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Abstract: Production scheduling of semiconductor wafer manufacturing is a challenging research
topic in the field of industrial engineering. Based on this, the green manufacturing collaborative
optimization problem of the semiconductor wafer distributed heterogeneous factory is first proposed,
which is also a typical NP-hard problem with practical application value and significance. To solve
this problem, it is very important to find an effective algorithm for rational allocation of jobs among
various factories and the production scheduling of allocated jobs within each factory, so as to
realize the collaborative optimization of the manufacturing process. In this paper, a scheduling
model for green manufacturing collaborative optimization of the semiconductor wafer distributed
heterogeneous factory is constructed. By designing a new learning strategy of initial population
and leadership level, designing a new search strategy of the predatory behavior for the grey wolf
algorithm, which is a new swarm intelligence optimization algorithm proposed in recent years,
the diversity of the population is expanded and the local optimum of the algorithm is avoided.
In the experimental stage, two factories’ and three factories’ test cases are generated, respectively.
The effectiveness and feasibility of the algorithm proposed in this paper are verified through
the comparative study with the improved Grey Wolf Algorithms—MODGWO, MOGWO, the fast
and elitist multi-objective genetic algorithm—NSGA-II.

Keywords: semiconductor wafer fabrication; distributed; heterogeneous factory; collaborative
optimization

1. Introduction

With the advent of the fourth industrial revolution in the context of industrial 4.0,
intelligent manufacturing has become a symbol of the new information age. The semiconductor
industry, as the cornerstone of the information age, belongs to the high-tech industry and faces many
opportunities and challenges. While it brings high profits, fierce industry competition also forces
semiconductor manufacturers to continuously improve production efficiency and resource utilization [1].
In a semiconductor manufacturing process, wafer manufacturing is called the front-end process while
wafer testing and packaging is called the back-end process. Because the equipment used in wafer
manufacturing are expensive and the processing process is complex, it has attracted wide attention of
scholars at home and abroad. Re-entrant is a remarkable feature of semiconductor wafer fabrication [2–4],
which means that the jobs may repeatedly access certain devices at different stages of the processing
process. More than one machine with at least one stage is used for processing. In addition, during
the processing of the wafer, various physical and chemical processing steps are needed to form a required
circuit layer on the surface of the wafer, and the processing steps involved mainly include oxidation,
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deposition, implantation, sputtering, photolithography, etching, and cleaning, etc. There are strict order
constraints between operations. The manufacturing process can be reduced to the reentrant hybrid
flow shop (RHFS) problem, which has been proven to be an NP-hard (Non-deterministic polynomial
hard) problem [5]. Because of its large scale and high complexity, the RHFS problem is difficult to
solve effectively in an acceptable time using traditional mathematical modeling methods. In addition,
according to the “no free lunch” theorem [6], no algorithm can achieve better results for all application
problems, so it is of great significance and value to design and develop new intelligent optimization
algorithms. Bertel et al. [7] proposed an integer linear programming formulation of the hybrid flow shop
with recirculation, and minimizing the weighted number of tardy jobs was regarded as the optimization
goal. Then a lower bound, a greedy algorithm, and a genetic algorithm were described as approximate
methods. Cho et al. [8] proposed a Pareto genetic algorithm based on the Minkowski crossover
operator to solve the RHFS problem, and is also designed as corresponding benchmark data sets for
simulation experiments. Li et al. [9] proposed an adaptive hybrid incremental learning algorithm to
solve the reentrant permutation flow shop scheduling problem with make span as the optimization
objective. The degree of population evolution was evaluated by using the information entropy of
the probability matrix. The mutation mechanism of the probability model and the local search method of
the critical path were designed to expand the search area of the population. Huang et al. [10] designed
an improved particle swarm optimization (PSO) algorithm to solve the two-stage reentrant multi-machine
flow shop scheduling problem with a due window. Taking the wafer testing process as an example,
aiming at minimizing the lead time or delay time, effectiveness, and robustness of the proposed
algorithm were verified by large-scale test experiments. Cho et al. [11] proposed a two-level optimization
algorithm to solve the reentrant flow shop problem, which satisfied the maximization of total product
quantity and minimization of the customer demand delay, and applied it to real TFT-LCD (Thin Film
Transistor-Liquid Crystal Display) production. To sum up, up to now, the research on the reentrant
scheduling problem in domestic and foreign literature is basically based on a single production line.
However, in actual production, multi-factory manufacturing and collaborative production play a key role.

Multi-factory manufacturing, including distributed manufacturing, through the cooperation
of different factories distributed in different geographical locations to complete the production of
products, which can rationally allocate the resources of each factory, realize the optimal combination
and sharing of resources, reduce the production cost of products, and improve the satisfaction of
customers, meet the diversification of customer needs. Modoni et al. [12] proposed an event-driven
framework, which could realize the interaction of heterogeneous distributed resources. In particular,
this research provided new mechanisms combining many technologies such as IIOT and Semantic Web,
to notify significant information produced within the factory toward enabled and interested production
resources. Renna et al. [13] developed a distributed approach and also used the Nash bargaining
solution based on game theory, for a network of independent enterprises, which could facilitate
the capacity process by using a multiagent architecture and a cooperative protocol. The simulation
results demonstrated that the proposed method had a better performance when the dynamicity of
the environment grows. Argoneto et al. [14] designed a framework based on a cooperative game
algorithm and a fuzzy engine for capacity sharing in cloud manufacturing. The utility functions of
the involved firms were taken into account in the capacity allocation policy. Xu et al. [15] proposed
an effective hybrid immune algorithm to solve the distributed permutation flow shop scheduling
problem by designing a new cross mutation inoculation and local search operator. Experiments
showed that the algorithm was particularly effective for large-scale test problems. Zhang et al. [16]
designed a distributed optimization method to solve distributed flow shop scheduling problems
by reducing the power cost of manufacturing factories. Zhang et al. [17] proposed a two-stage
heuristic search algorithm to solve the distributed flow shop scheduling problem with flexible assembly
and installation time, with the objective of minimizing make span. Lu et al. [18] designed an improved
genetic algorithm based on 3D-1D encoding and 1D-3D decoding to solve the distributed flexible
job shop scheduling problem. It also introduced the allocation strategy of jobs to factories in detail.
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Fu et al. [19] established a stochastic multi-objective distributed permutation flow shop scheduling
model considering total tardiness, make span, and total energy consumption, which also designed
a new multi-objective brainstorming optimization algorithm to solve the problem. Rifai et al. [20]
used the improved adaptive large neighborhood search algorithm to solve the distributed re-entrant
permutation flow shop scheduling problem. It was the first time that the distributed re-entrant flow
shop (DRFS) scheduling problem was studied, and it pointed out that DRFS problem was NP-Hard.
To sum up, up to now, the studies on distributed scheduling problem in domestic and foreign literature
is mostly confined to homogeneous factory, and most of them are research on flow shop, permutation
flow shop, and flexible job shop. To the best of my knowledge, there is little research on a distributed
reentrant hybrid flow shop. Distributed manufacturing of semiconductor wafers can be attributed
to the distributed reentrant hybrid flow shop (DRHFS) problem, which has similar properties to
the RHFS problem, but extends to multi-factory issues. Therefore, it is clear that it also belongs to
the NP-Hard problem.

Environmental issues are the focus of global attention, and sustainable green manufacturing
is a serious challenge for today’s manufacturing industry. Noises and CO2 emissions from
the manufacturing industry are the main sources of pollution. For semiconductor wafer factories,
because they are usually equipped with hundreds of precision equipment, and the wafer manufacturing
process is very complex, there may be hundreds of products flowing simultaneously on the production
line. Once one factory is established, it will run continuously for 365 days a year and 24 hours per day.
In addition, the strict control of environmental parameters in the wafer production process makes it
necessary for manufacturing factories and processing equipment to meet their production continuity
requirements with uninterrupted high energy consumption. For example, precise temperature control
of the etching process—the temperature fluctuation of 0.1 ◦C up and down will cause deviation
of the wafers’ excellent rate, which results in wafer scrapping. Therefore, for semiconductor wafer
manufacturing, we should not only care about the process, but also put energy saving and environmental
protection on the agenda. In this paper, carbon emissions from semiconductor wafer fabrication
are taken as an energy-saving indicator for research. Regarding the study of carbon emissions
indicator, Zhang et al. [21] created a flexible job shop low-carbon scheduling model that considers make
span, machine load, and carbon emissions indicators, and proposed a hybrid non-dominated sorting
genetic algorithm II to solve the model. In order to help enterprises to quantify the carbon footprint
indicator, Liu et al. [22] proposed a method for calculating the carbon footprint of workshop products
and an improved fruit fly optimization algorithm to minimize the carbon footprint and production
cycle of all products. Nilakantan et al. [23] developed a study on the robot assembly line system,
using a multi-objective co-evolution algorithm to solve the carbon footprint minimization problem.
Piroozfar et al. [24] proposed an improved multi-objective genetic algorithm to solve the multi-objective
flexible job shop scheduling problem while minimizing the total carbon footprint and total number
of delayed jobs. So far, there is no literature on the research of carbon emissions indicator in
the semiconductor wafer manufacturing.

