction, the attribute similarity measure (heuristic information,
dependency degree) is an important factor. Recently, to obtain the various reducts, different similarity
measures have been proposed in rough set theory, such as the positive dependency degree [1],
information entropy [35], conditional entropy [40], and maximum decision entropy [41]. However,
there have been few studies on the similarity measure for generalized decision preservation. Thus,
to evaluate the similarity of different attributes for generalized decision preservation, we define the
similarity degree for generalized decision preservation as follows:

Definition 8. Given a decision system DS = (U, C ∪ D, Va, Ia), ∀Q ⊆ C, if EQ(xi) ∈ U/Q , EC(xi) ∈
U/C, the similarity degree for generalized decision preservation is defined as

Sim(Q, C) =


|⋃|U|i=1(EQ(xi)∩EC(xi))|

|U| , δQ(xi) = δC(xi).

0, otherwise.
(8)

To express the monotonic theorem of the similarity degree for generalized decision preservation,
we need the following theorem.

Theorem 1. Given a decision system DS = (U, C ∪ D, Va, Ia), if, for all xi ∈ U, P ⊆ Q ⊆ C, EP(xi),
EQ(xi), and EC(xi) are the equivalence classes that contain the object xi with respect to P, Q, and C, then we
have

δC(xi) ⊆ δQ(xi) ⊆ δP(xi). (9)

Proof. From the basic properties of rough set theory, for xi ∈ U, ∀Q ⊆ C, it is easy to get EC(xi) ⊆
EQ(xi). Suppose that δC(xi) ⊃ δQ(xi). Then, there exists xj ∈ U such that d(xj) ∈ δC(xi) but
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d(xj) /∈ δQ(xi). Then, xj ∈ EC(xi) but xj /∈ EQ(xi). Therefore, we have EC(xi) 6⊆ EQ(xi). This is
contrary to EC(xi) ⊆ EQ(xi). Then, δC(xi) ⊆ δQ(xi). Similarly, we have δQ(xi) ⊆ δP(xi). From the
discussion above, δC(xi) ⊆ δQ(xi) ⊆ δP(xi) holds. This completes the proof.

Definition 8 provides a similarity measure between different condition attribute sets for
generalized decision preservation. For all Q ⊆ C, we have 0 ≤ Sim(Q, C) ≤ 1. The monotonicity of
the similarity degree for generalized decision preservation is presented as follows:

Theorem 2. Given a decision system DS = (U, C ∪ D, Va, Ia), ∀P ⊆ Q ⊆ C, we have

Sim(P, C) ≤ Sim(Q, C). (10)

Proof. For all P ⊆ Q ⊆ C, xi ∈ U, if EP(xi) ∈ U/P, EQ(xi) ∈ U/Q and EC(xi) ∈ U/C, then
EC(xi) ⊆ EQ(xi) ⊆ EP(xi). If xim ∈ EP(xi), then we have EP(xi) = EQ(xi1) ∪ EQ(xi2) ∪ ...∪ EQ(xit) =⋃t

m=1 EQ(xim), where 1 ≤ t ≤ |EP(xi)|. If δP(xi) 6= δC(xi), then EP(xi) ∩ EC(xi) = 0. For xim ∈ EP(xi),
if δQ(xim) 6= δC(xim), then EQ(xim) ∩ EC(xim) = 0.

Suppose that (EP(xi) ∩ EC(xi)) ⊃
⋃t

m=1(EQ(xim) ∩ EC(xim)). There must exist xis such
that xis ∈ (EP(xi) ∩ EC(xi)) but xis 6∈

⋃t
m=1(EQ(xim) ∩ EC(xim)). Then, δP(xis) = δC(xis), but

δQ(xis) 6= δC(xis). From Theorem 1, for all xis ∈ U, we have δC(xis) ⊆ δQ(xis) ⊆ δP(xis).
As δP(xis) = δC(xis), then δQ(xis) = δC(xis). This is contrary to δQ(xis) 6= δC(xis). Thus,
(EP(xi) ∩ EC(xi)) ⊆

⋃t
m=1(EQ(xim) ∩ EC(xi)) holds. It is obvious that |(EP(xi) ∩ EC(xi))| ≤

|⋃t
m=1(EQ(xim) ∩ EC(xim))|. Hence, |⋃|U|i=1(EP(xi) ∩ EC(xi))| ≤ |

⋃|U|
i=1

⋃t
m=1(EQ(xim) ∩ EC(xim))|;

namely, |⋃|U|i=1(EP(xi) ∩ EC(xi))| ≤ |
⋃|U|

i=1(EQ(xi) ∩ EC(xi))|. Thus, we have |
⋃|U|

i=1(EP(xi)∩EC(xi))|
|U| ≤

|⋃|U|i=1(EQ(xi)∩EC(xi))|
|U| . Therefore, for all P ⊆ Q ⊆ C, Sim(P, C) ≤ Sim(Q, C). This completes the

proof.

