
applied
sciences

Article

Multi-Robot Exploration Based on Multi-Objective
Grey Wolf Optimizer

Albina Kamalova 1 , Sergey Navruzov 1, Dianwei Qian 2 and Suk Gyu Lee 1,*
1 Department of Electrical Engineering, Yeungnam University, Gyeongsan 38541, Korea
2 School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
* Correspondence: sglee@ynu.ac.kr; Tel.: +82-10-3060-2487

Received: 25 June 2019; Accepted: 17 July 2019; Published: 22 July 2019
����������
�������

Abstract: In this paper, we used multi-objective optimization in the exploration of unknown space.
Exploration is the process of generating models of environments from sensor data. The goal of the
exploration is to create a finite map of indoor space. It is common practice in mobile robotics to
consider the exploration as a single-objective problem, which is to maximize a search of uncertainty.
In this study, we proposed a new methodology of exploration with two conflicting objectives: to search
for a new place and to enhance map accuracy. The proposed multiple-objective exploration uses the
Multi-Objective Grey Wolf Optimizer algorithm. It begins with the initialization of the grey wolf
population, which are waypoints in our multi-robot exploration. Once the waypoint positions are set
in the beginning, they stay unchanged through all iterations. The role of updating the position belongs
to the robots, which select the non-dominated waypoints among them. The waypoint selection
results from two objective functions. The performance of the multi-objective exploration is presented.
The trade-off among objective functions is unveiled by the Pareto-optimal solutions. A comparison
with other algorithms is implemented in the end.

Keywords: multi-robot systems; multi-objective optimization; grey wolf optimizer; waypoints;
exploration; uncertainties; unknown environment; mapping; grid map occupancy

1. Introduction

In robotics, exploration pertains to the process of scanning and mapping out an environment
to produce a map, which can be used by a robot or group of robots for further work. Based on the
type of environment, exploration can be one of the following: outdoor, indoor, or underwater, using a
mobile-robot or multi-robot systems [1,2]. In this study, we focused on indoor exploration by robots,
which are equipped with ranging sensors. It can be assumed that these robots with onboard sensors
can scan an environment without any difficulties by walking randomly around. However, their motion
is not efficient, which can result in an incomplete map coverage. As a solution to this issue, this
paper proposes an algorithm that enhances the efficiency of the multi-robot exploration by using a
multi-objective optimization strategy.

Naturally, all real-world optimization problems in engineering pursue multiple goals. They
may differ from each other in various fields. However, it is common for all to optimize problems by
maximization or minimization functions. In the past, multiple optimization problems were solved
by one function because of the lack of suitable solution methodologies for solving a multi-objective
optimization problem (MOOP) as a single-objective optimization problem. With the development of
evolutionary algorithms, new techniques, which seek to optimize two or more conflicting objectives in
one simulation run, have been applied to MOOPs. This new research area is named multi-objective
optimization (MOO) [3].

Appl. Sci. 2019, 9, 2931; doi:10.3390/app9142931 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-0575-3549
http://dx.doi.org/10.3390/app9142931
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/14/2931?type=check_update&version=2

Appl. Sci. 2019, 9, 2931 2 of 16

In robotics, studies related to optimization have been gaining wide attention [4]. If we consider
multi-robot systems [5], optimization is popularly applied in path planning [6], formation [7],
exploration [8], and other fields where decision-making control needs to be optimized. Previous
research conventionally found the optimal solutions as separated single-objective tasks: short path,
obstacle-free motion, smoothest route, and constant search of uncertain terrain. The new impact of
optimization in robotics is obtained due to the metaheuristics and its nature-inspired optimization
techniques [9]. The nature-inspired algorithms are not only restricted to robotics but also have significant
applications in different fields. Due to this, they have attracted the attention of scholars [10,11].

Metaheuristic algorithms are optimization approaches, which emulate the intelligence of various
species of animals in nature. The number of agents classifies the metaheuristic algorithms into
single-solution-based and population-based algorithms. In both classes, the solutions improve over
the course of iterations with one single agent or an entire swarm of agents, respectively. The main
advantage of population-based approaches is their ability to avoid stagnation in the local optima due
to the number of agents. The swarm can explore search space more and faster than a single agent.
Regardless of this, the benefit of one class over the other depends on its application in a certain problem.
However, it is important to mention the No-Free-Lunch (NFL) theorem for optimization, which assures
that there is no algorithm with universal optimal solution by all criteria and in all domains [12].

Despite the number of agents, the metaheuristic algorithms can be classified into single
and multi-objective optimization techniques according to the number of objective functions.
A multi-objective optimization is an extended approach to single optimization. It allows finding an
optimal solution of two independent objectives simultaneously. In order to select just one best solution
from the available ones, a trade-off should be considered among them. The Pareto-optimal front helps
pick up one of the suitable solutions satisfying two objective functions.

Examples of the single-objective algorithms include the Particle Swarm Optimization (PSO) [13],
Genetic Algorithm (GA) [14], Ant Colony Optimization (ACO) [15], Grey Wolf Optimizer algorithms
(GWO) [16,17], which have the extended multi-objective optimization variations, namely MOPSO [18],
MOGA [19], m-ACO [20], and MOGWO [21], respectively. In our previous study [8], we used the
coordinated multi-robot exploration [22] and GWO algorithms together as a hybrid. In this study,
our interest is to solve the multi-robot exploration problem as the MOOP using Multi-Objective Grey
Wolf Optimizer (MOGWO).

Using the MOGWO exploration, we defined two objectives for optimization, namely the
maximization of the search for new area and the minimization of the inaccuracy of the explored
map. It can be said that the search process is divided into two stages (Figure 1). They switch during
the simulation run depending on the value of the GWO parameter. If the value is greater than one,
it searches occluded space. If the value is less than one, it increases the map accuracy by repeated visits
in the explored space. It needs to be emphasized that the occupancy grid map with probabilistic values
is used in this study [23].

The MOGWO exploration employs static waypoints in the simulation, which promotes the
efficient exploration of an indoor simulated environment. It can be noted that the waypoints belong to
the programmed logic of the algorithm and are not supposed to be used in the real environment [24].
The waypoints are grey wolf agents with some costs of probability values. In each iteration, the robots
search alpha, beta, and gamma waypoints and save them in an archive wherein avoiding the selection
the same non-dominated waypoints for several robots. After the selection, the robots can compute the
next position, which is the closest to the average position of alpha, beta, and gamma waypoints, from
among the frontier cells [25].

This paper is organized as follows: in Section 2, we briefly recall different algorithms of multi-robot
exploration and evolutionary optimization techniques used in related works. In Section 3, the theory of
GWO and MOGWO is presented. Sections 4 and 5 are dedicated to the proposed MOGWO exploration
and its performance. Section 6 concludes the present study.

Appl. Sci. 2019, 9, 2931 3 of 16
Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 17

(a) (b) (c)

Figure 1. The proposed Multi-Objective Grey Wolf Optimizer (MOGWO) exploration in two stages:
(a) selecting the waypoints in unexplored space with high probability values of occupancy grid map;
(b) selecting the closest waypoints in explored space with high probability values proportional to the
distance; (c) the next position is one of the frontier points, which is the nearest to the selected
waypoint.

This paper is organized as follows: in Section 2, we briefly recall different algorithms of multi-
robot exploration and evolutionary optimization techniques used in related works. In Section 3, the
theory of GWO and MOGWO is presented. Sections 4 and 5 are dedicated to the proposed MOGWO
exploration and its performance. Section 6 concludes the present study.

2. Related Work

In the last two decades, many techniques have been proposed for robot exploration. Among
them, there are novel fundamental, hybridized, and modified methods. In this section, studies on the
different algorithms and the impact of the evolutionary optimization techniques in exploration are
discussed.