Grey Wolf Optimizer (GWO) is a new swarm intelligence optimization algorithm designed in 2014
by Professor Mirjalili and his team. The algorithm is inspired by the strict social hierarchy and predatory
behavior of the grey wolf population in nature [25]. It is used to solve single-objective optimization
problems. In 2016, Mirjalili et al. proposed a Multi-Objective Grey Wolf Optimizer (MOGWO) [26]
based on the GWO algorithm to solve multi-objective optimization problems. Due to its simple
algorithm structure, parameter setting, and better optimization effect, the Grey Wolf algorithm has
been widely used in the research of scheduling, image processing, medical treatment, and designing
photonic crystal waveguides [27–31]. However, there is no relevant literature about its application
in green collaborative scheduling of the semiconductor wafer distributed heterogeneous factory.
In summary, this paper constructs a green manufacturing collaborative optimal scheduling model for
a semiconductor wafer distributed heterogeneous factory for the first time, and designs an improved
multi-objective Grey Wolf Optimizer (IMOGWO) to solve this problem.
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The remainder of this paper is organized as follows. The green manufacturing collaborative
optimal scheduling model of the semiconductor wafer distributed heterogeneous factory is formulated
in Section 2. The green collaborative scheduling problem of the semiconductor wafer distributed
heterogeneous factory is described in detail in Section 3. Section 4 presents experimental results
and analysis of the results. Section 5 provides the conclusions and future work.

2. Green Manufacturing Shop Scheduling Problem for Semiconductor Wafer Distributed
Heterogeneous Factory

2.1. DRHFS Problem Description

Under the concept of a global cooperative sharing economy, distributed job shop scheduling has
become a hot topic for scholars at home and abroad. Distributed job shop scheduling includes many
dispersed factories. In addition to the characteristics of traditional job shop scheduling, collaborative
optimization among factories should also be considered. ntotal wafers need to be assigned to F factories
for processing. Because the wafer production workshop is a dust-free environment, temperature,
humidity, and air quality requirements are very high. The wafer surface is protected from the oxidative
corrosion of the mixed air during the processing. Therefore, wafer i can only be allocated to one factory
and, once it is allocated to factory f , all operations of wafer i must be allocated to factory f for processing,
which avoid discarding wafers due to contamination caused by changing the production workshop.

No replacement of the processing factory is allowed during the processing. Job scheduling
and machine allocation inside the factories belong to the RHFS problem, i.e., n(n < ntotal) jobs are
processed on s serial stages, and a job may need to be processed multiple times on one stage. In stage
l, ml(ml ≥ 1) the same parallel machines can be selected for processing. The processing time of each
machine is the same, and each operation can select any machine for processing at the corresponding
stage. There is no priority constraint on the processing order between jobs, but the processing order
between each operation of a job has a sequential constraint. At the same time, each operation can only
be processed on one machine, and each machine can only process one operation. The number of jobs’
reentrant, the number of jobs, and their processing time at each stage are fixed and known in advance.
The number of production stages and the number of machines at each stage are fixed and known in
advance. The capacity of buffers between successive stages is infinite. Preemption is not permitted,
i.e., once an operation is started, it cannot be interrupted. The machines are continuously available
for processing jobs throughout the scheduling period, and there is no maintenance, breakdown,
or other interruptions. Because this paper studies the collaborative optimal scheduling problem of
green manufacturing in semiconductor wafer distributed heterogeneous factory, which is assumed
that all jobs can be processed in any factory, the number of production stages is the same among
factories, the number of machines is different, the processing time of jobs are different in each factory,
and the delivery time of jobs are different in each factory. Figure 1 is a schematic diagram of the DRHFS
problem for n jobs processed in three factories.
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2.2. Optimization Model of a Multi-Objective DRHFS Problem

In the multi-objective optimization problem, the objectives often conflict with each other.
The enterprise decision-makers need to comprehensively consider the economic benefits as well
as the social and environmental factors, and select a scheduling scheme from the Pareto solution
set based on the actual production situation. In this paper, make span, total carbon emissions,
and total tardiness are taken as optimization objectives. Among them, make span is the maximum of
completion time in all processing factories. The total carbon emissions are the sum of total carbon
emissions from all factories, and the total tardiness is the sum of total tardiness of all factories. Carbon
emissions in the semiconductor wafer manufacturing process mainly include energy consumption
during switching, processing, idling, coolant consumption, material loss of jobs, and carbon emissions
caused by lubricant consumption. In this study, the carbon emissions generated from the loss of
raw materials, coolant consumption, and power consumption of equipment on-off are not related to
scheduling. Therefore, only carbon emissions from equipment processing, idling, and lubricant used
are studied. In this paper, a mixed-integer programming model is established. Its description is shown
in Tables 1 and 2.

Table 1. Mathematical symbols and significance.

Mathematical Symbols Significance

ntotal Total number of jobs
i Serial number of jobs, i = 1, 2, . . . ntotal

Ni Total number of operations contained in job i
j Operation serial number of jobs i, i, j = 1, 2, . . .Ni
f Serial number of factories, f = 1, 2, . . . F

n f Total number of jobs allocated to the factory f
n f i Serial number of jobs allocated to factory f , n f i = 1, 2, . . . n f
F Total number of processing factories

Yi, f
1 indicates that job i is allocated to the factory f , 0 indicates that the job i

is not allocated to the factory for processing
s Total number of stages
l Serial number of stages, l = 1, 2, . . . , s

m f l Number of parallel machines with the same speed at stage l of factory f
k Serial number of machines at stage l, k = 1, 2, . . .m f l

Oi j The j-th operation of job i
T f i jlk Processing time of Oi j on machine k at stage l in factory f

P f l
i j Processing time of Oi j at stage l in factory f

d f i Delivery time of job i processed in factory f
H A large positive number

U f l
The set of all operations processed at stage l of factory f , due to the reentrant

characteristics, the same job may appear multiple times in it
PW f lk Processing power of machine k at stage l of factory f
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Table 1. Cont.

Mathematical Symbols Significance

PI f lk Idle power of machine k at stage l of factory f
T f lkI Idle time of machine k at stage l of factory f
TC f p Total carbon emissions from machines processing of factory f
TC f I Total carbon emissions from machines in an idle state of factory f

Fe Carbon emissions factor of electric energy

T f l,k,close
The finishing time of machine k at stage l of factory f (the finishing time of the

last operation on the machine)

T f l,k,open
The start time of machine k at stage l of factory f (the starting time of the

first operation on the machine)
UR f lk The usage amount of lubricants on machine k at stage l of factory f
TR f lk Effective service time of lubricants on machine k at stage l of factory f
TC f R Total carbon emissions from lubricants used by machines of factory f

FR Carbon emissions factor of lubricants
S f i j The starting time of Oi j in factory f
C f i The completion time of job i in factory f
Ci j The completion time of Oi j

ri jlk
1 indicates Oi j, which is processed on machine k at stage l of factory f , 0 indicates

Oi j is not processed on machine k at stage l of factory f

Zi j,gh,lk
1 indicates Oi j is processed before Ogh on machine k at stage l, 0 indicates

Oi j is not processed before Ogh
TCT f Total carbon emissions from factory f
TDT f Total tardiness of jobs processed in factory f
Cmax Make span of all jobs
TCT Total carbon emissions
TDT Total tardiness

Table 2. Objective functions and constraints.