An example is given to explain Theorem 2, as follows:

Example 1. Consider the decision system shown in Table 1, P = {a1, a2}, we have
EP(x1) = EP(x2) = EP(x3) = EP(x4) = EP(x5) = {x1, x2, x3, x4, x5},
EP(x6) = EP(x7) = EP(x8) = {x6, x7, x8}.

As U/D = {{x1, x6, x8}, {x2, x3, x4, x7}, {x5}},
δP(x1) = δP(x2) = δP(x3) = δP(x4) = δP(x5) = {1, 2, 3},
δP(x6) = δP(x7) = δP(x8) = {1, 2}

For C = {a1, a2, a3, a4}, we have
EC(x1) = EC(x2) = EC(x3) = {x1, x2, x3}, EC(x4) = EC(x5) = {x4, x5},
EC(x6) = EC(x7) = EC(x8) = {x6, x7, x8}.

As U/D = {{x1, x6, x8}, {x2, x3, x4, x7}, {x5}}, we have
δC(x1) = δC(x2) = δC(x3) = δC(x6) = δC(x7) = δC(x8) = {1, 2},
δC(x4) = δC(x5) = {1, 3}.

Therefore, the similarity degree between the attribute sets P and C is calculated as follows,
Sim(P, C) = |(EP(x6)∩EC(x6))∪(EP(x7)∩EC(x7))∪(EP(x8)∩EC(x8))|

|U| = |{x6,x7,x8}|
8 = 3

8 .
Analogously, the similarity degree between the attribute sets Q and C is calculated as follows,

Sim(Q, C) = |(EQ(x1)∩EC(x1)∪(EQ(x2)∩EC(x2))∪...∪(EQ(x8)∩EC(x8))|
|U| = |{x1,x2,x3}∪{x4,x5}∪{x6,x7,x8}|

8 = 1.
From the discussion above, for P ⊂ Q ⊂ C, it follows that 0 < SIM(P, C) < SIM(Q, C) = 1.

Based on the similarity degree for generalized decision preservation, Definition 5 can be written,
equivalently, as follows:
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Definition 9. Given a decision system DS = (U, C ∪ D, Va, Ia), Q ⊆ C is a reduct for generalized decision
preservation in DS if and only if

(1) Sim(Q, C) = 1;
(2) ∀P ⊂ Q, Sim(P, Q) 6= 1.

The first condition means that the attribute subset Q has the same similarity degree as the original
attribute set C, and the second condition means that there is no dispensable or redundant attribute in
Q. It should be considered that dispensable or indispensable attributes are suited to the classification
properties in a decision system. For example, a dispensable attribute for positive preservation may be
indispensable for conditional entropy preservation.

Considering monotonicity of the similarity degree for generalized decision preservation, we also
have the following definition:

Definition 10. Given a decision system DS = (U, C ∪ D, Va, Ia), Q ⊆ C is a reduct for generalized decision
preservation in DS if and only if

(1) Sim(Q, C) = 1;
(2) ∀P ⊂ Q, Sim(P, C) < SIM(Q, C).

For all Q ⊆ C, if ∃a ∈ Q such that Sim(Q, C) = Sim(Q − {a}, C), then a is called a
dispensable attribute for generalized decision preservation with respect to Q; otherwise, a is an
indispensable attribute for generalized decision preservation with respect to Q. The set of all
indispensable attributes regarding Q is called the core of Q, denoted by Core(Q). In Table 1, if
C = {a1, a2, a3, a4}, as Sim(C, C) = 1 > Sim(C− {a3}, C) = 3/8, then we have that a3 is an attribute
in Core(C). Core(Q) can be calculated by the intersection of all reducts with respect to Q. For Table 1,
Core(C) = {a1, a3} ∩ {a2, a3} = {a3}. In some cases, Core(Q) may be an empty set.

Theorem 3. Given a decision system DS = (U, C ∪ D, Va, Ia), for Q ⊆ C, we have the following:

(1) If Q is a reduct for generalized decision preservation in DS, then Q can leave the positive region unchanged
in a DS; and

(2) if Q is a reduct for distribution preservation in DS, then Q can leave the generalized decision unchanged
in a DS.

Proof.

(1) As Q is a reduct for generalized decision preservation, we have δQ(xi) = δC(xi) for any xi ∈ U.
Then, for xj ∈ Ds ∈ U/D, it is clear that δQ(xj) = δC(xj), |δQ(xj)| = |δC(xj)| = 1. Therefore,
{xj : |δQ(xj)| = 1, xj ∈ Ds} = {xj : |δC(xj)| = 1, xj ∈ Ds}, i.e., PosQ(Ds) = PosC(Ds). Then,

we have
⋃|U/D|

s=1 PosQ(Ds) =
⋃|U/D|

s=1 PosC(Ds) holds, i.e., PosQ(D) = PosC(D). Therefore, Q can
keep the positive region unchanged in a DS.