Considering exploration as one of the branches in robotics, Yamauchi et al.’s frontier-based
method is the pioneering work in this field [26]. From that time up to now, many frontier-based
studies have appeared, most of which were hybridized or modified with success.

The coordinated multi-robot exploration (CME) is frontier-based with the emphasis on the
cooperative work with a team of robots [22]. The robot’s mission is to search for maximum utility
with the minimum cost that diverges the robots from each other keeping the direction to search
unexplored space. The alternative coordinated method is the randomized graph approach [27,28]. It
builds a roadmap in an explored area that navigates robots to move through safe paths. Recently,
Alfredo et al. [29] introduced the efficient backtracking concept to the random exploration graph,
preventing the same robot in visiting the same place more than once. These above-mentioned
methods have the common idea of using frontier-based control.

Another approach in exploration that is completely different in theory and practice is artificial
intelligence (AI). Reinforcement Learning (RL) and convolutional neural network (CNN) are such
attempts, which have been proposed in previous studies [30–32]. The exploration-based approach on
neural networks differs considerably from the frontier-based approach in terms of environment
perception and control system. Visual sensors (cameras) scan a place for further computation using
image-processing algorithms [33]. The output of the calculation is the interaction of the robot with
the environment. Lei Tai et al. [34] conducted a survey of leading studies in mobile robotics using
deep learning from perception to control systems.

Recently, a novel branch of exploration that employs nature-inspired optimization techniques
has appeared. The approaches seek to enhance existing solutions to exploration. Sharma S. et al. [35]
applied clustering-based distribution and bio-inspired algorithms such as PSO, Bacteria Foraging
Optimization, and Bat algorithm. The clustering provides a direction of robot motion, while the
nature-inspired approaches involve exploring the unknown area. The study of [36] applied a
combination of PSO, fractional calculus, and fuzzy inference system. They compared their results

Figure 1. The proposed Multi-Objective Grey Wolf Optimizer (MOGWO) exploration in two stages:
(a) selecting the waypoints in unexplored space with high probability values of occupancy grid map;
(b) selecting the closest waypoints in explored space with high probability values proportional to the
distance; (c) the next position is one of the frontier points, which is the nearest to the selected waypoint.

2. Related Work

In the last two decades, many techniques have been proposed for robot exploration. Among
them, there are novel fundamental, hybridized, and modified methods. In this section, studies on
the different algorithms and the impact of the evolutionary optimization techniques in exploration
are discussed.

Considering exploration as one of the branches in robotics, Yamauchi et al.’s frontier-based method
is the pioneering work in this field [26]. From that time up to now, many frontier-based studies have
appeared, most of which were hybridized or modified with success.

The coordinated multi-robot exploration (CME) is frontier-based with the emphasis on the
cooperative work with a team of robots [22]. The robot’s mission is to search for maximum utility
with the minimum cost that diverges the robots from each other keeping the direction to search
unexplored space. The alternative coordinated method is the randomized graph approach [27,28].
It builds a roadmap in an explored area that navigates robots to move through safe paths. Recently,
Alfredo et al. [29] introduced the efficient backtracking concept to the random exploration graph,
preventing the same robot in visiting the same place more than once. These above-mentioned methods
have the common idea of using frontier-based control.

Another approach in exploration that is completely different in theory and practice is artificial
intelligence (AI). Reinforcement Learning (RL) and convolutional neural network (CNN) are such
attempts, which have been proposed in previous studies [30–32]. The exploration-based approach
on neural networks differs considerably from the frontier-based approach in terms of environment
perception and control system. Visual sensors (cameras) scan a place for further computation using
image-processing algorithms [33]. The output of the calculation is the interaction of the robot with the
environment. Lei Tai et al. [34] conducted a survey of leading studies in mobile robotics using deep
learning from perception to control systems.

Recently, a novel branch of exploration that employs nature-inspired optimization techniques has
appeared. The approaches seek to enhance existing solutions to exploration. Sharma S. et al. [35] applied
clustering-based distribution and bio-inspired algorithms such as PSO, Bacteria Foraging Optimization,
and Bat algorithm. The clustering provides a direction of robot motion, while the nature-inspired
approaches involve exploring the unknown area. The study of [36] applied a combination of PSO,
fractional calculus, and fuzzy inference system. They compared their results with other six other
PSO variations that showed effective multi-robot exploration. A similar waypoint concept in our
study was performed in [37]. The artificial pheromone and fuzzy controllers help the multi-robot
systems to navigate efficiently by distributing the search between robots and avoiding repeated visits
in explored regions.

Appl. Sci. 2019, 9, 2931 4 of 16

The study of [38] involved more than one optimization problem in the exploration, which
is important to highlight here. The optimal solution seeks to minimize two objective functions:
the variance of path lengths and the sum of the path lengths of all robots. Compared to our research,
they applied the K-Means clustering algorithm instead of the bio-inspired technique used in our study.

The study of [39] presented the auto-adaptive multi-objective strategy for multi-robot exploration,
where the multi-objective concept consisted of two missions: a search of uncertainties and stable
communication. This work is closely related to the present work, but the focus of their research is an
assessment of the communication conditions for providing efficient map coverage, which is a different
perspective compared to our study.

In regard to multi-objective optimization in multi-robot systems, MOPSO [40] and multi-ACO [41]
have already been applied to path planning problem. Broadly speaking, the metaheuristic algorithms
are often applied in path planning problems compared to other issues, mainly, because optimization is
the core study for finding a short and smooth path.

In general, MOGWO has never been applied before in mobile robotics studies.

3. Single and Multi-Objective Grey Wolf Optimizer

The section briefly describes the theories of GWO and MOGWO. The two techniques have the
interconnection that one is inferred to another. Firstly, GWO will be presented, and then, the concept
will be extended to the multi-objective optimization using MOGWO.

3.1. Grey Wolf Optimizer

GWO is a population-based metaheuristic algorithm, which mimics the wolf hunting process.
Population- and single-based optimization algorithms differ from each other in the number of agents
used to carry out a search of a global optimum. Each agent is a candidate for finding a global optimum.
Figure 2 shows the GWO simulation. The search begins when all agents obtain random x, y values,
where lower bound ≤ x, y ≤ upper bound. Then, the cost function defines the best candidates α, β, γ
among them in each iteration (Figure 2a) by equation:

f(x) =
n∑

i=1

x2
i (1)

Every single agent needs to compute Dα, Dβ, Dγ, and then, X1, X2, X3 can be found. The random

and adaptive vectors,
→

A and
→

C are upgraded in each iteration.

→

Dα = |
→

C1·
→

Xα −
→

X|,
→

Dβ = |
→

C2·
→

Xβ −
→

X|
→

Dγ = |
→

C3·
→

Xγ −
→

X| (2)

→

X1 =
→

Xα −
→

A1· (
→

Dα),
→

X2 =
→

Xβ −
→

A2· (
→

Dβ),
→

X3 =
→

Xγ −
→

A3· (
→

Dγ), (3)

Finally, the next agent’s position is mean value of
→

X1,
→

X2,
→

X3, which Figure 2c is illustrated.

→

X(t + 1) =

→

X1 +
→

X2 +
→

X3

3
(4)

The same calculation will be repeated in each run time for every search agent.

Depending on the values of the vectors,
→

A and
→

C, also denoted as GWO parameters, the two
phases make the transition between divergence (exploration) and convergence (exploitation) in the
optimal solution search. The GWO parameters are calculated as follows:

→

A = 2
→
a ·
→
r1 −

→
a ,

Appl. Sci. 2019, 9, 2931 5 of 16

→

C = 2·
→
r2,

where the value of
→
a decreases linearly from 2 to 0 using the update equation for iteration t:

→
at =

→
at −

a0

t
, (5)

and
→
r 1 and

→
r 2 are random values ranging from 0 to 1.