Expression Significance

f 1 = min(Cmax) minimizing the make span

f 2 = min(TCT) = min(
F∑

f=1
TCT f ) minimizing the total carbon emissions

f 3 = min(TDT) = min(
F∑

f=1
TDT f ) minimizing the total tardiness

TCT f = TC f p + TC f I + TC f R Total carbon emissions from factory f

TDT f =
n f∑

i=1
max(0, C f i − d f i)) Total tardiness of jobs processed in factory f

Yi, f ri jlk(S f i j + T f i jlk) ≤ Yi, f ri, j+1,l′,kS f i, j+1 Indicates the completion time of Oi j must be earlier

∀i, j, l, l′and l , l′ than the starting time of Oi j+1∑m f l

k=1 ri jlk = 1 ∀ f , i, j, k, l, Oi j ∈ Ui
Indicates any operation can be processed on only one machine

in the corresponding stage∑F
f=1 Yi, f = 1 ∀i, f Indicates one job can only be assigned to one factory

for processing

H ×Yi, f (2− ri jlk − rghlk) + H ×Yg, f (1−Zi j,gh,lk) + (S f gh − S f i j) ≥ T f i jlk
Indicates each machine in any stage can only process at most

one operation at the same time
∀ f , i, g, j, h, i ≤ g, Oi j ∈ Ul, Ogh ∈ Ul

H ×Yi, f (2− ri jlk − ri j′lk) + H ×Yi, f (1−Zi j,i j′,lk) + (S f i j′ − S f i j) ≥ T f i jlk

∀ f , i, k, l, j < j′, Oi j ∈ Ul, Oi j′ ∈ Ul∑F
f=1
∑s

l=1
∑m f l

k=1

∑ntotal
i=1
∑Ni

j=1 Yi, f ri jlk(S f i j+T f i jlk) ≤ Cmax ∀ f , i, j, k, l Indicates the definition of make span

TC f P =
∑s

l=1
∑m f l

k=1

∑n
i=1
∑Ni

j=1 Yi, f ri jlkFePW f lkT f i jlk
Indicates the total carbon emissions generated from machines

processing in factory f

TC f I =
∑s

l=1
∑m f l

k=1 FePI f lkT f lkI
Indicates the total carbon emissions generated from

machines in an idle state in factory f

TC f R =
∑s

l=1
∑m f l

k=1
T f l,k,close−T f l,k,open

TR f lk
UR f lkFR

Indicates the total carbon emissions generated from the use of
lubricants in factory f
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3. IMOGWO Algorithm Design

3.1. Basic GWO Algorithm Description

All grey wolves are divided into four grades, according to the fitness value of their solutions.
The optimal, suboptimal, and third optimal solutions are randomly selected from the solution set
as alpha (α) wolf, beta (β) wolf, and delta (δ) wolf, and the rest are calledωwolves. The search process
of ω wolves is guided by α wolf, β wolf, and δ wolf. The mathematical model of the grey wolves
surrounding the prey is as follows.

→

D = |
→

C ·
→

X
l

p −
→

Xl
| (1)

→

Xl+1 =
→

Xl
p −
→

A ·
→

D (2)

→

A = 2
→
a ·
→

r1−
→
a (3)

→

C = 2 ·
→

r2 (4)
→
a = 2− l · (2/L) (5)

where l represents the current number of iterations, L represents the maximum number of iterations,
→
a

represents a linear decrement from 2 to 0 during the iterations,
→

A and
→

C are both coefficient vectors,
→

r1

and
→

r2 represents random variables between [0, 1],
→

Xp represents the position vectors of the prey,
→

X
represents the position vector of the grey wolf. The mathematical model for position update during
the grey wolf hunting is as follows.

→

Dα = |C1 ·
→

Xl
α −

→

Xl
| (6)

→

Dβ = |C2 ·
→

X
l

β −
→

X
l
| (7)

→

Dδ = |C3 ·
→

X
l

δ −

→

Xl
| (8)

→

X1 =
→

Xl
α −

→

A1 · (
→

Dα) (9)

→

X2 =
→

Xl
β −

→

A2 · (
→

Dβ) (10)

→

X3 =
→

Xl
δ −

→

A3 · (
→

Dδ) (11)

→

Xl+1 = (
→

X1 +
→

X2 +
→

X3)/3 (12)

where
→

C is a random vector between [0,2], which controls the difficulty degree of increasing (
→

|C| > 1)

or reducing (
→

|C| < 1) the grey wolf closing to the prey,
→

A controls the search range, when
→

|A| > 1, the grey

wolf individuals searches for prey globally, and when
→

|A| < 1, the grey wolf individual searches for
prey locally.

3.2. IMOGWO for Solving Green Manufacturing Collaborative Optimization of Semiconductor Wafer
Distributed Heterogeneous Factory

3.2.1. Encoding and Decoding

Since the basic GWO algorithm is used to solve the continuous function optimization problem,
the random key coding rule [32] based on ascending order is used to encode the jobs, which forms
a one-to-one mapping of the individual position and the job processing order, in order to construct
a one-dimensional chromosome encoding scheme. This method does not require excessive memory
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settings, but the assignment information of the jobs in the factories is not shown. In this paper,
the transformation of chromosome from one dimension to two dimensions is realized by decoding
the operation. The newly added one-dimensional chromosome is used to store the information that
shows which factory the jobs are assigned to, and it occurs only during the manufacturing process,
which is called the invisible chromosome in this paper. The decoding operation is divided into
two phases. The first phase realizes the assignment of jobs to each processing factory. The second
phase realizes the scheduling and corresponding machine allocation of assigned jobs in each factory.
In the first phase, the heuristic rule DR is designed to decode, which considers processing time of jobs
and factory load. In the second phase, the PS decoding method in literature [33] is used.

In order to clearly describe the two-stage decoding method, this paper gives a detailed description
of it through a small-scale test case of semiconductor wafer fabrication with four jobs, three stages,
and two re-entries. In this example, two processing factories are set up, each of which has three stages.
The number of parallel machines at the same speed in the first factory is shown in References [1,2,2].
The processing power of one machine at the first stage is 7 kw/h and the idle power is 1 kw/h.
The processing power of two machines at the second stage is 5 kw/h and the idle power is 2 kw/h.
The processing power of two machines at the third stage is 8 kw/h and the idle power is 2 kw/h.
The effective service time of lubricants on the machines of the same stage is equal, in order of [5.7,5.9,4.4]
(unit: h). The amount of lubricants used on the machines of the same stage is equal, in order of
[0.25, 0.27, 0.25] (unit: L). The number of parallel machines at the same speed in the second factory
is [2,1,2]. The processing power of two machines at the first stage is 8 kw/h and the idle power is 5
kw/h. The processing power of one machine at the second stage is 5 kw/h and the idle power is 3
kw/h. The processing power of two machines at the third stage is 6 kw/h and the idle power is 1 kw/h.
The effective service time of lubricants on the machines of the same stage is equal, in order of [5.5, 5.1,
4.1] (unit: h). The amount of lubricants used on the machines of the same stage is equal, in order of [0.28,
0.22, 0.31] (unit: L). The carbon emissions factor of electric energy is 0.6747 kgCO2/kw·h, and the carbon
emissions factor of lubricants is 2.85 kgCO2/L [34]. The processing time and delivery time of each job
at each stage (unit: min) are shown in Table 3. The data outside the brackets is the processing time
and delivery time of jobs processed in factory 1. The data inside the brackets is the processing time.
The delivery time of the jobs processed in factory 2. [1, 3, 2, 4] represents the encoding scheme of
jobs in this example. The decoding operation is first performed on job 1, and then job 3, 2, and 4 are
sequentially performed.

Table 3. Processing time and delivery time of each job.

Factory 1 (Factory 2)

Jobs Delivery
Time

First Processing First Reentry Second Reentry

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Job1 13.2(11.1) 1(2) 2(2) 2(2) 1(0) 2(2) 1(2) 2(0) 2(2) 1(1)
Job2 11.8(14.2) 2(2) 2(0) 2(3) 1(2) 2(1) 2(2) 1(1) 2(2) 2(1)
Job3 15.6(15.1) 1(2) 1(0) 2(2) 0(1) 2(2) 1(0) 2(2) 2(2) 1(0)
Job4 11.5(13.4) 2(2) 1(1) 2(2) 2(2) 1(0) 1(1) 1(1) 2(3) 2(1)

The heuristic rule DR (Dynamic Rules) determines the strategy for allocation of jobs to the factories.
The specific steps are as follows:

Step 1: for each job, select a factory with less average processing time to process it. If there are
multiple choices, go to Step 2.

Step 2: compare the number of jobs that have been allocated to the two factories, and select the factory
with fewer jobs allocated for processing the job. If there are multiple choices, go to Step 3.

Step 3: compare the total number of machines in the two factories. The job is assigned to the factory
with a greater number of machines for processing. If there are multiple choices, go to Step 4.

Step 4: randomly select one from factories for processing the job.



Appl. Sci. 2019, 9, 2879 9 of 25

The pseudocode for the core part of Step 1 is outlined in Algorithm 1.

Algorithm 1. Calculation of average processing time.

Input: Table 3 and the number of machines at each stage in two factories.
Output: The average processing time of job i in factory f (Table 4).
Step: Description
1. For i = 1: n
2. For l = 1: s

3. Compute P f
i =
∑

j, Pi j f l, where Pi j f l =
P f l

i j
m f l

4. End
5. End

We now use this test case to explain the DR rule. First, we calculate the average processing time of
each job in two factories separately. The results are shown in Table 4. We use specific steps to calculate
the average processing time of jobs in factory 1 as an example.