(2) For xj ∈ Ds ∈ U/D, xi ∈ U, if d(xj) ∈ δQ(xi), then we have Ds ∩ EQ(xi) 6= ∅. Therefore, we can

easily obtain P[Ds/EQ(xi)] =
|Ds∩EQ(xi)|
|EQ(xi)|

6= 0. As Q is a reduct for distribution preservation in

DS, we have P[Ds/EQ(xi)] = P[Ds/EC(xi)]. Then, P[Ds/EC(xi)] =
|Ds∩EC(xi)|
|EC(xi)|

6= 0. Therefore,
Ds ∩ EC(xi) 6= ∅. Then, d(xj) ∈ δC(xi). According to the hypothesis d(xj) ∈ δQ(xi), we have
δQ(xi) ⊆ δC(xi). From Theorem 1, we can find δC(xi) ⊆ δQ(xi). Then, δQ(xi) = δC(xi) holds.
Therefore, Q can keep the generalized decision unchanged in a DS.

This completes the proof.
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3.2. Heuristic Attribute Reduction Algorithms for Generalized Decision Preservation

Usually, there are two attribute significance measures in heuristic attribute reduction; namely,
the inner significance measure and the outer significance measure. The inner significance of an attribute
is usually used for designing a backward greedy algorithm, while the outer significance of an attribute
is usually used for designing a forward greedy algorithm. Based on the similarity degree (as proposed
in the last subsection), we define the inner significance measure for generalized decision preservation,
as follows:

Definition 11. Given a decision system DS = (U, C ∪ D, Va, Ia), Q ⊆ C and a ∈ Q, the inner significance
measure for generalized decision preservation is defined as

Siginner(a, Q, C) = Sim(Q, C)− Sim(Q− {a}, C). (11)

Theorem 4. Given a decision system DS = (U, C ∪ D, Va, Ia), for Q ⊆ C, if ∃a ∈ Q such that
Siginner(a, Q, C) > 0, then a ∈ Core(Q).

Proof. If Siginner(a, Q, C) > 0 (i.e., Sim(Q, C) > Sim(Q − {a}, C)), then the attribute a is called an
indispensable attribute for generalized decision preservation and belongs to Core(Q).

This completes the proof.

Definition 12. Given a decision system DS = (U, C ∪ D, Va, Ia) and Q ⊂ C, ∀a ∈ C − Q the outer
significance measure for generalized decision preservation is defined as

Sigouter(a, Q, C) = Sim(Q ∪ {a}, C)− Sim(Q, C). (12)

From Definition 12, we calculate the outer significance of a (a ∈ C) by adding a into a subset
Q ⊂ C. By the outer significance of an attribute, we add an attribute with the maximal outer significance
iteratively until the similarity degree between this attribute set and the original attribute set is 1.
Based on this strategy, a forward greedy reduction algorithm for generalized decision preservation is
proposed in Algorithm 2.

Algorithm 2 A forward greedy reduction algorithm for generalized decision preservation (FGRAG)

Input: A decision system DS = (U, C ∪ D, Va, Ia);
Output: An attribute reduct Q.

1: Let Core = ∅, and calculate δC(xi) for all xi ∈ U;
2: Put ai into Core where Sim(C− {ai}, C) < 1, i ∈ {1, 2, . . . , |C|};
3: Let Q = Core;
4: while Sim(Q, C) 6= 1 do
5: Q = Q ∪ {a′}, where Sigouter(a

′
, Q, C) = max{Sigouter(aj, Q, C), aj ∈ C−Q};

6: end while
7: for k = 1 to |Q| do // remove redundant attributes
8: if Siginner(ak, Q, C) = 0 then Q = Q− {ak};
9: end if

10: end for
11: return Q.

Using Algorithm 2, we can calculate a reduct of a decision system based on an add-deleting
research strategy. Algorithm 2 contains the main steps, as follows: Step 1 (Lines 1–3) is to calculate
the generalized decision for each object and obtain Core(C) by deleting dispensable attributes from
a condition attribute set, where the time complexity is O(mn) + O(m2n), where m and n present the
numbers of condition attributes and the universe, respectively. We iteratively add an attribute with
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the maximal outer significance into Q until this attribute reduction satisfies the stopping criterion
Sim(Q, C) = 1 in Step 2 (Lines 4–6), whose time complexity is O(m3n). Step 3 (Lines 7–10) is to remove
dispensable attributes and obtain an attribute reduct, with corresponding time complexity of O(m2n).
If dispensable attributes are not removed, we may get the superset of an attribute reduct, in some
cases. From the discussion above, the time complexity of Algorithm 2 is O(m3n).

