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Abstract: Fire is an abnormal event which can cause significant damage to lives and property. In this
paper, we propose a deep learning-based fire detection method using a video sequence, which imitates
the human fire detection process. The proposed method uses Faster Region-based Convolutional
Neural Network (R-CNN) to detect the suspected regions of fire (SRoFs) and of non-fire based on
their spatial features. Then, the summarized features within the bounding boxes in successive frames
are accumulated by Long Short-Term Memory (LSTM) to classify whether there is a fire or not in a
short-term period. The decisions for successive short-term periods are then combined in the majority
voting for the final decision in a long-term period. In addition, the areas of both flame and smoke
are calculated and their temporal changes are reported to interpret the dynamic fire behavior with
the final fire decision. Experiments show that the proposed long-term video-based method can
successfully improve the fire detection accuracy compared with the still image-based or short-term
video-based method by reducing both the false detections and the misdetections.

Keywords: deep learning; fire detection; Faster R-CNN; spatiotemporal feature; LSTM; majority
voting; dynamic fire behavior

1. Introduction

Fire is an abnormal event which can quickly cause significant injury and property damage [1].
According to the National Fire Protection Association (NAPA), the United States fire department
responded to an estimated 1,319,500 fires during 2017 [2], which resulted in 3,400 civilian fire fatalities,
14,670 civilian fire injuries, and an estimated $23 billion in direct property loss. In order to reduce
such disasters, fire detection without a false alarm at an early stage is crucial. Accordingly, various
automatic fire detection technologies are being developed, and are widely used in real life.

In general, two broad categories of technologies can be identified: traditional fire alarm and fire
detection by computer vision. Traditional fire alarm technology is based on smoke or heat sensors
that require proximity for activation. These sensors need human involvement to confirm a fire in
case of alarm. Furthermore, such systems require various equipment to provide information on
the size, location, and burning degree of the fire. To overcome these limitations, researchers have
been investigating computer vision-based methods combined with various types of supplementary
sensors [3–6]. This category of technologies gives larger surveillance coverage and offers the advantage
of less human intervention with a faster response, as a fire can be confirmed without requiring a visit
to the fire location, and provides detailed fire information such as location, size, and degree. Despite
these advantages, however, some issues remain concerning the system complexity, and false detection
according to diverse reasons. Therefore, researchers have invested significant effort to address these
issues in terms of computer vision technology.

Early research on computer vision-based fire detection was focused on the color of a fire within
the framework of a rule-based system, which is often sensitive to environmental conditions such
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as illumination and weather. So, further studies added supplementary features to the color of a
fire, including area, surface, boundary, and motion of the suspected region, with other types of
decision-making algorithms, such as Bayes classifier and multi-expert systems, in order to make a
robust decision. Nevertheless, almost all the research tries to detect the flame and smoke in a single
frame of Closed-Circuit Television (CCTV) or a limited number of frames in a short period.

In general, it is not an easy task to explore the static and dynamic characteristics of diverse flame
and smoke to be exploited in a vision system, as it requires a large amount of domain knowledge. In
the deep learning approach however, these exploration and exploitation processes can be replaced
by the training of an appropriate neural network with a sufficient amount of data in order to avoid
overfitting. This approach, therefore, becomes convenient once a dataset with many flame and smoke
images or video clips has been built.

In this paper, we propose a deep-learning-based fire detection method, which imitates the human
detection process and which we call the detection and temporal accumulations (DTA) for the fire
decision. Usually, a human can detect a suspected fire object in a scene, continuously monitor it, and
accumulate the temporal behaviors to finally decide whether it is a fire or not. We assume that this
DTA process can greatly reduce erroneous fire detection.

In the proposed method, the suspected region of fire (SRoF) is detected with its spatial features
against non-fire objects by the Faster Region-based Convolutional Neural Network (R-CNN). Then, the
features summarized from the object detection model in successive frames are accumulated by Long
Short-Term Memory (LSTM) to classify whether there is a fire or not in a short-term period, which can
be treated as a person’s glance for fire detection.

The decisions for successive short-term periods are then combined in the majority voting for the
final decision in a long-term period. In addition, the areas of SRoFs, including both flame and smoke,
are calculated and their temporal changes are reported to interpret the dynamic fire behavior with the
final fire decision.