In GWO, the parameter
→

A determines the exploration and exploitation in searching behavior.

Each agent of the population performs divergence when
→

A > 1 and executes convergence from α, β,γ

agents when
→

A < 1. Figure 2 illustrates how the agent largely changes the next position at iterations t

and t+1 by the divergence of the parameter
→

A, which is linearly decreasing.

The parameter
→

C randomly determines the exploration or exploitation tendencies without
dependency on the iterations. The stochastic mechanism in GWO allows the enhanced search of
optimality by reaching different positions around the best solutions.

In recent years, the GWO algorithm has been widely modified in various studies. In study [42],
the authors improved the convergence speed of GWO by guiding the population using the alpha
solution. In another study [43], the new operator called reflecting learning was introduced in the
algorithm. It mproves the search ability of GWO by the principle of light reflection in physics.
The optimization was enhanced in studies [44–46] by random walk strategies and Levy flights
distribution as well.Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 17

(a) (b) (c)

Figure 2. GWO simulation at first iteration: (a) initialization of grey wolf population and searching for
the non-dominated agents by the cost sphere function of Equation (1); (b) calculating the divergence of
each agent positions to 𝛼, 𝛽, 𝛾 agents in Equation (2); and (c) calculating the next agent position by
Equations (3) and (4). The position of agent 𝑥(𝑡) = 2.3531, 𝑦(𝑡) = 2.8036 will change the position in the
next iteration to 𝑥(𝑡 + 1) = 0.2914, 𝑦(𝑡) = 0.9727, where 𝑡 = 1.

Depending on the values of the vectors, 𝐴 and 𝐶, also denoted as GWO parameters, the two
phases make the transition between divergence (exploration) and convergence (exploitation) in the
optimal solution search. The GWO parameters are calculated as follows: 𝐴 = 2�⃗� ∙ 𝑟ଵሬሬሬ⃗ − �⃗�,

𝐶 = 2 ∙ 𝑟ଶሬሬሬ⃗ ,

where the value of �⃗� decreases linearly from 2 to 0 using the update equation for iteration 𝑡: 𝑎௧ሬሬሬ⃗ = 𝑎௧ሬሬሬ⃗ − 𝑎𝑡 , (5)

and 𝑟ଵ and 𝑟ଶ are random values ranging from 0 to 1.
In GWO, the parameter 𝐴 determines the exploration and exploitation in searching behavior.

Each agent of the population performs divergence when 𝐴 > 1 and executes convergence from 𝛼, 𝛽, 𝛾 agents when 𝐴 < 1. Figure 2 illustrates how the agent largely changes the next position at
iterations t and t+1 by the divergence of the parameter 𝐴, which is linearly decreasing.

The parameter 𝐶 randomly determines the exploration or exploitation tendencies without
dependency on the iterations. The stochastic mechanism in GWO allows the enhanced search of
optimality by reaching different positions around the best solutions.

In recent years, the GWO algorithm has been widely modified in various studies. In study [42],
the authors improved the convergence speed of GWO by guiding the population using the alpha
solution. In another study [43], the new operator called reflecting learning was introduced in the
algorithm. It improves the search ability of GWO by the principle of light reflection in physics. The
optimization was enhanced in studies [44–46] by random walk strategies and Levy flights
distribution as well.

3.2. Multi-Objective Grey Wolf Optimizer

Two new components were integrated into MOGWO for performing multi-objective
optimization: an archive of the best non-dominated solutions and a leader selection strategy of alpha,
beta, and gamma solutions. The archive is needed for storing non-dominated Pareto solutions
through the course of iterations. The archive controller has dominant sorting rules for entering new
solutions and for archive states. The size of the archive is closely related to the number of objective
functions, which is named segments or hypercubes. Figure 3a shows the archive of three hypercubes
with the non-dominated solutions for the t-iteration.

Figure 2. GWO simulation at first iteration: (a) initialization of grey wolf population and searching for
the non-dominated agents by the cost sphere function of Equation (1); (b) calculating the divergence of
each agent positions to α, β, γ agents in Equation (2); and (c) calculating the next agent position by
Equations (3) and (4). The position of agent x(t) = 2.3531, y(t) = 2.8036 will change the position in the
next iteration to x(t + 1) = 0.2914, y(t) = 0.9727, where t = 1.

3.2. Multi-Objective Grey Wolf Optimizer

Two new components were integrated into MOGWO for performing multi-objective optimization:
an archive of the best non-dominated solutions and a leader selection strategy of alpha, beta, and
gamma solutions. The archive is needed for storing non-dominated Pareto solutions through the
course of iterations. The archive controller has dominant sorting rules for entering new solutions
and for archive states. The size of the archive is closely related to the number of objective functions,
which is named segments or hypercubes. Figure 3a shows the archive of three hypercubes with the
non-dominated solutions for the t-iteration.

The second component is a leader selection, which chooses the least crowded hypercube of the
search space and offers available non-dominated solutions from the archive (Figure 3b). In case there
are only two solutions, the third one can be taken from the second least crowded hypercube.

Appl. Sci. 2019, 9, 2931 6 of 16
Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 17

(a) (b)

Figure 3. Two modules of MOGWO: (a) the archive, which consists of three hypercubes, and (b) the
leader selection mechanism.

The second component is a leader selection, which chooses the least crowded hypercube of the
search space and offers available non-dominated solutions from the archive (Figure 3b). In case there
are only two solutions, the third one can be taken from the second least crowded hypercube.

Generally, it can be said that the archive stores the best solutions for each objective function. It
saves them not only as alpha, beta, and gamma agents, but also with the segment priorities, which
are defined by the number of total solutions. Thus, the global best solution can be chosen among the
local ones in the archive. This selection mechanism in MOGWO prevents the picking of the same
leaders. In other words, it avoids stagnation in local optimal points. Figure 4 shows the full algorithm
of MOGWO.

MOGWO finds application in cloud computing for virtual machine placement [47], medicine for
preventing cervical cancer by scanning images [48], wind power for speed forecasting [49], and
energy-efficient scheduling [50]. However, it has not been used in the robotic field up to this time.

Figure 4. MOGWO algorithm.

0 2 4 6
x

0

1

2

3

4

5

y

X

hypercube 1

hypercube 2

hypercube 3

No

Yes

Yes

Yes

Start Initialize
wolves Xi Initialize a, A, C Generate random

population of wolves
Calculate the objective

values for Xi

Select Xα as
first leader

Select Xβ as
second leader

Select Xγ as
third leader

Initialize archive with
Xα, Xβ, Xγ avoiding

the selection the same
leaders

t = 1

t < max iteration
number

Update wolf positions
by equations 2 - 4

Repeat 1 – 6 steps

1 2

3

4

5

6

if archive is full

 If solutions are
outside hypercubes

Omit the current
archive member and

add new one

Update the grids

Select leaders by 3 - 6
steps

t = t + 1

Return archive

Figure 3. Two modules of MOGWO: (a) the archive, which consists of three hypercubes, and (b) the
leader selection mechanism.

Generally, it can be said that the archive stores the best solutions for each objective function.
It saves them not only as alpha, beta, and gamma agents, but also with the segment priorities, which
are defined by the number of total solutions. Thus, the global best solution can be chosen among the
local ones in the archive. This selection mechanism in MOGWO prevents the picking of the same
leaders. In other words, it avoids stagnation in local optimal points. Figure 4 shows the full algorithm
of MOGWO.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 17

(a) (b)

Figure 3. Two modules of MOGWO: (a) the archive, which consists of three hypercubes, and (b) the
leader selection mechanism.