Example 2. If DS = (U, C ∪ D, Va, Ia) is the decision system presented in Table 1, U = {x1, x2, ..., x8},
C = {a1, a2, a3, a4}, and D = {d}. By Algorithm 2, a reduct of DS can be calculated as follows:

1: CORE = ∅, δC(x1) = δC(x2) = δC(x3) = {1, 2}, δC(x4) = δC(x5) = {1, 3}, and δC(x6) =

δC(x7) = δC(x8) = {1, 2}. 2–3: As Sim(C−{a1}, C) = 1, Sim(C−{a2}, C) = 1, Sim(C−{a4}, C) = 1,
and Sim(C − {a3}, C) = 3/8 < 1. Therefore, Q = Core(C) = {a3}. 4–6: Sigouter(a1, Q, C) = 5/8,
Sigouter(a2, Q, C) = 5/8, and Sigouter(a4, Q, C) = 0. We put a1 into Q and get Q = {a1, a3}. By Definition 8,
we can obtain Sim(Q, C) = 1. 7–10: As Siginner(a1, Q, C) > 0 and Siginner(a3, Q, C) > 0. there exists no
dispensable attributes in Q. 11: Return the reduct Q = {a1, a3} of the DS.

Unlike the add-deleting research strategy used in Algorithm 2, we adopt a deleting strategy to
find a reduct. Attribute reduction using a deleting strategy begins with the original condition attribute
set. We construct an ascending sequence of condition attributes by the similarity degree for generalized
decision preservation. If the inner significance measure of an attribute is 0, we remove this attribute
from the condition attribute set. Based on this strategy, we develop a backward greedy reduction
algorithm for generalized decision preservation, shown in Algorithm 3.

Algorithm 3 A backward greedy reduction algorithm for generalized decision preservation (BGRAG)

Input: A decision system DS = (U, C ∪ D, Va, fa);
Output: An attribute reduct Q.

1: Calculate δC(xi) for all xi ∈ U;
2: Calculate Sim({ai}, C) for all ai ∈ C;
3: Construct an ascending sequence {a′1, a

′
2, . . . , a

′
|C|} by Sim({ai}, C);

4: Let Q = C;
5: for j = 1 to |Q| do
6: if Siginner(a

′
j, Q, C) = 0 then

7: Q = Q− {a′j}
8: end if
9: end for

10: return Q.

Assuming that m = |C| and n = |U|, the generalized decision of each object is calculated in Step 1
(Line 1), and the time complexity is O(mn). Step 2 (Lines 2–3) is to construct an ascending sequence of
condition attributes by similarity degree for generalized decision preservation, with time complexity
of O(m2n)+O(m2). Step 3 (Lines 4–9) is the key step in Algorithm 3, where dispensable attributes will
be removed. The time complexity of Step 3 is O(m2n). Due to using a deleting research strategy, we
need not delete redundant attributes. Therefore, the time complexity of Algorithm 3 is O(m2n).

Example 3. Table 1 is the decision system, where DS = (U, C ∪ D, Va, Ia), U = {x1, x2, ..., x8}, C =

{a1, a2, a3, a4}, and D = {d}. By Algorithm 3, a reduct of DS can be calculated as follows:
1: δC(x1) = δC(x2) = δC(x3) = {1, 2}, δC(x4) = δC(x5) = {1, 3}, and δC(x6) = δC(x7) =

δC(x8) = {1, 2}. 2: Sim({a1}, C) = 3/8, Sim({a2}, C) = 3/8, Sim({a3}, C) = 3/8, and Sim({a4}, C) =
0. 3–4: According to the value of Sim({ai}, C), we have an ascending sequence: Sim({a4}, C) = 0,
Sim({a1}, C) = 3/8, Sim({a2}, C) = 3/8, and Sim({a3}, C) = 3/8; and Q = C = {a1, a2, a3, a4}.
5–9: Siginner(a4, Q, C) = 0, so we delete a4 from Q. Then, we have Q = {a1, a2, a3}. Siginner(a1, Q, C) = 0,
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so we delete a1 from Q. Hence, we have Q = {a2, a3}. As Siginner(a2, Q, C) > 0 and Siginner(a3, Q, C) > 0,
there are no dispensable attributes in Q. 10: Return the reduct Q = {a2, a3} of DS.

Attribute reduction for generalized decision preservation is an important attribute reduction
model in RST. By using the algorithms FGRAG and BGRAG proposed in this section, the feature subsets
of each decision rule can be obtained quickly. Meanwhile, the decision values of each decision rule are
unchanged. For a decision system, these decision rules are crucial for multiple criteria decision-making
and decision conflict analysis. Metaheuristic attribute reduction for generalized decision preservation
has not been proposed, so far. In the papers [25,27,29], it has been shown that, by using metaheuristic
methods, shorter length of the reducts and higher classification accuracies can be achieved. Thus,
attribute reduction for generalized decision preservation based on metaheuristic methods will be
researched in the future.