Experiments show that the proposed long-term video-based method can successfully improve
the fire detection accuracy compared with the still image-based or short-term video-based method by
reducing both the false detections and the misdetections. The method discriminates fires from fire-like
video sequences especially well. For example, chimney smoke, sunset, and clouds often induce errors
in conventional computer vision-based fire detection. Also, the method reflects the temporal behavior
of real fire situations well by providing area information of SRoFs.

Therefore, our key contributions can be summarized as follows:

(1) We propose a deep learning-based fire detection method that avoids the time-consuming efforts
to explore hand-crafted features. Because it automatically generates a set of useful features after
training, it is sufficient to construct the proper deep learning model and to gather a sufficient
amount of training data. Therefore, we have constructed a large fire dataset which contains
diverse still images and video clips, including the data from well-known public datasets. Not
only is the dataset used for the training and testing of our experiment, but it also could be an
asset for future computer vision-based fire detection research.

(2) Our deep learning-based method emulates a human process of fire detection called DTA, in that
SRoFs are detected in one scene and the temporal behaviors are continuously monitored and
accumulated to finally decide whether it is a fire or not. In the method, Faster R-CNN is used to
detect SRoFs against non-fire objects with their spatial features, and LSTM temporally accumulates
the summarized spatial features by using the weighted Global Average Pooling (GAP), where
the weight is given by the confidence score of a bounding box. The initial decision is made in a
short period, and the final decision is made by the majority voting of the series of decisions in a
long period.

(3) The proposed method has been experimentally proven to provide excellent fire detection accuracy
by reducing the false detections and misdetections. Also, it successfully interprets the temporal
SRoF behavior, which may reduce false dispatch of firemen.
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The remainder of this paper is organized as follows. The related work is introduced in Section 2,
the details of our proposed method are given in Section 3, and the experimental results and discussions
are presented in Section 4. Finally, several concluding remarks are given in Section 5.

2. Related Work

2.1. Computer Vision-Based Fire Detection

In conventional fire detection, much research has continuously focused on finding out the salient
features of fire images. Chen [7] analyzed the changes of fire using an RGB and HSI color model based
on the difference between consecutive frames and proposed a rule-based approach for fire decision.
Celik and Demirel [5] proposed a generic rule-based flame pixel classification using the YCbCr color
model to separate chrominance components from luminance ones. In addition, Wang [8] extracted the
candidate fire area in an image using an HSI color model and calculated the dispersion of the flame
color to determine the fire area. However, color-based fire detection methods are generally vulnerable
to a variety of environmental factors such as lighting and shadow.

Borges and Izquierdo [9] adopted the Bayes classifier to detect fires based on additional features
such as the area, surface, and boundary of the fire area to color. Mueller [10] proposed the neural
network-based fire detection method using optical flow for the fire area. In the method, two optical
flow models are combined to distinguish between fire and dynamically moving objects. In addition,
Foggia [11] proposed a multi-expert system which combines the analysis results of a fire’s color, shape,
and motion characteristics. Although insufficient, the supplementary features to color, including
texture, shape, and optical flow, can reduce the false detections.

Nevertheless, these approaches require domain knowledge of fires in captured images essential to
explore hand-crafted features and cannot reflect the information spatially and temporally involved in
fire environments well. In addition, almost all methods using the conventional approach only use a
still image or consecutive pairs of frames to detect fire. Therefore, they only consider the short-term
dynamic behavior of fire, whereas a fire has a longer-term dynamic behavior.

2.2. Deep Learning-Based Approach

Recently, deep learning has been successfully applied to diverse areas such as object
detection/classification in images, speech recognition, and natural language processing. Researchers
have conducted various studies on fire detection based on deep learning to improve performance.

The deep learning approach has several differences from the conventional computer vision-based
fire detection. The first is that the features are not explored by an expert, but rather are automatically
captured in the network after training with a large amount of diverse training data. Therefore, the
effort to find the proper handcrafted features is shifted to designing a proper network and preparing
the training data.

Another difference is that the detector/classifier can be obtained by training simultaneously with
the features in the same neural network. Therefore, the appropriate network structure becomes more
important with an efficient training algorithm.