The second component is a leader selection, which chooses the least crowded hypercube of the
search space and offers available non-dominated solutions from the archive (Figure 3b). In case there
are only two solutions, the third one can be taken from the second least crowded hypercube.

Generally, it can be said that the archive stores the best solutions for each objective function. It
saves them not only as alpha, beta, and gamma agents, but also with the segment priorities, which
are defined by the number of total solutions. Thus, the global best solution can be chosen among the
local ones in the archive. This selection mechanism in MOGWO prevents the picking of the same
leaders. In other words, it avoids stagnation in local optimal points. Figure 4 shows the full algorithm
of MOGWO.

MOGWO finds application in cloud computing for virtual machine placement [47], medicine for
preventing cervical cancer by scanning images [48], wind power for speed forecasting [49], and
energy-efficient scheduling [50]. However, it has not been used in the robotic field up to this time.

Figure 4. MOGWO algorithm.

0 2 4 6
x

0

1

2

3

4

5

y

X

hypercube 1

hypercube 2

hypercube 3

No

Yes

Yes

Yes

Start Initialize
wolves Xi Initialize a, A, C Generate random

population of wolves
Calculate the objective

values for Xi

Select Xα as
first leader

Select Xβ as
second leader

Select Xγ as
third leader

Initialize archive with
Xα, Xβ, Xγ avoiding

the selection the same
leaders

t = 1

t < max iteration
number

Update wolf positions
by equations 2 - 4

Repeat 1 – 6 steps

1 2

3

4

5

6

if archive is full

 If solutions are
outside hypercubes

Omit the current
archive member and

add new one

Update the grids

Select leaders by 3 - 6
steps

t = t + 1

Return archive

Figure 4. MOGWO algorithm.

MOGWO finds application in cloud computing for virtual machine placement [47], medicine
for preventing cervical cancer by scanning images [48], wind power for speed forecasting [49], and
energy-efficient scheduling [50]. However, it has not been used in the robotic field up to this time.

Appl. Sci. 2019, 9, 2931 7 of 16

4. MOGWO Exploration for Multi-Robot System

In this section, we describe the proposed multi-robot exploration based on MOGWO optimization.
First, we define the optimization problems in the exploration. As mentioned above, there are two
objective functions for which the study tries to find an optimal solution. Then, the second subsection
presents the approach for solving the problems using the MOGWO exploration algorithm.

4.1. Mathematical Formulation of MOOPs in the Multi-Robot Exploration

The process of searching uncertainties by a team of robots can be considered a multi-tasking system.
Each robot receives the sensor reading data and upgrades the probabilities of the grid occupancy in
the map. One robot should have the same task as another robot in the multi-robot system, wherein
the task can be any of the following: scanning the environment using sensors, avoiding obstacles and
collisions with other robots, seeking to explore new terrain, and increasing the accuracy of the map.
It means that together, each single robot should provide good implementation as a multi-robot system
satisfying the multi-objective functions for obtaining the best solutions.

In this paper, we formulated the objective functions of the exploration as follows:

Maximize : f1 → number o f explored cells, (6)

Minimize : f2 → probability values P
(
occx,y

)
. (7)

Subject to:

i ≥ (total number o f cells− total number o f obstacle cells)/number o f robots, (8)

wpw ≥ number o f robots3, (9)

wpw ≤ total number o f cells− total number o f obstacle cells, (10)

where,
i− number o f iterations,

wpw − number o f waypoints.

The first objective function in Equation (6) tries to maximize the search space by visiting various
numbers of cells in the map. In a good scenario, robots should avoid explored cells. The waypoints in
MOGWO exploration allow saving the direction to the unexplored part of the map. However, there
are some constraints for a successful search. For example, the number of waypoints should not be too
small and big. In the case when it is small, robots will stay in one point, because they do not have the
tasks to drive next waypoints. If it is bigger than the total number of cells in a map, then a robot will
drive around one place longer than it is needed.

After the map is explored, the second objective function tries to improve the map accuracy by
reducing the probability values of the grid cells. It means once a sensor beam touches a grid cell,
the cell is marked as explored. However, the signal strength projected on the cell is not identical.
In the robot position, the probability value has the lowest value. In frontier cells, the values are higher
according to the power of a signal.

In the subsection below, the MOGWO exploration algorithm is described extensively.

4.2. The Proposed MOGWO Exploration Algorithm

Equations (6) and (7) define the objectives of the exploration in this study. For such problems,
there is no single solution that satisfies all objectives simultaneously at one time. It is not possible to
explore new cells (f 1) and to revisit explored cells (f 2) at the same time. Based on the GWO parameter
a in Equation (5), the search process is divided into two parts. When a > 1, it searches new waypoints.

Appl. Sci. 2019, 9, 2931 8 of 16

When a < 1, the process switches to revisiting already explored areas to improve the map accuracy.
Thus, the approach serves two MOOPs in a single run-time.

Algorithm 1 demonstrates the MOGWO exploration for the multi-robot system. The process
begins with the random initialization of waypoints in the search space. Their positions are set only
once in the first iteration and will not be upgraded throughout the whole exploration. In line 1, it was
noted that the number of waypoints should be higher than nRbt3 because each robot needs at least
three of the best solutions α, β, γ for the search.

Algorithm 1. The pseudocode of the proposed MOGWO exploration
1: Set waypoints wpw randomly in unknown space (wp > nRbt3)

2: Set the archive is empty
3: Set initial robot position r j (j = nRbt)
4: Initialize a, A, C
5: while t is not over
6: Update A, C
7: Set the archive is empty
8: for j = 1: nRbt
9: Find current position x, y of r1, r2, r3

10: Find frontier point Vnx,y (n = 1, . . . ,8) of r j
11: Insert rays to the map from x, y position
12: Calculate the distances by the objective function (f1) wpw

13: Calculate the probability values by objective function (f2) for wpw

14: if a ≥ 1
15: if wpw is explored
16: Then, to increase wpw cost
17: if else wpw is unexplored
18: Then, wpw cost
19: end if
20: Find minimum wpα, wpβ, wpδ costs and save in archive
21: Find Dα, Dβ, Dδ of r j by Equation (2)
22: Find X1, X2, X3 and X(i + 1) by Equations (3) and (4)
23: Find r j(t + 1) = min

(
eucl_dist

[
Vnx,y, X(t + 1)

])
24: end if
25: if a ≤ 1
26: Divide probability cost by distance cost
27: Find maximum wpα, wpβ, wpδ costs and save in archive

28: Find r j(t + 1) = min
(
eucl_dist

[
Vnx,y, wpα

])
29: end if
30: end for
31: Reduce a
32: show map
33: end while

The proposed algorithm uses the archive for the same purposes as MOGWO does. It allows the
storage of the non-dominated solution, which prevents the repeated selection of the same waypoint by
the robots. For each iteration in the loop, the robots upgrade the positions, the GWO parameters, and
the positions and probability costs of the frontier cells (lines 9, 10).

Two objective functions are used for all stages (lines 12, 13). The first one calculates the distances
between waypoints and robots. The second objective function computes the probability values in the
waypoint positions. Thus, the waypoints have distance costs of f1 and probability costs f2.

Lines 14–24 show the exploration stage for a ≥ 1. At first, the algorithm needs to divide the
waypoints into explored and unexplored ones due to the probability costs in lines 15–19. Then, it can
select the unexplored wpα, wpβ, and wpγ according to the distance costs (Figure 5). In lines 21 and 22,

Appl. Sci. 2019, 9, 2931 9 of 16

it computes the position X(t + 1). However, the robots cannot jump physically to the position, thus,
the frontier cell, which is the closest to X(t + 1), is selected for the next robot position.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 17

(a) (b) (c)

Figure 5. MOGWO exploration: (a) selection of the closest waypoints 𝑤𝑝ఈ, 𝑤𝑝ఉ, 𝑤𝑝ఊ among 𝑤𝑝௪;
(b) the waypoints that are located in the explored space have the lowest probability to be selected by
the robot than waypoints in unknown space; (c) the best waypoints for one robots should not be
duplicated for another robot.