4. Experimental Analyses

To verify monotonicity of the similarity degree, correctness, and efficiency of Algorithms 2 and 3,
some comparison experiments were carried out. All experiments in this section were conducted
on a personal computer with Microsoft Window 7 (64 bit), Intel Core i5-6500 processor, and 8 GB
memory. Three algorithms (DMRAG, FGRAG, and BGRAG) were developed in Python 3.6.2. The
eight data sets used in the experiments were all downloaded from the UC Irvine Machine Learning
Repository (http://archive.ics.uci.edu/ml/datasets.html). Detailed information about these data sets
can be found in Table 2. In these eight data sets, Breast Cancer Wisconsin was a data set with missing
values. The missing values were replaced by high-frequency values in the same condition attribute.
All numerical attributes were discretized by equal-frequency discretization methods. We carried out
the comparative experiments from three aspects: The first aspect was to verify monotonicity of the
similarity degree; the second aspect was to validate the correctness of the proposed algorithms; and
the third aspect was to illustrate the efficiency of the proposed algorithms.

Table 2. Data sets.

Data Sets Objects Attributes Data Types Classes

1 Blood Transfusion Service Center 748 4 Numerical 2
2 Breast Cancer Wisconsin 699 9 Numerical 2
3 Diabetic Retinopathy Debrecen 1151 19 Numerical 2
4 House 506 13 Numerical 4
5 Liver Disorders 345 6 Numerical, Nominal 2
6 Seismic Bumps 2584 15 Numerical, Nominal 2
7 Tic-Tac-Toe Endgame 958 9 Nominal 2
8 Wilt 4339 5 Numerical 2

4.1. Monotonicity of the Similarity Degree for Generalized Decision Preservation

In this subsection, we will verify the monotonicity of the similarity degree (as proposed in
Section 3.1). The eight data sets shown in Table 2 were used for this experiment. Figure 1 shows the
change trends of the similarity degree for generalized decision preservation with the number of the
attributes increasing. In Figure 1, the x-axis denotes number of the attributes, while the y-axis denotes
the similarity degree for generalized decision preservation. The similarity degree increased with an
increasing number of attributes, and the relationship between the number of attributes and similarity
degree for generalized decision preservation was strictly monotonic.

http://archive.ics.uci.edu/ml/datasets.html
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Figure 1. Monotonicity of the similarity degree.

4.2. Correctness of Proposed Attribute Reduction Algorithms

Discernibility matrix-based attribute reduction is the classical attribute reduction method in RST,
and we can get all reducts from a decision system in terms of discernibility matrix-based reduction.
By using the three algorithms, we obtained reduction results of eight UCI data sets, which are illustrated
in Table 3.

Table 3. Reduction results of three algorithms.

Data Sets DMARG FGARG BGARG

1 {1, 4} {1, 4} {1, 4}
2 { {1, 3, 5, 6}, {1, 3, 6, 8}, {1, 2,

6, 7}, {1, 5, 6, 8}, {1, 4, 6, 7}, {1,
3, 4, 6, 9}, {1, 2, 3, 4, 6}, {1, 2,
4, 6, 9}, {1, 2, 4, 6, 8}, {1, 2, 5,
6, 9}, {2, 3, 4, 6, 7}, {2, 4, 5, 6,
7}, {2, 5, 6, 7, 9}, {2, 5, 6, 7, 8},
{2, 3, 5, 6, 8, 9}, {3, 5, 6, 7}, {3,
4, 6, 8}, {3, 4, 6, 7, 9}, {5, 6, 7,
8, 9}}

{1, 3, 5, 6} {1, 3, 6, 8}

3 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 16, 17, 18, 19}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 16, 17, 18, 19}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 16, 17, 18, 19}

4 {1, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13}, {1, 3, 4, 5, 6, 7, 8, 10, 11,
12, 13}

{1, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13}

{1, 3, 4, 5, 6, 7, 8, 10, 11, 12,
13}

5 {1, 2, 3, 4, 5}, {1, 2, 3, 5, 6}, {1,
2, 4, 5, 6}, {1, 2, 3, 4, 6}, {2, 3,
4, 5, 6}

{1, 2, 3, 4, 5} {2, 3, 4, 5, 6}

6 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
14, 15}, {1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 12, 14, 15}, {1, 2, 3, 4, 5, 6,
7, 8, 10, 11, 12, 14, 15}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
14, 15}