___
P1

1 =
∑

j,
___

P1 j1l = P1111 + P1212 + P1313 + P1411 + P1512 + P1613 + P1711 + P1812 + P1913 = 1
1 + 2

2 + 2
2 + 1

1 + 2
2 + 1

2 + 2
1 + 2

2 + 1
2= 9 (13)

___
P1

2 =
∑

j,
___

P2 j1l = P2111 + P2212 + P2313 + P2411 + P2512 + P2613 + P2711 + P2812 + P2913 = 2
1 + 2

2 + 2
2 + 1

1 + 2
2 + 2

2 + 1
1 + 2

2 + 2
2= 10 (14)

___
P1

3 =
∑

j,
___

P3 j1l = P3111 + P3212 + P3313 + P3411 + P3512 + P3613 + P3711 + P3812 + P3913 = 1
1 + 1

2 + 2
2 + 0

1 + 2
2 + 1

2 + 2
1 + 2

2 + 1
2= 7.5 (15)

___
P1

4 =
∑

j,
___

P4 j1l = P4111 + P4212 + P4313 + P4411 + P4512 + P4613 + P4711 + P4812 + P4913 = 2
1 + 1

2 + 2
2 + 2

1 + 1
2 + 1

2 + 1
1 + 2

2 + 2
2= 9.5 (16)

Table 4. Average processing time of each job in two factories.

Factory 1 Factory 2

job1 9 9.5
job2 10 8.5
job3 7.5 7.5
job4 9.5 8.5

Perform the decoding operation of the first phase according to [1, 3, 2, 4] encoding scheme.

Because
___
(P1

1 = 9) <
___
(P2

1 = 9.5), the first job is scheduled to be processed in factory 1. For the second

job
___
(P1

3= 7 .5) =
___
(P2

3 = 7.5), factory 1 and factory 2 have the same average processing time.
Then, considering the number of jobs that have been assigned to the two factories. Job 1 has
been assigned to factory 1. However, no job has been assigned to factory 2. Therefore, job 3 is assigned

to factory 2. For the third job
___
(P1

2 = 10) >
___
(P2

2 = 8.5), job 2 is assigned to factory 2 for processing.

For the last job
___
(P1

4= 9 .5) >
___
(P2

4 = 8.5), it is assigned to factory 2 as well. In summary, job 1 is
processed in factory 1, job 3, 2, and 4 are processed in factory 2, which completes the first phase of
the decoding operation.

In the second phase of the decoding operation, the PS method determines the processing order
and machine allocation strategy of assigned jobs in each factory. Figure 2a shows the scheduling
Gantt chart of factory 1 processing job 1, and Figure 2b shows the scheduling Gantt chart of factory 2
processing job 3, 2, and 4. The PS decoding method means that each job is arranged to the machine,
which, in the corresponding stage, can process the job earliest. As shown in Figure 2b, the first
operation of job 4 can be processed by two machines at stage 1, and the processing time is P21

41 = 2.
The first idle state of the first machine at stage 1 is from time 2 to 4, which is just enough for processing
O41. Since the earliest time was allowed to start processing on the second machine is S41T12 = 2 (41
represents the first operation of job 4, and 12 represents the second machine of stage 1), the start
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processing time of O41 is S241 = 2. According to the PS method, the first machine with a previous serial
number is selected for processing, and the end time of processing is C41 = S241 + P21

41 = 2 + 2 = 4.
In addition, for the sixth operation of job 4, it can select two machines at stage 3 for processing.
The processing time of O46 is P23

46 = 1, the completion time of the previous operation is C45 = 9.
The earliest time of the first machine at stage 3, which meets the processing time constraint between
operations allowed us to start processing is S46T31 = 10. The earliest time of the second machine
at stage 3, which meets the processing time constraint between operations allowed to start processing, is
S46T32 = 9. Due to S46T31 > S46T32, the second machine is chosen for processing. The start processing
time of O46 is S246 = 9. The machine allocation strategy for each operation of other jobs is the same.
The corresponding objective function values in factory 1 is Cmax = 14 min, TCT = 1.5518 kgCO2, TDT
= 0.8 min, and the corresponding objective function values in factory 2 is Cmax = 17 min, TCT =

3.6688 kgCO2, TDT = 3.6 min.
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3.2.2. Learning Strategies of Initial Population and Leadership Level

For swarm intelligence algorithm based on iteration idea, the quality of initial population has
a direct impact on the quality of solution. The IMOGWO algorithm is designed to perform a reverse
learning operation after generating the initial grey wolf population [35]. The reverse individuals
of the initial population are generated. Combining the two forms a new grey wolf population.
According to the fitness value of each individual, the fast-non-dominant ranking and crowding distance
of each individual are calculated [36]. According to the Pareto dominance relationship, the grey wolf
individuals sorted in the top N (population number) position are selected to form the final initial grey
wolf population in order to improve the quality of the initial population solution. The calculation
formula of the individual position information reverse learning is shown in Equation (17).

Xnew
ij = 1−Xi j (17)

The pseudo-code for the core part of the reverse learning strategy is outlined in Algorithm 2.
α Wolf, β wolf, and δ wolf represent three different leadership levels in the grey wolf population

and guide the search behavior of ω wolves. Therefore, the quality of the individual solutions of α
wolf, β wolf, and δ wolf directly affects the quality of solutions of the entire grey wolf population.
However, in the actual predation behavior, the α wolf also needs to learn the predation experience of
grey wolf individuals at the same level to constantly improve itself, β wolf needs to learn from α wolf,
while δwolf needs to learn from βwolf or αwolf to enhance their predation skills. Therefore, this paper
designs a learning strategy for the leadership level. For the α wolf individual, two unequal random
numbers a and b (a < b) are randomly generated, and the fliplr mutation is sequentially performed
on the variable between a and b in each individual to generate a new α wolf individual. For β wolf
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individuals, one α wolf individual was randomly selected, and LOX cross-mutation [37] was carried
out between them to produce a new β wolf individual. For the δ wolf individual, a random number
r is randomly generated. If r < 0.5, one α wolf individual is randomly selected. Otherwise, one β
wolf individual is randomly selected, and the LOX cross-mutation is carried out between the two to
produce a new δ wolf individual.

Algorithm 2. Reverse learning strategy.

Input: Population size N, the upper and lower limits of individual position variables (ub, lb),
individual dimension
Output: Initial population individuals X
Step: Description
1. Randomly generate the initial population X1
2. Generate the reverse population X2 of the population X1
3. Combine X1 and X2
4. Fast non-dominated sort and compute crowding distance, generate different levels of
population individuals
5. Select the N individuals ranked top and generate the initial population X

The Fliplr mutation is that the elements {a, b, c, d} in a matrix are reversed from left to right. Before
the inversion, the positions of a, b, c, and d are 1, 2, 3, and 4. After the inversion, their positions are
changed as 4, 3, 2, and 1. The Fliplr mutation is shown in Figure 3a, a = 2, b = 4, then the variables
[2, 1, 4] between a and b is flipped to [4, 1, 2]. The LOX cross-mutation is the cross behavior between
two parent individuals. First, the job set {a, b, c, d} needs to be randomly divided into two sub-job sets
{a } and {b, c, d}. Retain the position of element a in the first subset in parent 1, copy it into the offspring,
and discard the elements in the remaining parent 1. Delete the element a in the first subset in parent 2,
and then the elements in parent 2 retain their orders and are copied into the offspring to form a new
offspring. The LOX crossover mode is shown in Figure 3b. The job set is first randomly divided
into two sub-job sets Jobset1 = {3} and Jobset2 = {1, 2, 4}, the position of variable 3 in P1 is reserved
and copied to offspring C. In P2, variable 3 is deleted, and the position and order of other variables are
reserved and copied to offspring C.
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The pseudocode for the core part of LOX cross-mutation is outlined in Algorithm 3.
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Algorithm 3. LOX cross-mutation.

Input: The population individuals X, individual dimension dim, Population size N
Output: New individuals newX
Step: Description
1. Randomly generate two sub-job sets jobset1 and jobset2
2. For n = 1: N
3. P1 = X(n)
4. P2 select from (α, β, δ, ω grey individuals)
5. j = 1
6. For i = 1: dim
7. If (any( jobset1==P1(i))==1)
8. newX(i) = P1(i)
9. else
10 While (any( jobset1==P2( j))==1)
11. j = j + 1
12. End
13. newX(i) = P2( j)
14. j = j + 1
15. End
16. End
17. End

3.2.3. Predatory Behavior Search Strategy

The position updating of each individual in the grey wolf population is also influenced by the ω
wolves, in addition to the three leadership levels of α wolf, β wolf, and δ wolf. Therefore, this paper
designs a new formula for grey wolf individual location updating to ensure the diversity of predation
search strategies. A random number rand between [0, 1] is generated. According to the value of rand,
the LMOX cross operation is carried out between the current i-th grey wolf individual and the α wolf,
β wolf, and δ wolf, which is an arbitrarily selected ω wolves individual, respectively. The formula is
shown in Equation (18).