Lines 25–28 illustrate the exploitation stage for 𝑎 ≤ 1. It divides the probability cost 𝑓ଶ by the
distance cost 𝑓ଵ. Afterward, it finds the maximum value of the result in line 26 and saves it in the
archive. The next robot position is one of the frontier cells, which is closest to the alpha waypoint.

In line 30, the 𝒂 parameter is reduced from 2 to 0 iteratively. Lastly, the map is upgraded by all
robots in the end of iteration.

The implementation results are performed in the next section. The multi-robot exploration by
MOGWO algorithm obtained notable results, which can be observed in various conditions by
adjusting the numbers of waypoints and iterations.

5. Simulation Results and Analysis

In this section, we implemented the proposed MOGWO exploration and analyzed the obtained
results. As alternatives, there are varying parameters for testing the simulation performance such as
the number of waypoints and the number of iterations. The parameters are used to test the algorithm
performance in several ways. However, some parameters were maintained as constant throughout
all the simulation runs (see Table 1).

Table 1. Experimental parameters.

Parameters Value
Initial poses r1 = (5,5), r2 = (7,9), r3 = (4,9)

Map size 15 × 15
Obstacle Width 0.5

Ray Length 1.5

Probabilities of occupancy cells

P(robotRx,yR) = 0.0010
P(obstacleRx,yR) = 0.9990

P(unexploredRx,yR) = 0.5000
P(unexploredRx,yR) > P(exploredRx,yR) ≥ P(robotRx,yR)

The major goal, which we seek to attain, is to know how many iterations and how many
waypoints are needed for efficient exploration. If the number of iterations is too low, the robots do
not have time to explore the entire map physically considering that the size of the step in each
iteration is unchanged. The same is true for the number of waypoints. They should be enough for
free robot driving in the environment. In the next subsection, the experiments with certain constraints
are presented, and the Pareto optimal set is proposed for the selection of the optimal solution of the
environment.

5.1. Simulation Results

Figure 5. MOGWO exploration: (a) selection of the closest waypoints wpα, wpβ, wpγ among wpw;
(b) the waypoints that are located in the explored space have the lowest probability to be selected
by the robot than waypoints in unknown space; (c) the best waypoints for one robots should not be
duplicated for another robot.

Lines 25–28 illustrate the exploitation stage for a ≤ 1. It divides the probability cost f2 by the
distance cost f1. Afterward, it finds the maximum value of the result in line 26 and saves it in the
archive. The next robot position is one of the frontier cells, which is closest to the alpha waypoint.

In line 30, the a parameter is reduced from 2 to 0 iteratively. Lastly, the map is upgraded by all
robots in the end of iteration.

The implementation results are performed in the next section. The multi-robot exploration by
MOGWO algorithm obtained notable results, which can be observed in various conditions by adjusting
the numbers of waypoints and iterations.

5. Simulation Results and Analysis

In this section, we implemented the proposed MOGWO exploration and analyzed the obtained
results. As alternatives, there are varying parameters for testing the simulation performance such as
the number of waypoints and the number of iterations. The parameters are used to test the algorithm
performance in several ways. However, some parameters were maintained as constant throughout all
the simulation runs (see Table 1).

Table 1. Experimental parameters.

Parameters Value

Initial poses r1 = (5,5), r2 = (7,9), r3 = (4,9)
Map size 15 × 15

Obstacle Width 0.5
Ray Length 1.5

Probabilities of occupancy cells

P(robotRx,yR) = 0.0010
P(obstacleRx,yR) = 0.9990

P(unexploredRx,yR) = 0.5000
P(unexploredRx,yR) > P(exploredRx,yR) ≥ P(robotRx,yR)

The major goal, which we seek to attain, is to know how many iterations and how many waypoints
are needed for efficient exploration. If the number of iterations is too low, the robots do not have time
to explore the entire map physically considering that the size of the step in each iteration is unchanged.
The same is true for the number of waypoints. They should be enough for free robot driving in the
environment. In the next subsection, the experiments with certain constraints are presented, and the
Pareto optimal set is proposed for the selection of the optimal solution of the environment.

Appl. Sci. 2019, 9, 2931 10 of 16

5.1. Simulation Results

The analysis of the MOGWO exploration algorithm takes into consideration two aspects of the
objective function: how it explores and how it improves the accuracy of the map. The experiment
constraints influence the performance of the algorithm. Due to the GWO stochastic parameters,
the decision-making process can be different in each simulation run. It leads us to test the algorithm
performance several times with the same constraints. Based on the experiment parameters in Table 1,
it can be calculated using Equation (8) that the iteration number should not be less than 60 and more
than 120. In addition, for the waypoints, the range should be from 60 to 150 for three robots in a certain
map size (Equations (9) and (10)). In this study, we selected the parameters as 60, 80, 100, and 120
iterations and 60, 80, 100, and 150 waypoints. Table 2 shows the results of map coverage in percentage,
which is computed using the following equation:

Map coverage (%) =

(
100−

sum o f cell probability values a f ter run time
sum o f cell probability values be f ore run time

)
× 100. (11)

Table 2. Simulation results of the MOGWO exploration in several constraints.

Number of
Waypoints

Number of Iterations

60 80 100 120

60

90.17 92.36 82.08
85.55 89.10 85.36
86.58 85.52 90.62
86.79 90.01 82.14
87.78 88.84 88.00
86.03 87.62 89.68
81.42 88.60 92.15
88.48 85.58 84.89
84.16 86.74 86.61
83.59 91.63 84.70

92.42 91.16 88.27
90.20 87.91 87.90
90.72 91.70 94.03
91.11 89.21 88.30
93.94 88.85 93.18
90.65 85.15 92.61
94.39 89.23 93.05
90.43 91.99 89.39
93.40 94.95 95.50
93.14 92.40 95.23

91.51 85.93 93.54
95.92 96.07 93.47

92.07 92.30 190.33
87.92 95.22 91.70
95.30 88.25 95.76
88.89 93.60 93.46
92.21 90.34 92.77
92.81 91.31 94.86
93.50 88.99 91.83
96.57 94.61 92.46

98.21 95.81 95.38
89.61 89.62 89.03
94.26 98.02 96.59
92.89 95.22 93.38
96.33 91.68 94.10
95.99 91.63 93.65
91.60 91.22 97.20
94.28 91.69 95.57
95.84 92.64 95.48
94.63 97.47 97.33

80

90.53 89.00 89.24
90.01 90.24 89.59
88.92 88.62 86.90
87.66 84.95 91.15
89.38 87.89 88.41
88.39 90.47 87.61
82.78 87.21 82.00
82.86 91.21 84.37
89.07 89.44 88.21
89.54 87.64 89.23

96.28 93.19 94.32
93.73 94.72 92.70
95.38 96.69 91.98
89.37 90.90 92.56
92.05 93.81 92.11
90.56 97.01 94.86
95.15 94.39 90.49
93.43 91.49 95.56
93.47 90.93 91.19
94.18 92.93 88.49

90.16 95.48 94.30
90.94 96.16 86.94
96.42 96.67 94.17
94.85 93.84 95.92
96.61 94.65 94.66
96.51 95.20 92.80
94.89 93.81 96.76
93.81 96.72 95.43
92.19 95.63 91.21
94.38 93.71 92.50