{1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12,
14, 15}

7 {{1, 2, 3, 4, 5, 6, 7, 9},{1, 2, 3,
4, 5, 7, 8, 9}, {1, 2, 3, 5, 6, 7, 8,
9}, {1, 2, 3, 4, 5, 6, 8, 9}, {1, 2,
3, 4, 6, 7, 8, 9}, {1, 3, 4, 5, 6, 7,
8, 9}, {1, 2, 4, 5, 6, 7, 8, 9}, {1,
2, 3, 4, 5, 6, 7, 8}, {2, 3, 4, 5, 6,
7, 8, 9} }

{1, 2, 3, 4, 5, 7, 8, 9} {2, 3, 4, 5, 6, 7, 8, 9}

8 {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5}
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Based on discernibility matrix-based attribute reduction, we can obtain all reducts from a decision
system. Therefore, a reduct calculated by heuristic attribute reduction must be one of the reducts
calculated by discernibility matrix-based attribute reduction. In other words, the reducts calculated by
discernibility matrix-based attribute reduction must include a reduct calculated by heuristic attribute
reduction. Under this consideration, by reduction results calculated by the three algorithms in this
paper, we can verify the correctness of the proposed Algorithms 2 and 3. As shown in Table 3, it
is obvious to see that a reduct calculated by FGRAG or BGRAG is one of the reducts calculated by
DMRAG. For example, if the set of the reducts calculated by DMRAG on the data set Breast Cancer
Wisconsin (Number 2) is denoted by Set_1, a reduct calculated by FGRAG was {1, 3, 5, 6} and a reduct
calculated by BGRAG was {1, 3, 6, 8}. From Table 3, it is easy to see that {1, 3, 5, 6} ∈ Set_1 and {1, 3,
6, 8} ∈ Set_1. Therefore, on the data set Breast Cancer Wisconsin, any reduct calculated by FGRAG
(or BGRAG) corresponded to one of the reducts calculated by DMRAG. Similarly, let the set of the
reducts calculated by DMRAG on data set Tic-Tac-Toe Endgame (Number 7) be denoted by Set_2.
The reducts calculated by FGRAG and BGRAG were {1, 2, 3, 4, 5, 7, 8, 9} and {2, 3, 4, 5, 6, 7, 8, 9},
respectively. It is obvious that {1, 2, 3, 4, 5, 7, 8, 9} and {2, 3, 4, 5, 6, 7, 8, 9} belong to Set_2. Thus, on
data set Tic-Tac-Toe Endgame, a reduct calculated by FGRAG (or BGRAG) was also one of the reducts
calculated by DMRAG.

4.3. Efficiency of Proposed Attribute Reduction Algorithms

In this subsection, we will validate the efficiency of Algorithms 2 and 3. The running times of
DMRAG, FGRAG, and BGRAG on the eight data sets are shown in Table 4, where |Q| denotes the
number of the attributes in an attribute reduct Q. For DMRAG, |Q| denotes the average number of
the attributes of all reducts. Figures 2 and 3 demonstrate the change trends of the running times of
three algorithms (DMRAG, FGRAG, and BGRAG) with increasing size of data set. From Table 4, it is
easy to see that the running time of DMRAG was the maximum among those of the three algorithms.
In other words, both FGRAG and BGRAG were more efficient than DMRAG on the eight data sets.
The running time of FGRAG (BGRAG) was much less than that of DMRAG. For example, DMRAG
on the data set Tic-Tac-Toe Endgame (Number 7) took 2888 ms, whereas FGRAG and BGRAG took
795 ms and 187 ms, respectively. The running time of DMRAG was about 3 times and 15 times than
those of FGRAG and BGRAG, respectively. From Table 4, it is clear that both FGRAG and BGRAG
had higher efficiencies than DMRAG. Due to avoiding calculating the core, BGRAG was usually more
efficient than FGRAG. In Table 4, the running time of BGRAG was the minimum among those of the
three algorithms on seven data sets (namely, Breast Cancer Wisconsin, Diabetic Retinopathy Debrecen,
House, Liver Disorders, Seismic Bumps, Tic-Tac-Toe Endgame, and Wilt).

Table 4. Time consumption comparison of three algorithms.