πt+1
i =


LMOX(πt

i , π
t
α) i f rand < 1/4

LMOX(πt
i , π

t
β) elsei f 1/4 ≤ rand < 2/4

LMOX(πt
i , π

t
δ
) elsei f 2/4 ≤ rand < 3/4

LMOX(πt
i , π

t
w) otherwise

(18)

The LMOX cross operation generates an r flag array whose elements consist of 0 and 1. Each dimension
of the r flag array corresponds to each dimension of two parent individuals. The positions of element 1
in the r flag array are recorded as {a, b}, then the elements {m, n}with the position {a, b} are copied to
the offspring, and the elements {m, n} in the parent 2 are deleted. The remaining elements in parent 2
retained their orders and copied to the offspring to form a new offspring individual. Take Figure 4 for
example. An r flag array with the same length as the grey wolf individual is generated, which consists
of 1 and 0 elements. The value of each element is determined by the decision number rr, which is
randomly generated between [0, 1]. If rr < 0.5, the corresponding position of r flag array is set to 1,
otherwise 0. Copy the variables [3,4] whose position are 1and 4 to the offspring, meanwhile keep their
order unchanged. The two variables are deleted from the selected β wolf individual πt

β. The remaining

variables [1,2] are copied to the offspring to form a new offspring individual πt+1
i . When the r flag

array is all 1 or all 0, there are two special cases. The new offspring individuals are the same as the gray
wolf individuals πt

i and πt
β, respectively.
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The pseudocode for the core part of the LMOX cross operation is outlined in Algorithm 4.

Algorithm 4. LMOX cross operation.

Input: The population individuals X, individual dimension dim, Population size N
Output: New individuals newX
Step: Description
1. Generate r flag array
2. [~, index] = find(r==1)
3. For n = 1: N
4. P1 = X(n)
5. P2 randomly select from (α, β, δ, ω grey wolves individuals)
6. If index is not null
7. For i = 1: length(index)
8. newX = P1(1, index(i))
9. a(i) = newX(i)
10. End
11. End
12. If a is not null
13. Remove the same elements from P2 and the remaining variables generate b
14. End
15. newX(length(a) + 1:dim) = b
16. End

4. Simulation Experiments

In order to verify the effectiveness of the IMOGWO algorithm proposed in this paper for
solving green manufacturing collaborative optimization problems of the semiconductor wafer
distributed heterogeneous factory, the NSGA-II algorithm proposed in literature [36], the MODGWO
algorithm proposed in literature [38], and the MOGWO algorithm proposed in literature [26] are used
as comparative algorithms in the experimental stage. Among them, MODGWO is an algorithm that
improved the GWO algorithm and achieved better experimental results. MOGWO is the most original
multi-objective Grey Wolf algorithm. The NSGA-II algorithm is a classical and effective algorithm
for solving multi-objective optimization problems. In the experimental stage, the three objective
functions are first normalized, according to the min-max standard, so that they are in the same order of
magnitude, which is suitable for comprehensive comparative evaluation. The experimental simulation
environment is set to Windows 10 operating system, the processor is Intel(R) Core (TM) i7-4770 CPU
@3.40 GHz, the memory is 8 GB, and the algorithm is programmed with MATLAB R2017a.

4.1. Test Cases

In this paper, the collaborative optimization of green manufacturing in a distributed heterogeneous
factory is studied. The relevant parameters of factory 1 are selected from 12 small scale bi-objective
RHFS scheduling problem test cases designed by Cho et al. [8]. On the basis of this, the carbon emissions
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indicator is added. Due to the heterogeneity and rapid manufacturing feature of the distributed
manufacturing, the processing time of the jobs in each stage of factory 2 and factory 3 are integers
and conform to the uniform distribution between [1,10] and [1,20], respectively. The numbers of
parallel machines at the same speed of each stage are integers and conform to the uniform distribution
between [1,2]. The delivery time of jobs are calculated, according to the method in literature [39,40].
The formula is shown below.

di = PTi × (1 + rand(0, 1)) (19)

PTi =

Ni∑
j=1

s∑
l=1

P f l
i j (20)

Among them, PTi is the sum of the processing time of job i at each stage in the processing factory.
The other parameters and values involved in algorithms are shown in Table 5.

Table 5. Parameters and values of algorithms.

Parameter Value

Number of jobs An integer follows uniform distribution between [10,20]
Number of stages An integer follows uniform distribution between [5,10]

Number of re-entries An integer follows uniform distribution between [1,2]
Number of factories 2\3

Crossover probability (NSGA-II) 0.8
Mutation probability (NSGA-II) 0.3
Number of cycles of algorithms 100

Number of populations 50
Archive size (MOGWO) 50

Gamma (MOGWO) 2
Alpha (MOGWO) 0.1
nGrid (MOGWO) 10
Beta (MOGWO) 4

Processing power of machines at each stage An integer follows uniform distribution between [5, 8]
Idle power of machines at each stage An integer follows uniform distribution between [1, 5]

Effective service time of lubricants on the machines at each stage An integer follows uniform distribution between [4, 6]
The amount of lubricants used on the machines at each stage An integer follows uniform distribution between [0.2, 0.4]

Carbon emissions factor of electric energy 0.6747 kgCO2/kw·h
Carbon emissions factor of lubricants 2.85 kgCO2/L

Remarks: Power unit: kw/h, effective service time unit of lubricants: h, usage unit of lubricants: L.

4.2. Performance Measures

In this paper, SP, GD, IGD, and Ω are selected as evaluation indicators [33,41]. It is very
important to note that we do not know the Pareto optimal solution or the best known Pareto solutions
for the considering problem. Thus, we regard the Pareto optimal solutions of all test algorithms
as the Pareto optimal solutions.

The SP indicator is used to evaluate the uniformity of the non-inferior solution distributed
on the Pareto front. The minimum value of SP is 0. The smaller the value, the more uniform of
the non-inferior solution distribution. The formula is shown in Equation (21).

SP =

√√√
1

|PF| − 1

|PF|∑
i=1

(d− di)
2

(21)

where i, j = 1, . . . , |PF|,i , j. d is the mean of all di.|PF| is the number of non-inferior solutions on
the Pareto front.

The GD indicator is used to measure the approximation between the Pareto front obtained by
this algorithm and the optimal Pareto front. The minimum value of GD is 0. The smaller the value,
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the closer the non-inferior solution on the Pareto front to the optimal Pareto front. The formula is
shown in Equation (22).

GD =

√∑|PF|
i=1 d2

i

|PF|
(22)

where |PF| is the number of non-inferior solutions on the Pareto front. di is the Euclidean distance
between the i-th solution on the Pareto front and the nearest solution on the optimal Pareto front.

The IGD indicator is more comprehensive than the GD indicator, which can evaluate
the convergence and diversity of the non-dominant solutions simultaneously. The smaller the IGD
value, the better the performance of the algorithm is. The formula is shown in Equation (23).

IGD =

∑
x∈PF∗ dist(x, PF)
|PF∗|

(23)

where dist(x, PF) is the Euclidean distance of a solution on the optimal Pareto front and the nearest
solution on the obtained Pareto front. |PF∗| represents the number of non-inferior solutions on
the optimal Pareto front.

Ω indicator is used to calculate the percentage of the non-inferior solution set obtained by
an algorithm to the optimal Pareto solution, which reflects the dominant performance of the algorithm.
The formula is as shown in Equation (24).

ΩLk =

|P(∪
i
Li)\P(∪

i,k
Li)|

|P(∪
i
Li)|

× 100% (24)

where Li represents the non-inferior solution set obtained by the i-th algorithm,|P(O)| represents
the number of non-dominated solutions in the set O. ΩLk takes a value between [0, 1], the larger it is,
and the better the dominance of the Pareto front obtained by the algorithm.

4.3. Performance Testing and Results Analysis

In the experimental stage, each algorithm runs 10 times independently, taking the average value
as the final result, and the optimal values of each indicator are shown in bold. The mean value
(Avg) and the minimum value (Min) or the maximum value (Max) of each indicator are selected for
comparative analysis. For SP, GD, and IGD indicators, the smaller the value is, the better the algorithm is.
Then, its minimum value (Min) is selected. For the Ω indicator, the larger the value is, the better
the dominance of the algorithm is. Then, its maximum value (Max) is selected. It can be seen from
Table 6 that the IMOGWO algorithm is superior to the MODGWO, MOGWO, and NSGA-II algorithms
in the uniformity, convergence, diversity, and dominance of the solutions on the Pareto front for 2
factories cases. In order to more clearly determine whether there are significant differences between
algorithms, SPSS Statistics 17 was used in this paper to conduct the Wilcoxson symbolic rank test,
and the results are shown in Table 7.