Sebastien [12] proposed a fire detection network based on CNN where the features are
simultaneously learned with a Multilayer Perceptron (MLP)-type neural net classifier by training.
Zhang et al. [13] also proposed a CNN-based fire detection method which is operated in a cascaded
fashion. In their method, the full image is first tested by the global image-level classifier, and if a
fire is detected, then a fine-grained patch classifier is used for precisely localizing the fire patches.
Muhammad et al. [14] proposed a fire surveillance system based on a fine-tuned CNN fire detector. This
architecture is an efficient CNN architecture for fire detection, localization, and semantic understanding
of the scene of the fire inspired by the Squeeze Net [15] architecture.
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In the deep layer of CNN, a unit has a wide receptive field so that its activation can be treated as
a feature that contains a large area of context information. This is another advantage of the learned
features with CNN for fire detection.

Even though CNN showed overwhelmingly superior classification performance against traditional
computer vision methods, locating objects has been another problem. In the proposed method, we
adopt the object detection model to localize the SRoFs and non-fire objects, which includes the flame,
smoke for the SRoFs, and other objects irrelevant to the fire for the non-fire objects. The objects
irrelevant to the fire increase false alarms due to variations in shadows and brightness, and will often
detect objects such as red clothes, red vehicles, or sunset. We detect the fire objects by using the Faster
R-CNN model, even though it does not have to be confined to the object detection model. The deep
object detector, either single- or multi-stage, is usually composed of CNN-type feature extractors,
followed by a localizer with a classifier. Therefore, our object detection model includes the feature
extractor with a relatively wider area of receptive field than the detected SRoF area and can gather
more context information.

Although the CNN-based approaches provide excellent performance, it is hard to capture the
dynamic behavior of fire, which can be obtained by recursive-type neural networks (RNN). LSTM
proposed by Hochreiter and Schmidhuber [16] is an RNN model that solves the vanishing gradient
problem of RNN. LSTM can accumulate the temporal features for decision making through the memory
cells which preserve the internal states and the recurrent behavior. However, the number of recursions
is usually limited, which makes it difficult to capture the long-term dynamic behavior necessary to
make a decision. Therefore, special care must be taken to consider the decision based on long-term
behavior with LSTM.

Recently, Hu et al. [17] used LSTM for fire detection, where the CNN features are extracted from
optical flows of consecutive frames, and temporally accumulated in an LSTM network. The final
decision is made based on the fusion of successive temporal features. Their approach, however,
computes the optical flow to prepare the input of CNN rather than directly using RGB frames.

3. Proposed Method

3.1. Network Architecture

Traditional computer vision-based fire detection methods have widely used the static characteristics
or the short-term temporal behaviors such as colors and motions of flame and smoke. However, as fires
show variable temporal appearance, the detection accuracy of such methods that depend on the static
and short-term temporal behaviors is limited.

We propose a deep learning-based fire detection method, which imitates the human process, called
DTA for fire decision. We assume that this DTA process can greatly reduce erroneous fire decisions.
The proposed network architecture is divided into three sections.

In the first section, we detect the SRoFs or non-fire objects in the video frames using a deep object
detection model, Faster R-CNN, which consists of CNN feature extractors and a bounding box localizer
with a classifier. Here, the bounding boxes locate three different classes: flame, smoke, and non-fire.
Usually, flame and smoke cannot be well-separated in a fire so that the smoke-only object in a bounding
box is classified into smoke. Also, the whole fire region is treated as one bounding box. A non-fire
object implies a still image that has no objects related with a fire or a class of objects that are difficult
to differentiate from a fire, such as a chimney evening glow, smoke, and cloud. The non-fire objects
have their own bounding boxes. Then, the bounding boxes, including SRoFs and non-fire objects, are
projected on the learned feature maps in the last layer of CNN of Faster R-CNN in order to extract the
corresponding spatial features.

In the second section, the summarized and concatenated CNN features are temporally accumulated
to capture the dynamic behaviors of fire, and the short-term fire decision is made in the two-stage
LSTM network. Here, we do not differentiate flame from smoke in the section, so that the LSTM
consecutively accumulates both flame and smoke features to decide between fire or non-fire.
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Then, in the third section, the short-term decisions are combined in the last majority voting stage
for long-term fire decision. The last block also integrates the information to interpret the dynamic fire
behaviors in order to determine whether the area of SRoFs, including flame and smoke detected by
bounding boxes at Faster R-CNN stages, is increasing or not, for the long-term period. Figure 1 shows
the proposed network architecture.
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Figure 1. The proposed network architecture.