Data Sets Objects Attributes FGARG BGARG DMARG

|Q1| t/ms |Q2| t/ms |Q3| t/ms

1 748 4 2 46 2 46 2 234
2 699 9 4 312 4 140 4.6 1029
3 1151 19 16 1687 16 1029 16 5678
4 506 13 11 405 11 202 11 920
5 345 6 5 109 5 46 5 218
6 2584 15 13 3123 13 1484 13 11,140
7 958 9 8 795 8 187 8 2888
8 4339 5 5 592 5 353 5 34,264

Figure 2 indicates the change trends of the running times of three algorithms (DMRAG, FGRAG
and BGRAG) with the number of the attributes increasing. In Figure 2a–h, the x-axis represents the
number of the attributes, while the y-axis represents the time consumption of the three algorithms. The
curves of FGRAG and BGRAG are totally under that of DMRAG. The running times of FGRAG and
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BGRAG were much less than that of DMRAG when dealing with the same amount of attributes. The
curve of DMRAG rises rapidly when the number of the attributes increases, while those of FGRAG
and BGRAG rise slowly. For example, in Figure 2a, the running time of DMRAG increased by 242
ms when the number of the attributes varied from 0 to 1, whereas the running times of FGRAG and
BGRAG increased by only 10 and 6 ms, respectively. For Figure 2b, the running time of DMRAG
increased by 796 ms when the number of the attributes varied from 0 to 2, whereas the running times
of FGRAG and BGRAG increased by only 23 and 13 ms. It is obvious that Figure 2h is different from
the others in Figure 2. The running time of FGRAG or BGRAG was much less than that of DMRAG
when dealing with the same number of attributes. The differences between FGRAG and BGRAG in
time consumption were much less than the differences between FGRAG (BGRAG) and DMRAG. Thus,
the curves of FGRAG and BGRAG were relatively similar and very close to the x-axis. The running
times of the three algorithms (DMRAG, FGRAG, and BGRAG) all increased with the number of the
attributes. Nevertheless, the relationship between the number of the attributes and the running time
was not strictly monotonic. For example, in Figure 2f, the running times of DMRAG were 14,126 ms
and 13,907 ms, respectively, when the numbers of attributes were 7 and 8. The running time was
reduced by 219 ms when the number of the attributes varied from 7 to 8. In Figure 2a–h, the curves
of FGRAG and BGRAG are similar relatively. In the beginning, the differences between FGRAG and
BGRAG are not visible. The differences between FGRAG and BGRAG became larger when the number
of attributes increased. From Figure 2a–h, for the same number of the attributes, we can see that
FGRAG (BGRAG) was more efficient than DMRAG and the efficiency of BGRAG was higher than
FGRAG.
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Figure 2. Time consumption comparison with the attributes increasing.

Figure 3 illustrates the change trends of the running times of three algorithms (DMRAG, FGRAG,
and BGRAG) with increases in the size of the universe. For each sub-figure in Figure 3, the x-axis
denotes size of the universe, while the y-axis denotes the time consumptions of the three algorithms.
The size of the universe of each data set was divided into ten parts with equal size. The running
times of the three algorithms (DMRAG, FGRAG, and BGRAG) increased with the size of the universe.
The relationship between the size of the universe and the running time was also not monotonic strictly.
For example, in Figure 3a, the running time of FGRAG was 31 ms when the size of the universe
was 4, whereas the running time was 15 ms when the size of the universe was 5; that is, as the size
of the universe increased from 4 to 5, the running time was reduced by 16 ms. From Figure 3, it
can be easily observed that the gradient of the curve of DMRAG was bigger than that of FGRAG or
BGRAG, generally. The running time of DMRAG increased significantly when the size of the universe
increased, while the running time of FGRAG (or DMRAG) increased slowly. For Figure 3b, the running
time of DMRAG increased by 842 ms when the size of the universe varied from 4 to 10, whereas
the running times of FGRAG and BGRAG increased by only 171 ms and 78 ms, respectively. For
Figure 3g, the running time of DMRAG increased by 2152 ms when the size of the universe varied
from 7 to 10, whereas the running times of FGRAG and BGRAG increased by only 327 and 46 ms.
In the beginning, the differences between DMRAG and FGRAG (or BGARG) were not obvious. The
differences between DMRAG and FGRAG (or BGRAG) became larger when the size of the universe
increased. For example, in Figure 3b, the running time of DMRAG increased significantly when the
size of the universe was over 4. The differences between DMRAG and FGRAG (BGRAG) became larger
than before. In Figure 3c, the differences between DMRAG and FGRAG (BGRAG) became larger when
the size of the universe was over 4. It is easy to see that Figure 3h is different from the other subfigures
in Figure 3. From Figure 3h, DMRAG needed far more time than FGRAG (BGARG) when dealing with
the same sized universe. In other words, FGRAG (BGRAG) needed much less time than DMRAG. For
example, DMRAG needed 13,306 ms, 24,398 ms, and 37,206 ms, when the size of the universe was 6, 8,



Appl. Sci. 2019, 9, 2841 16 of 20

and 10, respectively. Meanwhile, FGRAG needed 421 ms, 546 ms, and 670 ms, BGRAG needed 218
ms, 296 ms, and 390 ms. The differences between FGRAG and BGRAG, in terms of time consumption,
were much less than the differences between FGRAG (BGRAG) and DMRAG. Thus, the curves of
FGRAG and BGRAG are similar relatively and very close to x-axis. From Figure 3, it is profoundly
visible that the efficiency of FGRAG (or BGRAG) was higher than that of DMRAG when dealing with
the same size of the universe.