96.68 94.28 86.57
97.28 95.38 94.13
98.40 94.95 97.86
94.07 95.16 96.54
96.14 95.16 97.52
94.90 94.76 97.84
96.92 95.63 94.72
92.89 95.91 96.74
94.38 94.67 98.01
97.78 98.45 92.14

100

90.12 87.49 90.16
88.19 87.59 90.10
89.32 92.26 88.19
88.81 87.18 89.89
80.68 87.74 89.14
89.01 89.23 91.39
84.98 88.36 90.95
90.45 87.77 89.86
88.52 86.66 88.18
91.14 86.81 89.48

95.34 89.59 93.45
92.88 95.47 95.37
97.58 96.16 91.33
93.93 93.17 95.23
93.77 93.65 95.73
95.55 93.25 94.18
94.71 95.08 92.78
92.91 91.44 86.62
92.31 93.42 92.71
92.62 94.45 94.70

95.11 94.45 96.69
97.29 95.81 96.48
93.90 96.97 96.57
96.03 94.61 97.52
92.49 97.32 95.99
96.97 97.49 97.72
97.27 95.42 95.84
94.40 97.11 92.47
94.00 93.77 95.49
97.95 95.40 97.09

97.78 97.05 95.14
97.48 95.13 97.11
96.86 98.48 96.17
97.07 96.51 98.17
93.09 96.31 97.09
96.16 98.40 96.43
97.24 96.49 96.67
96.23 95.15 97.56
95.75 95.89 96.38
99.03 94.30 98.03

150

91.15 92.52 92.83
91.41 91.97 86.52
92.14 85.72 92.02
87.60 89.30 91.56
89.73 91.20 84.98
88.67 90.40 88.26
90.52 80.15 88.25
88.63 92.41 93.22
93.22 92.24 88.31
90.85 91.21 86.41

96.26 90.48 94.41
95.21 96.27 95.72
95.38 93.91 96.80
95.70 95.75 94.94
95.82 93.62 96.76
91.84 95.58 95.02
96.50 95.98 93.46
96.55 95.52 95.62
95.38 97.78 94.24
93.77 95.94 91.67

98.48 98.06 98.41
96.60 98.84 97.24
95.91 95.21 96.83
97.53 97.71 97.34
98.52 95.53 98.54
96.67 97.64 97.26
93.97 96.51 95.28
97.56 96.43 96.52
96.97 95.96 98.27
98.78 96.67 97.27

99.06 98.94 98.96
95.48 98.97 97.40
98.21 98.15 97.13
98.33 98.11 97.54
98.31 97.61 96.17
98.19 98.69 98.11
97.26 98.63 94.85
98.13 98.26 98.92
98.49 98.52 97.71
99.47 98.94 98.04

Appl. Sci. 2019, 9, 2931 11 of 16

In Table 2, it was emphasized that, for example, the maximum map coverage with a certain
sequence of decisions and the constraints, 60 iterations by 60 waypoints, is 92.36%. Furthermore,
the highest result among all the set of constraints used is 99.47% at the maximum allowable set
of constraints.

Figure 6 shows one of the simulation-runs with the constraints: 120 iterations and 150 waypoints.
In the a ≥ 1 stage, 87.57% of the environment was explored in half of the total number of iterations
(61). For the map in Figure 6b, it can be concluded that the robots touched all the waypoints with
the sensor rays. This means that the exploration ability of the algorithm is satisfied in this stage.
Figure 6c demonstrates the completed result for the a ≤ 1 stage with a total of 99.06% map coverage.
The trajectories of the robots can be observed through the blue, red, and green colored lines in Figure 6d.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 17

(a) (b)

(c) (d)

Figure 6. The simulation of MOGWO exploration algorithm in (a) iteration 1 with a = 2; (b) iteration
61 with a = 1; (c) the last iteration, 120, with a = 0.016; and (d) the trajectories of three robots.

The decision-making process of each robot is presented in Figure 7. The values of alpha solutions
in the simulation above (Figure 6) vary for the two stages: exploration and exploitation. It can be seen
that when 𝑎 ≥ 1, the trend goes up to maximum values, and when 𝑎 ≤ 1, the simulation tries to
achieve the minimum values.

(a) (b) (c)

Figure 7. Decision-making process of the alpha solutions: (a) robot 1, (b) robot 2, and (c) robot 3.

The simulation of MOGWO exploration algorithm was implemented in MATLAB using the
OccupancyGrid class of the Robotic System Toolbox [51,52]. The video of the simulation can be seen
here [53].

5.2. The Pareto Optimality Analysis for MOGWO Exploration Algorithm

Table 3 shows numerous exploration results, which are categorized by constraints. Considering
only the percentage of map coverage, it is obvious that 99.47% is the best performance. However, the

Figure 6. The simulation of MOGWO exploration algorithm in (a) iteration 1 with a = 2; (b) iteration 61
with a = 1; (c) the last iteration, 120, with a = 0.016; and (d) the trajectories of three robots.

The decision-making process of each robot is presented in Figure 7. The values of alpha solutions
in the simulation above (Figure 6) vary for the two stages: exploration and exploitation. It can be seen
that when a ≥ 1, the trend goes up to maximum values, and when a ≤ 1, the simulation tries to achieve
the minimum values.

The simulation of MOGWO exploration algorithm was implemented in MATLAB using the
OccupancyGrid class of the Robotic System Toolbox [51,52]. The video of the simulation can be seen
here [53].

Appl. Sci. 2019, 9, 2931 12 of 16

Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 17

(a) (b)

(c) (d)

Figure 6. The simulation of MOGWO exploration algorithm in (a) iteration 1 with a = 2; (b) iteration
61 with a = 1; (c) the last iteration, 120, with a = 0.016; and (d) the trajectories of three robots.

The decision-making process of each robot is presented in Figure 7. The values of alpha solutions
in the simulation above (Figure 6) vary for the two stages: exploration and exploitation. It can be seen
that when 𝑎 ≥ 1, the trend goes up to maximum values, and when 𝑎 ≤ 1, the simulation tries to
achieve the minimum values.

(a) (b) (c)

Figure 7. Decision-making process of the alpha solutions: (a) robot 1, (b) robot 2, and (c) robot 3.

The simulation of MOGWO exploration algorithm was implemented in MATLAB using the
OccupancyGrid class of the Robotic System Toolbox [51,52]. The video of the simulation can be seen
here [53].

5.2. The Pareto Optimality Analysis for MOGWO Exploration Algorithm

Table 3 shows numerous exploration results, which are categorized by constraints. Considering
only the percentage of map coverage, it is obvious that 99.47% is the best performance. However, the

Figure 7. Decision-making process of the alpha solutions: (a) robot 1, (b) robot 2, and (c) robot 3.

5.2. The Pareto Optimality Analysis for MOGWO Exploration Algorithm

Table 2 shows numerous exploration results, which are categorized by constraints. Considering
only the percentage of map coverage, it is obvious that 99.47% is the best performance. However, the
exploration with 120 iterations and 150 waypoints as constraints takes the longest time, which means it
is not the optimal solution.

In this study, we take two factors that are important for the exploration: map coverage and
time. In Figure 8, we searched for the trade-offs between the minimum number of iterations and the
maximum number of map coverage. The plot was made based on the data in Table 2. The results for
120 and 60 iterations, which can be considered too long and too short for exploration, respectively, are
extreme solutions. Thus, the solutions belong to the Pareto optimal front, which lies between two lines.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 17

exploration with 120 iterations and 150 waypoints as constraints takes the longest time, which means

it is not the optimal solution.

In this study, we take two factors that are important for the exploration: map coverage and time.