Table 6 shows the experimental results of the test cases with 2 factories. For the dominant
proportion of ‘Avg’ in SP indicator, the IMOGWO algorithm is 59%, the MODGWO algorithm is 8%,
the MOGWO algorithm is 33%, and the NSGA-II algorithm is 0%. For its dominant proportion of
‘Min’, the IMOGWO algorithm is 25%, the MODGWO algorithm is 33%, the MOGWO algorithm is
25%, and the NSGA-II algorithm is 17%. For the dominant proportion of the ‘Avg’ in the GD indicator,
the IMOGWO algorithm is 83%, the MODGWO algorithm is 0%, the MOGWO algorithm is 17%,
and the NSGA-II algorithm is 0%. For its dominant proportion of ‘Min,’ the IMOGWO algorithm is
83%, the MODGWO algorithm is 8.5%, the MOGWO algorithm is 8.5%, and the NSGA-II algorithm
is 0%. For the dominant proportion of ‘Avg’ in the IGD indicator, the IMOGWO algorithm is 100%,
the MODGWO algorithm is 0%, the MOGWO algorithm is 0%, and the NSGA-II algorithm is 0%.
For its dominant proportion of ‘Min,’ the IMOGWO algorithm is 83%, the MODGWO algorithm is
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8.5%, the MOGWO algorithm is 8.5%, and the NSGA-II algorithm is 0%. For the dominant proportion
of ‘Avg’ in Ω indicator, the IMOGWO algorithm is 100%, the MODGWO algorithm is 0%, the MOGWO
algorithm is 0%, and the NSGA-II algorithm is 0%. For its dominant proportion of ‘Max,’ the IMOGWO
algorithm is 75%, the MODGWO algorithm is 8%, the MOGWO algorithm is 0%, and the NSGA-II
algorithm is 17%. As can be seen from ‘Mean’ in the last line of Table 6, the IMOGWO algorithm is
superior to the other three compared algorithms in SP, GD, IGD, and Ω indicators. Table 7 summarizes
the results of the Wilcoxson symbolic rank test with 2 factories, from which it can be seen that,
all relevant p-values are less than 0.05 for IGD and Ω indicators. For SP and GD indicators, the p-values
are less than 0.05 for all except when IMOGWO compares with the MOGWO algorithm aiming at one
problem. It can be concluded that the proposed IMOGWO is significantly superior to the other
compared algorithms at 95% confidence level for IGD and Ω indicators. For SP and GD indicators,
there is no significant difference between IMOGWO and MOGWO for 01 problem, but compared with
other algorithms, IMOGWO is significantly superior to them. The box-plots of the four evaluation
indicators in Figure 5 further verifies the conclusion.

Table 6. Experimental results comparison of four algorithms with two factories.

Test Example
IMOGWO MODGWO MOGWO NSGA-II

Avg Min Avg Min Avg Min Avg Min
(Max) (Max) (Max) (Max)

Problem SP 0.2525 0.0553 0.2965 0.1485 0.1717 0.1237 0.3374 0.0349
01-01 GD 0.0617 0.0066 0.1817 0.0866 0.0625 0.026 0.0803 0.03

IGD 0.1735 0.0469 0.4175 0.3186 0.1815 0.0605 0.2475 0.1127
Ω 43% 58% 3% 15% 32% 46% 22% 63%

Problem SP 0.1081 0.0852 0.5639 0.3111 0.1392 0.0766 0.1421 0.0941
01-11 GD 0.0165 0.0096 0.1745 0.059 0.0376 0.0159 0.0328 0.0182

IGD 0.0701 0.0419 0.4209 0.2381 0.135 0.0788 0.1414 0.0927
Ω 61% 65% 3% 25% 17% 28% 19% 24%

Problem SP 0.2723 0.1187 0.5981 0.1386 0.2509 0.1369 0.3718 0.2188
02-01 GD 0.1057 0.0484 0.1949 0.0827 0.1121 0.0298 0.137 0.088

IGD 0.2686 0.1661 0.5029 0.2989 0.27 0.1282 0.304 0.1127
Ω 56% 71% 5% 18% 26% 44% 13% 29%

Problem SP 0.2246 0.0826 0.6076 0.2811 0.251 0.1207 0.2678 0.1359
02-11 GD 0.0323 0.0157 0.2212 0.0756 0.0664 0.0257 0.1331 0.0503

IGD 0.1008 0.0002 0.4492 0.2466 0.2101 0.098 0.3167 0.1159
Ω 65% 88% 3% 14% 16% 35% 16% 22%

Problem SP 0.218 0.1481 0.4289 0.1399 0.3411 0.1583 0.358 0.2749
03-01 GD 0 0 0.1751 0.124 0.1191 0.0689 0.1538 0.0608

IGD 0 0 0.4673 0.2345 0.3518 0.2392 0.3682 0.2191
Ω 89% 100% 2% 12% 5% 25% 4% 20%

Problem SP 0.2898 0.2141 0.4357 0.3758 0.3458 0.1949 0.5162 0.2052
03-11 GD 0.1174 0.057 0.1997 0 0.1399 0.0899 0.1237 0.0519

IGD 0.21 0.1344 0.4424 0.0819 0.3353 0.2775 0.2983 0.1487
Ω 55% 81% 31% 83% 4% 11% 10% 19%

Problem SP 0.2201 0.1364 0.4888 0.197 0.1635 0.112 0.3426 0.135
04-01 GD 0.0444 0.0239 0.1871 0.0821 0.043 0.0263 0.078 0.0289

IGD 0.1591 0.0328 0.4177 0.2462 0.1716 0.1239 0.2198 0.1079
Ω 50% 88% 10% 23% 21% 33% 19% 27%

Problem SP 0.187 0.0876 0.3647 0.177 0.2629 0.1304 0.2958 0.2185
04-11 GD 0.0369 0.0101 0.2049 0.0825 0.053 0.038 0.0462 0.0297

IGD 0.1345 0.0293 0.4568 0.2145 0.19 0.1268 0.1659 0.1155
Ω 43% 63% 8% 28% 34% 58% 16% 35%

Problem SP 0.3226 0.1543 0.2686 0.0451 0.3025 0.1196 0.3259 0.178
05-01 GD 0.0489 0 0.2035 0.0796 0.0907 0.0315 0.1104 0.0415

IGD 0.1357 0 0.4726 0.346 0.2407 0.1264 0.2204 0.0778
Ω 70% 100% 5% 10% 2% 10% 23% 75%
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Table 6. Cont.

Test Example
IMOGWO MODGWO MOGWO NSGA-II

Avg Min Avg Min Avg Min Avg Min
(Max) (Max) (Max) (Max)

Problem SP 0.2202 0.0956 0.3595 0.0641 0.3246 0.1532 0.32 0.1056
05-11 GD 0.0881 0 0.1878 0.1201 0.128 0.0636 0.112 0.0509

IGD 0.208 0 0.4401 0.286 0.3161 0.2497 0.347 0.2215
Ω 74% 100% 16% 50% 0% 0% 10% 33%

Problem SP 0.2416 0.111 0.3661 0.0489 0.2225 0.1256 0.2472 0.145
06-01 GD 0.0554 0.0205 0.1597 0.0768 0.0523 0.0241 0.0765 0.0425

IGD 0.1913 0.1046 0.3793 0.2255 0.2173 0.1601 0.2471 0.1956
Ω 63% 86% 6% 25% 10% 13% 21% 43%

Problem SP 0.111 0.0707 0.3171 0.1402 0.1163 0.0745 0.1847 0.0703
06-11 GD 0.0166 0.0122 0.0851 0.0521 0.0279 0.0199 0.0495 0.0266

IGD 0.0836 0.0408 0.3089 0.1964 0.1482 0.1227 0.1917 0.1246
Ω 64% 72% 7% 15% 13% 29% 30% 100%

Mean

SP 0.2223 0.1133 0.4246 0.1723 0.241 0.1272 0.3091 0.1514
GD 0.052 0.017 0.1813 0.0768 0.0777 0.0383 0.0944 0.0433
IGD 0.1446 0.045 0.4313 0.2444 0.2306 0.1493 0.2557 0.1371

Ω 62% 81% 8% 27% 15% 28% 17% 41%

Table 7. Wilcoxon signed rank test (two factories).