Figure 2 presents a timing diagram that shows the decision period for each block. The fire objects
of flame or smoke are detected for each frame of video, and the CNN features of Faster R-CNN in the
detected bounding boxes are temporally accumulated for a period TLSTM. The fire decision for every
TLSTM is involved in the majority voting process for every time period Tvot, which implies that the final
fire decision is repeated for every Tvot. The areas of flame and smoke objects are calculated for every
frame and smoothed by taking the average over Tave. The changes of average flame and smoke areas
in video frames are reported for the time interval Trep. For convenience, we set Trep = Tvot.
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3.2. Fire Object Detection Based on Faster Region-Based Convolutional Neural Network (R-CNN)

Faster R-CNN is a CNN-based object detection method that combines both the Fast R-CNN
and the Region Proposal Network (RPN) to share a convolutional network after excluding the fully
connected layer. So Faster R-CNN shares a similar structure for object detection with Fast R-CNN,
except that Faster R-CNN includes RPN [18] to generate region proposals for objects. Based on the
proposals, Faster R-CNN extracts the spatial features through the ROI pooling operation, and then
calculates the object positions with class scores by fully connected layers. Usually, Faster R-CNN
provides a higher mean Average Precision (mAP) than the single-stage object detection models such
as SSD(Single Shot Multibox Detector) [19] and YOLO(You Only Look Once) [20]. Reportedly [21],
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Faster R-CNN showed mAP as high as 34.9% for the MS-COCO dataset, when the shared CNN feature
extractor is equipped with ResNet 101 [22], which we have adopted in our work.

In our method, Faster R-CNN provides the bounding boxes of flame, smoke, and non-fire regions
in an image, as shown in Figure 3. Figure 4 represents the sample images of flame, smoke, and non-fire
objects. The non-fire objects resemble real fire objects, such as chimney smoke, sunset, and cloud. In
addition, the image containing objects that are not related to a fire is itself treated as a non-fire object.
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Figure 3. Faster Region-Based Convolutional Neural Network (R-CNN) structure for fire detection.

When the Faster R-CNN detects the classes of flame, smoke, and non-fire objects, false detections
may arise due to the possible presence of various types of non-fire objects in a single frame that is
similar to a fire. The non-fire objects shown in Figure 4 that resemble fires include sunset, chimney
smoke, cloud, etc.

As aforementioned, however, applying this deep object detection model to find SRoFs and non-fire
objects offer an advantage. Because the consecutive convolution enlarges the effective area of the
operation, a bounding box resulting from the deep object detection model can include the larger area
of a receptive field than it encloses. So, the more context information around objects can be captured
in the boxes. This implies that SRoF detection becomes robust because it better reflects the context
information around the bounding box.
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3.3. The Spatial Features Extration

The coordinates of the bounding boxes are projected on the n× n× d activation map to extract
the spatial features. Here, we extract them in the last layer of CNN, and n = 14, and d = 1024 when
ResNet 101 is used as a base net. For the projected region, we take a scalar feature by taking a weighted
average over each feature map. Note that the feature is extracted from the bounding boxes SRoFs,
including flames and smoke, and non-fire objects, so that it may give the pure spatial features of diverse
types of fire and non-fire objects. Figure 5 shows the part of this feature extraction in our proposed
method, including the Faster R-CNN object detection model.
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Figure 5. The spatial feature extraction from Faster R-CNN.

The Faster R-CNN can provide more than one SRoF or non-fire object because an image can
contain several bounding boxes. Faster R-CNN can detect multiple objects in a frame, where each
object is enclosed by a bounding box with its class score and can intersect with each other. Therefore,
we should carefully investigate the multiple areas to further consider the temporal behavior of a fire or
non-fire object. Figure 6 shows the case where there are several SRoFs.
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Figure 6. Frames with multiple suspected regions of fire (SRoFs). (a) Shows the case that the predicted
flame and smoke area intersect, and (b) shows the case that the predicted flame and smoke area do
not intersect.