In Figure 8, we searched for the trade-offs between the minimum number of iterations and the

maximum number of map coverage. The plot was made based on the data in Table 2. The results for

120 and 60 iterations, which can be considered too long and too short for exploration, respectively,

are extreme solutions. Thus, the solutions belong to the Pareto optimal front, which lies between two

lines.

Figure 8. Pareto optimal set of the results of the MOGWO exploration algorithm.

It can be concluded here that the optimal set lies between 80 and 100 iterations with 150

waypoints. In the next subsection, the MOGWO exploration algorithm using 150 waypoints will be

compared to two other algorithms using the same environment and map coverage computation using

Equation (11).

5.3. Comparison

In this subsection, the proposed MOGWO exploration was compared with the original

deterministic CME algorithm [22] and the hybrid stochastic exploration algorithm based on the GWO

and CME [8]. The same map and experiment parameters (Table 1) were selected for the two

algorithms with 60, 80, 100, and 120 iterations as it was implemented in the MOGWO exploration

algorithm in Section 5.1. It should be noted that waypoints were not applied for the other two

algorithms used in the comparison.

In the experiment, the CME algorithm was run only once for each iteration class (60, 80, 100, and

120) because it does not generate any random values even when tested multiple times. By its

deterministic nature, CME implements differently for every modification in the environment. For

instance, the simulation runs were aborted after the 98th iteration during our experiment when one

of the robots got stuck next to the wall obstacle. For the purpose of completing the exploration, the

initial position of robot 2 or r2 (from Table 1) was changed from (7,9) to (6,5). From these results, we

can conclude that the exploration by the deterministic CME algorithm requires fine-tuning the map

parameters for successful map coverage.

The hybrid stochastic algorithm is a stochastic approach, which uses the single-based GWO

algorithm. During our experiments, the simulation-runs were aborted several times due to the robot’s

selection of inappropriate positions among the frontier cells. This situation occurs when the GWO

parameters, A and C, oblige a robot to move into the wrong places, such as obstacles or another robot

position. Fortunately, in this algorithm, the A and C parameters vary in each simulation-run, which

allows us to obtain successful results.

Figure 9 shows the comparison of the results obtained using the original CME, the hybrid

stochastic exploration, and the MOGWO exploration with 150 waypoints. It can be seen that the

60 80 100 120

Iteration

95%

100%

M
a
p

 c
o
v
e
ra

g
e

waypoints = 60

waypoints = 80

waypoints = 100

waypoints = 150

Figure 8. Pareto optimal set of the results of the MOGWO exploration algorithm.

It can be concluded here that the optimal set lies between 80 and 100 iterations with 150 waypoints.
In the next subsection, the MOGWO exploration algorithm using 150 waypoints will be compared to
two other algorithms using the same environment and map coverage computation using Equation (11).

5.3. Comparison

In this subsection, the proposed MOGWO exploration was compared with the original
deterministic CME algorithm [22] and the hybrid stochastic exploration algorithm based on the
GWO and CME [8]. The same map and experiment parameters (Table 1) were selected for the two
algorithms with 60, 80, 100, and 120 iterations as it was implemented in the MOGWO exploration
algorithm in Section 5.1. It should be noted that waypoints were not applied for the other two
algorithms used in the comparison.

Appl. Sci. 2019, 9, 2931 13 of 16

In the experiment, the CME algorithm was run only once for each iteration class (60, 80, 100, and 120)
because it does not generate any random values even when tested multiple times. By its deterministic
nature, CME implements differently for every modification in the environment. For instance, the
simulation runs were aborted after the 98th iteration during our experiment when one of the robots
got stuck next to the wall obstacle. For the purpose of completing the exploration, the initial position
of robot 2 or r2 (from Table 1) was changed from (7,9) to (6,5). From these results, we can conclude
that the exploration by the deterministic CME algorithm requires fine-tuning the map parameters for
successful map coverage.

The hybrid stochastic algorithm is a stochastic approach, which uses the single-based GWO
algorithm. During our experiments, the simulation-runs were aborted several times due to the robot’s
selection of inappropriate positions among the frontier cells. This situation occurs when the GWO
parameters, A and C, oblige a robot to move into the wrong places, such as obstacles or another robot
position. Fortunately, in this algorithm, the A and C parameters vary in each simulation-run, which
allows us to obtain successful results.

Figure 9 shows the comparison of the results obtained using the original CME, the hybrid stochastic
exploration, and the MOGWO exploration with 150 waypoints. It can be seen that the deterministic
CME approach has the lowest values of map coverage among all the algorithms. The proposed
MOGWO algorithm does not outperform the hybrid stochastic exploration algorithm in iteration
classes, 60, 80, and 100. However, it surpasses the original CME in all iteration categories and the hybrid
stochastic exploration algorithm in the category of 120 iterations. Additionally, aborted simulation-runs,
which are drawbacks of the CME and hybrid stochastic exploration, did not occur in the MOGWO
exploration. Thus, the MOGWO exploration proved more efficient and stable compared to the other
algorithms studied in this subsection.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 17

deterministic CME approach has the lowest values of map coverage among all the algorithms. The
proposed MOGWO algorithm does not outperform the hybrid stochastic exploration algorithm in
iteration classes, 60, 80, and 100. However, it surpasses the original CME in all iteration categories
and the hybrid stochastic exploration algorithm in the category of 120 iterations. Additionally,
aborted simulation-runs, which are drawbacks of the CME and hybrid stochastic exploration, did not
occur in the MOGWO exploration. Thus, the MOGWO exploration proved more efficient and stable
compared to the other algorithms studied in this subsection.

Figure 9. Comparison of three algorithms for the multi-robot exploration. The bars of the hybrid
stochastic exploration algorithm based on GWO and coordinated multi-robot exploration (CME) are
average values of 30 simulation-runs. The bars of the MOGWO exploration algorithm are average
values taken from the row corresponding to 150 waypoints in Table 2.

6. Conclusions

This paper proposed a new method of solving the multi-robot exploration problem as a multi-
objective problem. Two objective functions were formed: to search new terrain and to enhance the
map accuracy. The use of the MOGWO algorithm enabled us to obtain high percent values of the
map coverage without any aborted simulation-runs. The simulation results successfully
demonstrated the capability of the MOGWO algorithm to build complete maps, which were
completed within certain constraints: the number of waypoints and the number of iterations. Based
on the results, the optimal solution was defined by the Pareto optimal set. Furthermore, the proposed
MOGWO exploration algorithm was compared with the deterministic exploration and the hybrid
stochastic exploration algorithms. The comparison showed that the proposed MOGWO exploration
technique outperforms the deterministic exploration in all set of constraints and the hybrid stochastic
exploration algorithm at 120 iterations and 150 waypoints.

Author Contributions: A.K. conceived and designed the algorithm. A.K., S.N. and D.Q. designed and performed
the experiments. A.K., S.N. and D.Q. wrote the paper. A.K., D.Q. and S.G.L. formulated the mathematical model.
S.G.L. supervised and finalized the manuscript for submission

Funding: This work was supported by the Basic Science Research Program, through the National Research
Foundation of Korea, Ministry of Science, under Grant 2017R1D1A3B04031864.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Limosani, R.; Esposito, R.; Manzi, A.; Teti, G.; Cavallo, F.; Dario, P. Robotic delivery service in combined
outdoor–indoor environments: Technical analysis and user evaluation. Robot. Auton. Syst. 2018, 103, 56–67.