Indicator
Sproblem 01-06(01 Problem) sig (p < 0.05) Sproblem 01-06(11 Problem) sig (p < 0.05)

MODGWO MOGWO NSGA-II MODGWO MOGWO NSGA-II

P Sig P Sig P Sig P Sig P Sig P Sig
SP 0.005 Y 0.506 N 0.035 Y 0.000 Y 0.013 Y 0.003 Y
GD 0.000 Y 0.111 N 0.011 Y 0.000 Y 0.003 Y 0.002 Y
IGD 0.000 Y 0.025 Y 0.000 Y 0.000 Y 0.000 Y 0.000 Y

Ω 0.000 Y 0.000 Y 0.000 Y 0.000 Y 0.000 Y 0.000 Y
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It also can be seen from Table 8 that the IMOGWO algorithm is superior to the MODGWO,
MOGWO, and NSGA-II algorithms in the uniformity, convergence, diversity, and dominance of
the solutions on the Pareto front for 3 factories cases. In order to more clearly determine whether there
are significant differences between algorithms, SPSS Statistics 17 was used in this paper to conduct
the Wilcoxson symbolic rank test, and the results are shown in Table 9. Table 8 shows the experimental
results of the test cases with three factories. For the dominant proportion of ‘Avg’ in the SP indicator,
the IMOGWO algorithm is 67%, the MODGWO algorithm is 0%, the MOGWO algorithm is 16.5%,
and the NSGA-II algorithm is 16.5%. For its dominant proportion of ‘Min,’ the IMOGWO algorithm
is 42%, the MODGWO algorithm is 16.5%, the MOGWO algorithm is 16.5%, and the NSGA-II algorithm
is 25%. For the dominant proportion of ‘Avg’ in the GD indicator, the IMOGWO algorithm is 100%,
the MODGWO algorithm is 0%, the MOGWO algorithm is 0%, and the NSGA-II algorithm is 0%.
For its dominant proportion of ‘Min,’ the IMOGWO algorithm is 83%, the MODGWO algorithm is 8.5%,
the MOGWO algorithm is 8.5%, and the NSGA-II algorithm is 0%. For the dominant proportion of ‘Avg’
in the IGD indicator, the IMOGWO algorithm is 100%, the MODGWO algorithm is 0%, the MOGWO
algorithm is 0%, and the NSGA-II algorithm is 0%. For its dominant proportion of ‘Min,’ the IMOGWO
algorithm is 92%, the MODGWO algorithm is 8%, the MOGWO algorithm is 0%, and the NSGA II
algorithm is 0%. For the dominant proportion of ‘Avg’ in the Ω indicator, the IMOGWO algorithm
is 92%, the MODGWO algorithm is 8%, the MOGWO algorithm is 0%, and the NSGA-II algorithm
is 0%. For its dominant proportion of ‘Max,’ the IMOGWO algorithm is 92%, the MODGWO algorithm
is 8%, the MOGWO algorithm is 0%, and the NSGA-II algorithm is 0%. As can be seen from ‘Mean’ in
the last line of Table 8, the IMOGWO algorithm is superior to the other three compared algorithms in
GD, IGD, and Ω indicators. For the SP indicator, the IMOGWO is slightly worse than the NSGA-II
algorithm. Table 9 summarizes the results of the Wilcoxson symbolic rank test with three factories, from
which it can be seen that, all relevant p-values are less than 0.05 for GD, IGD, and Ω indicators. For SP
indicators, the p-values are less than 0.05 for all except when IMOGWO compares with the MOGWO
algorithm aiming at the 01 problem, and when IMOGWO compares with MOGWO, the NSGA-II
algorithm aims at 11 problem. It can be concluded that the proposed IMOGWO is significantly superior
to the other compared algorithms at 95% confidence level for GD, IGD, and Ω indicators. For SP
indicators, there is no significant difference between IMOGWO and MOGWO (for 01 and 11 problems),
NSGA-II (for 11problem), but, compared with the MODGWO algorithm, IMOGWO is significantly
superior to it. The box-plots of the four evaluation indicators in Figure 6 further verify the conclusion.
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Table 8. Experimental results’ comparison of four algorithms with three factories.

Test Example
IMOGWO MODGWO MOGWO NSGA-II

Avg Min Avg Min Avg Min Avg Min
(Max) (Max) (Max) (Max)

Problem SP 0.1142 0.0857 0.3864 0.0156 0.1416 0.0752 0.2121 0.1651
01-01 GD 0.0161 0.0119 0.1242 0.0747 0.0248 0.0195 0.046 0.0279

IGD 0.0633 0.0364 0.3825 0.2499 0.1131 0.0734 0.1971 0.133
Ω 57% 69% 3% 23% 25% 29% 15% 29%

Problem SP 0.1297 0.0857 0.4987 0.0213 0.1651 0.1147 0.1985 0.0992
01-11 GD 0.0162 0.0105 0.1212 0.0913 0.0251 0.0209 0.0373 0.0204

IGD 0.0736 0.0552 0.373 0.2499 0.125 0.0687 0.1616 0.1502
Ω 64% 75% 2% 8% 19% 24% 15% 21%

Problem SP 0.1322 0.0889 0.3342 0.1255 0.1825 0.1229 0.1851 0.1131
02-01 GD 0.0407 0.0116 0.1381 0.0667 0.0647 0.0307 0.0733 0.0376

IGD 0.154 0.0697 0.3749 0.2869 0.1946 0.0734 0.2531 0.1764
Ω 63% 86% 11% 40% 9% 20% 17% 30%

Problem SP 0.1427 0.0871 0.447 0.1511 0.183 0.0918 0.1888 0.1255
02-11 GD 0.0458 0.0041 0.1725 0.0667 0.0734 0.0264 0.0726 0.0259

IGD 0.1568 0.0093 0.4362 0.2913 0.2491 0.1217 0.2564 0.1182
Ω 69% 92% 7% 44% 8% 22% 15% 34%

Problem SP 0.3787 0.3248 0.505 0.2797 0.1558 0.1012 0.4155 0.2217
03-01 GD 0.0473 0 0.2865 0.1854 0.0967 0.0818 0.1607 0.0287

IGD 0.0696 0 0.5412 0.3869 0.2308 0.1635 0.2985 0.1114
Ω 67% 100% 0% 0% 0% 0% 23% 84%

Problem SP 0.8524 0.3006 0.8764 0.7921 0.7287 0.5362 0.1501 0.0899
03-11 GD 0 0 0.3633 0.2135 0.3144 0.3022 0.0412 0.0122

IGD 0 0 0.6156 0.4986 0.7533 0.5473 0.1126 0.0942
Ω 100% 100% 0% 0% 0% 0% 0% 0%

Problem SP 0.1343 0.0637 0.2587 0.0672 0.1372 0.0705 0.2221 0.1085
04-01 GD 0.0271 0.0063 0.1527 0.1195 0.0375 0.0223 0.0748 0.0362

IGD 0.0941 0.0256 0.3522 0.268 0.1547 0.0711 0.1853 0.1428
Ω 64% 70% 3% 15% 23% 41% 10% 30%

Problem SP 0.1142 0.0657 0.3736 0.1176 0.19 0.1201 0.165 0.1108
04-11 GD 0.0175 0.0111 0.1269 0.0713 0.0346 0.0198 0.0345 0.025

IGD 0.0713 0.0357 0.4012 0.259 0.2011 0.1372 0.1401 0.1148
Ω 48% 80% 3% 10% 33% 54% 16% 28%

Problem SP 0.282 0.119 0.3547 0.1609 0.3544 0.0899 0.2421 0.1068
05-01 GD 0.0463 0 0.1513 0.0711 0.0989 0.0725 0.1104 0.0163

IGD 0.1524 0 0.3957 0.2398 0.2771 0.1557 0.2931 0.0808
Ω 55% 100% 8% 44% 4% 11% 34% 69%

Problem SP 0.4094 0.1302 0.313 0.2424 0.2216 0.1324 0.3277 0.0815
05-11 GD 0.1657 0.1268 0.242 0.0508 0.2217 0.1328 0.2196 0.1165

IGD 0.3837 0.232 0.4861 0.1399 0.4632 0.3061 0.4926 0.3112
Ω 32% 73% 48% 75% 8% 20% 13% 30%

Problem SP 0.1586 0.0801 0.3724 0.1542 0.1957 0.1206 0.34 0.1482
06-01 GD 0.0209 0.0086 0.1542 0.0682 0.056 0.0369 0.0658 0.0486

IGD 0.0845 0.0155 0.4464 0.276 0.2097 0.1553 0.2107 0.1686
Ω 67% 93% 0% 0% 15% 33% 17% 35%

Problem SP 0.1046 0.0622 0.2735 0.1947 0.1135 0.0735 0.1137 0.0439
06-11 GD 0.0172 0.0103 0.126 0.059 0.0181 0.0092 0.0318 0.0145

IGD 0.0679 0.0455 0.2837 0.2153 0.0898 0.0533 0.1217 0.0813
Ω 69% 77% 5% 13% 12% 20% 15% 25%

Mean

SP 0.2461 0.1245 0.4161 0.1935 0.2308 0.1374 0.2301 0.1179
GD 0.0384 0.0168 0.1799 0.0949 0.0888 0.0646 0.0807 0.0342
IGD 0.1143 0.0437 0.4241 0.2801 0.2551 0.1606 0.2269 0.1402

Ω 63% 85% 5% 13% 13% 23% 16% 35%
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Table 9. Wilcoxon signed rank test (thre factories).