In our proposed method, a weighted Global Average Pooling (GAP) scheme is adapted to extract
the spatial features. After insignificant bounding boxes are filtered out by thresholding their own
confidence score, the significant SRoFs and non-fire objects are selected. The image which does not
contain any specific small bounding box is treated as a non-fire object whose bounding box covers the
whole image with confidence score 1. Note that the significant SRoF or the non-fire object has its own
confidence score which can be used to take the weighted GAP. Figure 5 shows the process to extract the
spatial features from the last layer of CNN of the Faster R-CNN object detector with d feature maps,
where d = 1024. From each feature map fi, the scalar feature value is determined as follows:
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vi =
1
Z

∑
f or each bounding box b o f SRoFs

or non− f ire objects

wb·
∑

(x,y)∈b
fi(x, y), (1)

where,
Z =

∑
f or each bounding box b o f SRoFs

or non− f ire objects

wb·
∑

(x,y)∈b
1. (2)

The vector v = (v1, v2, . . . , vd) represents the aggregated spatial feature for SRoFs or non-fire
objects detected by Faster R-CNN in an image or a frame of a video. In general, the prominent features
among d can be found projecting the bounding box of SRoFs or non-fire objects on the feature map
similar to the class activation map [23]. Because they are merely spatial features which do not contain
temporal information, the feature selection in our proposed method is transferred to the following
LSTM stage of the temporal aggregation in a short-term.

3.4. Long Short-Term Memory (LSTM) Network for Fire Features in a Short-Term

In general, it is not appropriate to detect and judge the fire without considering the temporal
behavior. In the proposed method we aggregate the changes in the extracted spatial features using
LSTM in a short period TLSTM, and try to determine whether it is a fire or a non-fire object. Here, we do
not differentiate between flame and smoke. Because the SRoFs or non-fire objects in consecutive frames
have been determined by Faster R-CNN, we merely temporally accumulate the spatial features within
the corresponding bounding boxes in LSTM and determine whether the consecutive box is fire or not
for the short-term. This important step in DTA in the proposed method is similar to a person’s quick
glance to detect a fire. We assume that the fire decision based on a glance depends on the short-term
dynamic characteristics of the fire.

In the proposed method, the LSTM network consists of two stages in which the number of memory
cells in LSTM is determined experimentally. The short temporal features pooled through the LSTM
network are used to make a short-term fire decision by two soft-max units, one for fire or the other for
non-fire. Figure 7 shows the part of LSTM used to accumulate and decide a fire in a short time period.
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In our method, the LSTM network is separately trained using the weighted GAP spatial features
of CNN in bounding boxes. That means the d-dimensional features for fire or non-fire objects in
consecutive frames of video clips should be calculated and prepared sequentially for the training of
LSTM. We construct the new video dataset which consists of the same video training data for Faster
R-CNN and additional video data to supply sufficient training data. The consecutive d-dimensional
spatial features calculated from the trained Faster R-CNN for a video from the video dataset are
prepared as input streams for the LSTM training. The output label for the LSTM short-term decision is
determined according to the annotation of a video clip.
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3.5. Majority Voting for Fire Decision

The decision from LSTM reflects a temporal behavior in a short period like a person’s quick glance.
As the resulting decision is not stable, we make an ensemble of short-term decisions for a period Tvot to
make the final fire decision. Again, this is similar to human behavior in deciding a fire. The decisions
based on short glances are accumulated and combined to make a firm decision on whether it is a fire
or not.

The proposed method combines the majority voting in a time window which contains all the
decisions from LSTM. The final fire decision by majority voting is given by:

Final Decision = f ire,
i f N f ire > Nnon− f ire f or Tvot

(3)

where, N f ire and Nnon− f ire represent the number of fire and non-fire decisions respectively, in the LSTM
stage during the time window Tvot. One can use either weighted voting where the more recent decision
has a larger weight in the temporal window or simply take the sum of each soft-max output during Tvot.

3.6. The Time Average over Weighted Areas of Suspected Regions of Fire (SRoFs)

The fire judgment from LSTM is based on the temporally aggregated spatial features in the SRoFs
and the non-fire objects. Here, we can consider additional temporal features related to the area of
SRoFs. The multiple regions allow us to take the weighted sum of SRoFs, where the weights are given
by the confidence score corresponding to the SRoF. In Equation (2), Z can be treated as the weighted
area of objects in a frame. However, we separately calculate the weighted areas for flame and smoke
objects to give a more precise interpretation. Therefore, the weighted areas are calculated as:

Z f lame =
∑

f or each bounding box b
o f f lame SRoFs

wb·
∑

(x,y) ∈ b
1 (4)

Zsmoke =
∑

f or each bounding box b
o f smoke SRoFs

wb·
∑

(x,y)∈b
1 (5)

After calculating the weighted areas in consecutive frames, we take averages over a period Tave,
then for every Trep, the consecutive average areas are given separately from or with the final fire
decision to obtain a better understanding of the current dynamic behavior of the fire. Figure 8 shows
the process to generate information on the fire’s dynamic behavior.