From the time complexity analyses of DMRAG, FGRAG, and BGRAG, the time complexity of

DMRAG proposed by Miao et al. [12] was O(mCdm/2e
m + mn4), while the time complexities of FGRAG

and BGRAG proposed in this paper were O(m3n) and O(m2n), where m = |C| denotes the number of
condition attributes and n = |U| indicates the size of the universe (the number of objects). Therefore,
in Figure 3, the running times of DMRAG, FGRAG, and BGRAG increased with the size of the universe
generally. According to the time complexity of DMRAG, the running time of DMRAG was easily
affected by the change of the number of objects. When the number of objects increased rapidly, the
running time of DMRAG increased significantly. Therefore, in Figure 3, the curve of DMRAG rises
distinctively when the size of the universe increases. The differences between FGRAG and BGRAG,
in terms of time consumption, were much less than the differences between FGRAG (BGRAG) and
DMRAG. The curves of FGRAG and BGRAG were relatively similar. In some cases, if the discernibility
property for generalized decision preservation can be improved rapidly by adding the objects, the
number of loops (or iterations) of FGRAG or BGRAG can be reduced correspondingly. Then, the
running time of FGRAG or BGRAG decreases with the size of the universe increasing, in some cases.
Thus, the relationship between the size of the universe and the running time was not strictly monotonic.
For example, in Figure 3a, the running time of FGRAG was 46 ms when the size of the universe was
7, whereas the running time was 31 ms when the size of the universe was 8. In Figure 3a–h, due to
avoiding calculating the core, BGRAG was more efficient than FGRAG in most cases.
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(a) Blood Transfusion Service Center
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(b) Breast Cancer Wisconsin
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(c) Diabetic Retinopathy Debrecen
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(e) Liver Disorders
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(f) Seismic Bumps
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(g) Tic-Tac-Toe Endgame
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Figure 3. Time consumption comparison with the universe increasing.

5. Conclusions and Future Researches

Developing efficient algorithms for attribute reduction for decision systems is an important
issue in many research fields, such as knowledge representation, multiple attribute decision making,
and artificial intelligence. Discernibility matrix-based attribute reduction for generalized decision
preservation has low computational efficiency and is intolerable for processing a large amount of
data. To deal with this issue, a monotonic similarity measure for generalized decision preservation is
introduced for attribute reduction. By using the proposed similarity measure, two types of heuristic
attribute reduction algorithms (FGRAG and BGRAG) have been designed to obtain the reducts for
generalized decision preservation in this paper. One is a forward attribute reduction algorithm based
on the add-deleting strategy, the other is a backward attribute reduction algorithm based on the
deleting strategy. Results of comparative experiments indicate that both FGRAG and BGRAG can
significantly reduce the running time of attribute reduction, while retaining the generalized decision
of each object in the universe.

The effectiveness of the proposed heuristic algorithms in machine learning and multi-attribute
decision making is presented as follows: (1) In practical applications, the original data sets often contain
redundant or irrelative attributes. These attributes may deteriorate the efficiency of learning algorithms.
The proposed algorithms FGRAG and BGRAG can remove the redundant attributes from the original
data sets quickly, and obtain the simplified data sets which only have indispensable attributes. These
simplified data sets can reduce the cost of storage and improve the efficiency of learning algorithms, as
well as providing an understandable approach for analyses of data set structures. (2) For a decision
system, objects with the same condition attribute values may have different decision values. The rules
with respect to these objects are referred to as uncertain rules. By the attribute reduction methods
proposed in this paper, the possible decision values of each uncertain rule are left unchanged. Thus,
the uncertain information in a decision system can be retained. Based on the reducts calculated by the
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proposed algorithms, simplified uncertain rules can be extracted from a decision system. These rules
can be useful for multiple criteria decision making and decision conflict analyses.

Some future research directions are: (1) Attribute reduction for generalized decision preservation
based on metaheuristic methods has not been proposed, so far. Based on studies of metaheuristic
methods [25,27,29], attribute reduction for generalized decision preservation based on metaheuristic
methods (i.e., bee colony or ant colony optimization) will be studied in the future. Some comparative
experiments will be also conducted to verify that the proposed algorithms are effective. (2) The
heuristic attribute reduction algorithms proposed in this paper are based on the equivalence relation
and can be only used in classical Pawlak decision systems. However, in practical applications, there
are many generalized decision systems, such as set-valued decision systems, interval-valued decision
systems, and fuzzy decision systems. Heuristic attribute reduction algorithms for generalized decision
preservation in generalized decision systems will be investigated in future studies.
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