Indicator
Sproblem01-06(01 Problem) Sig (p < 0.05) Sproblem01-06(11 Problem) Sig (p < 0.05)

MODGWO MOGWO NSGA-II MODGWO MOGWO NSGA-II

P Sig P Sig P Sig P Sig P Sig P Sig
SP 0.000 Y 0.866 N 0.006 Y 0.000 Y 0.732 N 0.874 N
GD 0.000 Y 0.000 Y 0.000 Y 0.000 Y 0.017 Y 0.001 Y
IGD 0.000 Y 0.000 Y 0.000 Y 0.000 Y 0.003 Y 0.000 Y

Ω 0.000 Y 0.000 Y 0.000 Y 0.000 Y 0.000 Y 0.000 Y
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4.4. Case Analysis

This paper takes the test case of Sproblem-02-01 in two factories as an example to make a specific
analysis. There are 15 jobs in this case, and the number of re-entry is 1. It is assumed that there are eight
stages in each production line, including oxidation, deposition, injection, metallization, lithography,
etching, polishing, and cleaning. The related parameters of the first factory are shown in Table 10,
and those of the second factory are shown in Table 11. The Pareto optimal fronts obtained by each
algorithm for the test case are shown in Figure 7. Figure 7a is a three-dimensional graph of three
optimization objectives. The Pareto front obtained by the IMOGWO algorithm is located at the lower
right of the Pareto fronts obtained by the other three algorithms. This is closer to the real Pareto front,
followed by NSGA-II, MOGWO, and MODGWO, which has the worst convergence. Among the 17
solutions of obtained optimal Pareto front, 15 are obtained by IMOGWO, one is obtained by MODGWO,
and one is obtained by NSGA-II. The two-dimensional diagram of make span and total carbon
emissions is shown in Figure 7b, the two-dimensional diagram of total carbon emissions and total
tardiness is shown in Figure 7c, the two-dimensional diagram of make span and total tardiness is
shown in Figure 7d. We can see from them that there are contradictions among the optimization
indicators. Improvements in one indicator can lead to deterioration of at least one other indicator.
Table 12 lists part of the solutions and their corresponding scheduling schemes.
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Table 10. Relevant parameters in factory 1.

Parameters Values

Number of parallel machines at each stage [1, 1, 1, 1, 1, 2, 2, 1], A total of 10 machines
Processing time of each operation An integer follows uniform distribution between [1, 10]

Processing power of machines at each stage [6, 7, 5, 5, 6, 6, 5, 5] (Unit: kw/h)
Idle power of machines at each stage [5, 3, 4, 2, 2, 1, 2, 2] (Unit: kw/h)

Effective service time of lubricants on the machines at each stage [5.1, 4.8, 4.9, 5.0, 5.3, 4.4, 4.9, 5.9] (Unit: h)
The amount of lubricants used on the machines at each stage [0.34, 0.27, 0.25, 0.37, 0.22, 0.28, 0.34, 0.37] (Unit: L)

Delivery time of each job
[69.5520, 66.6540, 49.2660, 89.8380, 89.8380, 84.0420,
73.8990, 56.5110, 65.2050, 73.8990, 56.5110, 92.7360,

76.7970, 73.8990, 71.0010] (Unit: min)

Table 11. Relevant parameters in factory 2.

Parameters Values

Number of parallel machines at each stage [1, 2, 1, 2, 1, 2, 1, 1], A total of 11 machines
Processing time of each operation An integer follows uniform distribution between [1,10]

Processing power of machines at each stage [8, 8, 8, 5, 8, 7, 8, 6] (Unit: kw/h)
Idle power of machines at each stage [1, 3, 1, 5, 1, 4, 4, 3] (Unit: kw/h)

Effective service time of lubricants on the machines at each stage [5.9, 4.4, 4.7, 4.1, 5.7, 4.4, 5.9, 5.1] (Unit: h)
The amount of lubricants used on the machines at each stage [0.23, 0.33, 0.36, 0.36, 0.29, 0.30, 0.32, 0.22] (Unit: L)

Delivery time of each job
[88.5311, 107.1938, 108.0180, 139.7903, 93.3949, 186.1302,
110.8196129.5210, 117.1030, 116.3252, 123.3349, 92.1824,

180.2294, 142.0430, 143.8744] (Unit: min)
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Table 12. Pareto solutions and corresponding jobs-to-factories allocation scheme (part).

Serial Total Carbon
Emissions

Total Tardiness
Make Span

Scheduling Scheme

Number /min Factory 1 Factory 2

1 107.5274 161.6475 140 8-13-15-12-7-2-11-14-6 1-3-9-10-5-4
2 78.4246 192.953 132 8-13-7-10-15-2-5-3-14-11-6-4-1 9-Dec
3 74.0678 188.952 134 8-1-7-14-13-10-2-5-3-6-11-15-4 9-Dec
4 73.9144 228.441 110 8-13-7-11-6-5-14-1-3-15-2-10-4 12-Sep
5 71.6828 310.703 118 8-11-14-3-1-6-2-5-10-15-13-7-4 9-Dec
6 73.1589 191.299 133 8-10-14-1-15-13-7-2-3-11-5-4-6 9-Dec
7 72.1279 277.542 109 8-13-7-11-6-5-1-2-10-3-15-4-14 9-Dec
8 74.8563 213.034 123 2-8-13-7-11-5-14-6-4-10-1-15-3 9-Dec
9 73.2467 216.053 116 2-10-8-1-13-7-11-5-14-6-3-15-4 9-Dec
10 73.3567 227.441 111 8-13-7-11-6-5-2-10-1-3-15-4-14 9-Dec

Taking the first solution set in Table 12 as an example, this paper draws scheduling Gantt charts
of jobs in factory 1 and factory 2, which are shown in Figure 8. The make span of jobs in factory
1 is 126 min, the total carbon emissions are 40.2161 kgCO2, and the total tardiness is 120.1580 min.
The make span of jobs in factory 2 is 140 min, the total carbon emissions are 67.3113 kgCO2, and the total
tardiness is 41.4895 min. The make span of all jobs is 140 min, which is the maximum of make span
in two factories. The total carbon emissions are 107.5274 kgCO2, which are the sum of total carbon
emissions in two factories, and the total tardiness is 161.6475 min, which is the sum of total tardiness in
two factories.
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5. Conclusions

In this paper, the IMOGWO algorithm is designed to solve the green manufacturing collaborative
optimization problem of the semiconductor wafer distributed heterogeneous factory. The IMOGWO
realizes the rational allocation of jobs to factories and the production scheduling of assigned jobs in
factories by adopting heuristic rules DR and the PS decoding method. By designing a reverse learning
strategy for the initial population, the fliplr mutation and LOX cross-mutation learning strategies for
the leadership level, and the LMOX cross search strategy for the grey wolf individual and randomly
selected α wolf, β wolf, δ wolf, and the ω wolf, which enlarges the diversity of the population
and improves the quality of the solution. Simulation results demonstrate that the proposed IMOGWO
has certain advantages and competitiveness compared with the other three algorithms. The algorithm
designed in this paper can find the optimal solution of the scheduling scheme by enlarging the diversity
of the population so that the results can jump out of the local optimum. The green scheduling model
designed in this paper focuses on the carbon emission indicator. All of these are also applicable to other
production scheduling problems, such as distributed flexible job shop green scheduling, distributed
uncertain job shop green scheduling, and so on. In the actual semiconductor production, new wafers
are continuously put into processing every day, and some operations such as trial processing lead
to uncertain processing time of wafers. Therefore, uncertain scheduling in semiconductor wafer
manufacturing is our future research direction. In addition, a semiconductor production line may
be composed of hundreds of devices, and there may be hundreds of different flowing product types.
This is on a very large scale. Therefore, it is imperative to study the scheduling problem of large-scale
jobs in semiconductor production.

Lastly, the discussion of more novel technical methods, such as the game theory model, the fuzzy
theory, machine learning, and Internet of Things technology to solve the scheduling problem of
distributed job shop manufacturing in an effective time is also the focus of our future research.
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