Another fire decision can be made independently from the majority voting of the LSTM decisions.
For example, the dynamically increasing or decreasing areas of flame and smoke are detected and
accumulated by another type of decision-making algorithm. This other fire decision could be merged
with the previous fire decision from the majority voting of the LSTM decisions for a more refined
decision, even though it is not implemented. While the time for majority voting can vary, the accuracy
of the model improves with longer durations for the majority voting.
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4. Experiments and Results

Our method does not use end-to-end training because the weighted GAP within bounding boxes
and the majority voting processes are included. Because both of them are non-differentiable operations,
Faster R-CNN and LSTM stages should be separately trained in the proposed method.

4.1. Training Faster R-CNN and Its Accuracy

Faster R-CNN requires still images for training data so we collected them from several data
sources. Some fire and smoke images were taken from Youtube video clips. Also, the same data as the
previous works were added [6,24–26], which include still images and frames taken from video clips.
In addition, the Flickr-fire dataset was included in our dataset. Finally, we constructed a dataset of
73,887 still images, consisting of 22,729 flame, 23,914 smoke, and 27,244 non-fire images. The images
are divided into 75% for training, 15% for validation, and 10% for test data. For training, the data are
augmented by a horizontal flip. Table 1 shows the training parameters for Faster R-CNN.

The performance of the Faster R-CNN is measured by mAP and is shown in Table 2. The sample
results of the flame and smoke detection are shown in Figure 9. There are several false positive
detections for clouds, chimney smoke, lighting lamp, steam, etc., which are almost undetectable
without considering the temporal characteristics.
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Figure 9. Results of Faster R-CNN fire detection, (a) flames detection results, (b) smoke detection
results, and (c) false positive detection results.
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Table 1. Training parameters of Faster R-CNN.

Parameter Method

Iteration 150,000
Step size 100,000

Weight decay 0.00004
Learning rate 0.01

Learning rate decay 0.00001(iteration equal step size)
Batch size 256

Pre-train weight ResNet-101

Table 2. Mean Average Precision (mAP) of Faster R-CNN.

mAP Flame Smoke Non-fire

88.3% 89.4% 87.5% 88.1%

4.2. Training LSTM and Its Performance

The LSTM in the proposed method is trained with video clips. We collected 1,309 video clips
from Youtube, comprising 672 clips of fire, and 637 of non-fire. As in the Faster R-CNN, the video
clips of non-fire objects can include hard negative examples like clouds, chimney smoke, lighting lamp,
and steam, or simply objects that are irrelevant to fire. Figure 10 shows samples of flame, smoke, and
non-fire objects from the LSTM training video dataset.
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Figure 10. Sample still shots including flame, smoke, and non-fire objects taken from video clips for
LSTM training. The (a) images are taken from videos of fire, while the (b) images are from non-fire
video clips.

Here, we do not discriminate between flame and smoke as mentioned before. The video clips
are divided into 60 consecutive frames with 15 frames of overlap that last for about 2 s if 30 frames
per second are assumed. This implies the LSTM network captures short-term dynamic behaviors of
a fire or non-fire and decides whether it is a fire or not for every 1.5 s. Here we assume a person’s
quick glance for fire decision happens every 1.5 s. The time duration can be adjusted according to the
situation when our method is implemented.

For the LSTM training, we prepared 8,527 positive and 7,547 negative examples of 60 frame
video clips from Youtube videos. From the examples, 75% of the data were selected for training, 15%
for validation, and 10% for testing. From each video clip, we obtained bounding boxes and their
corresponding 1024-dimensional feature for every consecutive frame, which gave a set of sequential
inputs to LSTM. Table 3 shows the parameters of LSTM training and the performance of the test data
shown in Table 4, according to the number of memory cells in LSTM. To compare the performance
with another method, we evaluated the results using the dataset in reference [11]. Information of the
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public dataset which consists of 31 video clips under different conditions, and the still shots taken from
several samples, are shown in Table 5 and Figure 11, respectively.

Table 3. Training parameters of LSTM.

Parameter Method

Input size 1024
Time step 60

LSTM cell unit 128/256/512/1024
Learning rate 0.001

Learning rate decay
0.0001

(epoch equal 120)
Weight decay 0.0004

Dropout 0.5
Batch size 256

Weight initialization Xavier initialization
epoch 200

Table 4. Performance of test video clips for LSTM hidden cell unit.

Method Accuracy (%)

SRoF-LSTM, Hidden cell unit = 128 92.12
SRoF-LSTM, Hidden cell unit = 256 93.87
SRoF-LSTM, Hidden cell unit = 512 95.00

SRoF-LSTM, Hidden cell unit = 1024 93.50
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Table 5. The dataset information [11].

Video Name Resolution Fames Frame Rate Fire Description

Fire1 320 × 240 705 15 Yes
A fire generated into a bucket and a person
walking near it.

aFire2 320 × 240 116 29 Yes
A fire very far from the camera generated into
a bucket.

Fire3 400 × 256 255 15 Yes A big fire in a forest.
Fire4 400 × 256 240 15 Yes See the notes of the video Fire3.
Fire5 400 × 256 195 15 Yes See the notes of the video Fire3.
Fire6 320 × 240 1200 10 Yes A fire generated in a red ground.
Fire7 400 × 256 195 15 Yes See the notes of the video Fire3.
Fire8 400 × 256 240 15 Yes See the notes of the video Fire3.
Fire9 400 × 256 240 15 Yes See the notes of the video Fire3.

Fire10 400 × 256 210 15 Yes See the notes of the video Fire3.
Fire11 400 × 256 210 15 Yes See the notes of the video Fire3.
Fire12 400 × 256 210 15 Yes See the notes of the video Fire3.
Fire13 320 × 240 1,650 25 Yes A fire in a bucket in indoor environm ent.

Fire14 320 × 240 5,535 15 Yes
Fire generated by a paper box. The video has
been acquired by the authors near a street.

Fire15 320 × 240 240 15 No
Some smoke seen from a closed window. A red
reflection of the sun appears on the glass.

Fire16 320 × 240 900 10 No Some smoke pot near a red dust bin.

Fire17 320 × 240 1725 25 No
Some smoke on the ground near a moving
vehicle and moving trees.

Fire18 352 × 288 600 10 No Some far smoke on a hill.
Fire19 320 × 240 630 10 No Some smoke on a red ground.
Fire20 320 × 240 5,958 9 No Some smoke on a hill with red buildings.

Fire21 720 × 480 80 10 No
Some smoke far from the camera behind some
moving trees.

Fire22 480 × 272 22,500 25 No
Some smoke behind a mountain in front of the
university of salerno.

Fire23 720 × 576 6,097 7 No Some smoke above a mountain.
Fire24 320 × 240 372 10 No Some smoke in a room.
Fire25 352 × 288 140 10 No Some smoke far from the camera in a city.
Fire26 720 × 576 847 7 No See the notes of the video Fire24.
Fire27 320 × 240 1,400 10 No See the notes of the video Fire19.
Fire28 352 × 288 6,025 25 No See the notes of the video Fire18.
Fire29 720 × 576 600 10 No Some smoke in a city covering red buildings.
Fire30 800 × 600 1,920 15 No A person moving in a lab holding a red ball.
Fire31 800 × 600 1,485 15 No A person moving in a lab with a red notebook.

4.3. Majority Voting and Interpretation of Fire Behavior

The LSTM short-term fire decisions during Tvot are involved in the majority voting for the final
fire decision. Because only short video clips are included in the dataset for comparison in Table 6, we
take Tvot = 10 s for majority voting. Even with such a short-term ensemble, the accuracy increases by
up to 97.92%.
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Table 6. Performance comparison with other methods.

Methods False Positive (%) False Negative (%) Accuracy (%)

Proposed method
(hidden unit cell = 512) 3.04 1.73 95.00

Proposed method
(Majority Voting = 10 s) 2.47 1.38 97.92

Khan Muhammad et al. [14] 8.87 2.12 94.50
Foggia et al. [11] 11.67 0.00 93.55

De Lascio et al. [27] 13.33 0.00 92.86
Habibugle et al. [28] 5.88 14.29 90.32

Rafiee et al. (YUV color) [29] 17.65 7.14 74.20
Celik et al. [5] 29.41 0.00 83.87
Chen et al. [7] 11.76 14.29 87.1

Arpit Jadon et al. [30] 1.23 2.25 96.53
Khan Muhammad et al. [31] 0 0.14 95.86

Also, we collected an additional 38 video clips from the internet, including Youtube, which have
a relatively long playing-time. Table 7 represents the categorized fire/non-fire video clips with their
time-varying behaviors. Figure 12 shows samples of the video dataset. We performed the majority
voting for the final fire decision and evaluated the accuracy according to the time period of Tvot and
the results are summarized in Table 8. Note that the longer time period provides better accuracy in
general because more LSTM decisions are combined in the majority voting to make a robust ensemble.
However, the dispatch of firemen should be done as early as possible so that Tvot can be adjusted by
the trade-off between the accuracy and the critical time for dispatch.

We have compared the performances of our scheme in terms of three metrics including false
positive, false negative, and accuracy. While the method of Khan Muhammad et al. [31] performs the
best in terms of false positive and false negative, ours with the delayed decision of the majority voting
in 10 s outperforms in accuracy. Note that our proposed method can produce this better by introducing
the delayed decision in DTA.

Table 7. Fire detection accuracy of Faster R-CNN.

Fire State Change Interpretation Number of Video Clips

Decreasing Decreasing flame/Increasing smoke or steam 9
Increasing Increasing flame 9

Maintaining Sustain flame/smoke 11
Non-fire False object 11

Table 8. Accuracy of final fire decision after majority voting with respect to Tvot.

30 s 1 min
1 min
30 s 2 min

2 min
30 s 3 min

96.73% 99.28% 99.64% 99.94% 100% 100%
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Figure 12. Sample still shots taken from video clips for the experiment of majority voting and
interpretation of dynamic fire behavior: (a) real fires, and (b) non-fires such as chimney smoke, sunset,
cloud, fog, and light.

Also, we monitored the changes in the area of smoke (or steam) and flame. In the experiment we
set Trep = Tvot = 1 min. Because Faster R-CNN frequently confuses between true smoke and steam,
the results include both areas without distinction. In the video clip shown at the first row and the
first column, a fire starts with a flame, but a man pours a bottle of water to extinguish the flame as
it grows, then steam (or smoke) begins to increase. Figure 13 shows the sample frames of the video
sequence and Figure 14 represent the changes in areas (pixels in a frame) of flame and smoke and the
final decisions over time. The decision of majority voting starts with fire but then changes into non-fire.
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Figure 14. Changes in areas of flame and smoke with final decisions by majority voting for the video
clip of Figure 13.

Figure 15 represents a sunrise video clip. Even though Faster R-CNN wrongly detects the flame
objects and the area of flame increases, the final decisions of majority voting are consistently non-fire,
as shown in Figure 16. We obtained similar experimental results for the other 36 video clips in Table 7,
which represent the correct final decisions even though Faster R-CNN provides wrong object detection
for clouds, steam from man-holes, and sunset video clips. In the video clip of Figure 17, the fire is
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increasing after decreasing for about 3 min, and Figure 18 shows the successfully interpreted changes
in the fire. Figure 19 shows some still shots of a continuously decreasing fire, and the corresponding
interpretation in Figure 20 captures the behavior of the fire
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5. Conclusions

We have proposed a deep learning-based fire detection method, called DTA, which imitates the
human detection process. We assumed that the DTA process can greatly reduce erroneous fire detection.
The proposed method uses the Faster R-CNN fire detection model to detect the SRoF based on its
spatial features. Then, the features summarized from the SRoFs and non-fire regions in successive
frames are accumulated by LSTM to classify whether there is a fire or not in a short-term period. The
successive short-term decisions are then combined in the majority voting for the final decision in
a long-term period. In addition, the areas of both flame and fire are calculated and their temporal
changes are reported to interpret the dynamic behavior of the fire with the final fire decision.

The proposed method has been experimentally proven to provide excellent fire detection accuracy,
by reducing the false detections and misdetections, and to successfully interpret the temporal behavior
of flame and smoke, which possibly reduces the false dispatch of firemen. In addition, we have
constructed a large fire dataset which contains diverse still images and video clips that enhance the
data from well-known public datasets. Not only is the dataset used for the training and testing of our
experiment, but it also could be an asset for future fire research.
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