Itern = 60 Itern = 80 Itern = 100 Itern = 120

60%

70%

80%

90%

100%

110%

CME
Hybrid Stochastic Exploration based on GWO and CME
MOGWO exploration with 150 waypoints

60.9

96.3

89.7

72

98.4
95

88.7

97.9 97

91.2

97.2 98

M
ap

 c
ov

er
ag

e

Figure 9. Comparison of three algorithms for the multi-robot exploration. The bars of the hybrid
stochastic exploration algorithm based on GWO and coordinated multi-robot exploration (CME) are
average values of 30 simulation-runs. The bars of the MOGWO exploration algorithm are average
values taken from the row corresponding to 150 waypoints in Table 2.

6. Conclusions

This paper proposed a new method of solving the multi-robot exploration problem as a
multi-objective problem. Two objective functions were formed: to search new terrain and to enhance
the map accuracy. The use of the MOGWO algorithm enabled us to obtain high percent values of the
map coverage without any aborted simulation-runs. The simulation results successfully demonstrated
the capability of the MOGWO algorithm to build complete maps, which were completed within certain
constraints: the number of waypoints and the number of iterations. Based on the results, the optimal

Appl. Sci. 2019, 9, 2931 14 of 16

solution was defined by the Pareto optimal set. Furthermore, the proposed MOGWO exploration
algorithm was compared with the deterministic exploration and the hybrid stochastic exploration
algorithms. The comparison showed that the proposed MOGWO exploration technique outperforms
the deterministic exploration in all set of constraints and the hybrid stochastic exploration algorithm at
120 iterations and 150 waypoints.

Author Contributions: A.K. conceived and designed the algorithm. A.K., S.N. and D.Q. designed and performed
the experiments. A.K., S.N. and D.Q. wrote the paper. A.K., D.Q. and S.G.L. formulated the mathematical model.
S.G.L. supervised and finalized the manuscript for submission.

Funding: This work was supported by the Basic Science Research Program, through the National Research
Foundation of Korea, Ministry of Science, under Grant 2017R1D1A3B04031864.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Limosani, R.; Esposito, R.; Manzi, A.; Teti, G.; Cavallo, F.; Dario, P. Robotic delivery service in combined
outdoor–indoor environments: Technical analysis and user evaluation. Robot. Auton. Syst. 2018, 103, 56–67.
[CrossRef]

2. Vidal, E.; Hernández, J.D.; Palomeras, N.; Carreras, M. Online Robotic Exploration for Autonomous
Underwater Vehicles in Unstructured Environments. In Proceedings of the IEEE 2018 OCEANS-MTS/IEEE
Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–4.

3. Deb, K. Multi-objective optimization. In Search Methodologies; Springer: Boston, MA, USA, 2014; pp. 403–449.
4. Amorós, F.; Payá, L.; Marín, J.M.; Reinoso, O. Trajectory estimation and optimization through loop closure

detection, using omnidirectional imaging and global-appearance descriptors. Expert Syst. Appl. 2018, 102,
273–290. [CrossRef]

5. Rizk, Y.; Mariette, A.; Edward, W.T. Cooperative Heterogeneous Multi-Robot Systems: A Survey.
ACM Comput. Surv. (CSUR) 2019, 52.

6. Zhang, Y.; Gong, D.W.; Zhang, J.H. Robot path planning in uncertain environment using multi-objective
particle swarm optimization. Neurocomputing 2013, 103, 172–185. [CrossRef]

7. Pang, B.; Song, Y.; Zhang, C.; Wang, H.; Yang, R. A Swarm Robotic Exploration Strategy Based on an
Improved Random Walk Method. J. Robot. 2019, 2019. [CrossRef]

8. Kamalova, A.; Lee, S.G. Hybrid Stochastic Exploration Using Grey Wolf Optimizer and Coordinated
Multi-Robot Exploration Algorithms. IEEE Access 2019, 7, 14246–14255.

9. Fong, S.; Suash, D.; Ankit, C. A review of metaheuristics in robotics. Comput. Electr. Eng. 2015, 43, 278–291.
[CrossRef]

10. Wadood, A.; Khurshaid, T.; Farkoush, S.G.; Yu, J.; Kim, C.-H.; Rhee, S.-B. Nature-Inspired Whale Optimization
Algorithm for Optimal Coordination of Directional Overcurrent Relays in Power Systems. Energies 2019, 12,
2297. [CrossRef]

11. Kim, C.H.; Khurshaid, T.; Wadood, A.; Farkoush, S.G.; Rhee, S.B. Gray wolf optimizer for the optimal
coordination of directional overcurrent relay. J. Electr. Eng. Technol. 2018, 13, 1043–1051.

12. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1997, 1,
67–82. [CrossRef]

13. Kennedy, J. Particle swarm optimization. Encycl. Mach. Learn. 2010, 760–766.
14. Gen, M.; Lin, L. Genetic Algorithms. Wiley Encyc. Comput. Sci. Eng. 2007, 1–15.
15. Dorigo, M.; Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress

on Evolutionary Computation-CEC99, Washington, DC, USA, 6–9 July 1999.
16. Seyedali, M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61.
17. Mirjalili, S.; Aljarah, I.; Mafarja, M.; Heidari, A.A.; Faris, H. Grey Wolf Optimizer: Theory, Literature Review,

and Application in Computational Fluid Dynamics Problems. In Nature-Inspired Optimizers; Springer: Cham,
Switzerland, 2020; pp. 87–105.

18. Coello, C.A.; Lechuga, M. MOPSO: A proposal for multiple objective particle swarm optimization.
In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600),
Washington, DC, USA, 12–17 May 2002.

http://dx.doi.org/10.1016/j.robot.2018.02.001
http://dx.doi.org/10.1016/j.eswa.2018.02.042
http://dx.doi.org/10.1016/j.neucom.2012.09.019
http://dx.doi.org/10.1155/2019/6914212
http://dx.doi.org/10.1016/j.compeleceng.2015.01.009
http://dx.doi.org/10.3390/en12122297
http://dx.doi.org/10.1109/4235.585893

Appl. Sci. 2019, 9, 2931 15 of 16

19. Konak, A.; Coit, D.W.; Smith, A. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng.
Syst. Saf. 2006, 91, 992–1007. [CrossRef]

20. Alaya, I.; Solnon, C.; Khaled, G. Ant colony optimization for multi-objective optimization problems.
In Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007),
Washington, DC, USA, 29–31 October 2007.

21. Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L.D.S. Multi-objective grey wolf optimizer: A novel algorithm
for multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119. [CrossRef]

22. Burgard, W.; Moors, M.; Stachniss, C.; Schneider, F.E. Coordinated multi-robot exploration. IEEE Trans.
Robot. 2005, 21, 376–386. [CrossRef]

23. Thrun, S. A probabilistic on-line mapping algorithm for teams of mobile robots. Int. J. Robot. Res. 2001, 20,
335–363. [CrossRef]

24. Mirjalili, S.; Dong, J.S.; Lewis, A. Ant Colony Optimizer: Theory, Literature Review, and Application in AUV
Path Planning. In Nature-Inspired Optimizers; Springer: Cham, Switzerland, 2020; pp. 7–21.

25. Kulich, M.; Kubalík, J.; Přeučil, L. An Integrated Approach to Goal Selection in Mobile Robot Exploration.
Sensors 2019, 19, 1400. [CrossRef]

26. Yamauchi, B. A frontier-based approach for autonomous exploration. Cira 1997, 97.
27. Franchi, A.; Freda, L.; Oriolo, G.; Vendittelli, M. A randomized strategy for cooperative robot exploration.

In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14
April 2007.

28. Franchi, A.; Freda, L.; Oriolo, G.; Vendittelli, M. The sensor-based random graph method for cooperative
robot exploration. IEEE/ASME Trans. Mechatron. 2009, 14, 163–175. [CrossRef]

29. Palacios, A.T.; Sánchez, L.A.; Bedolla Cordero, J.M.E. The random exploration graph for optimal exploration
of unknown environments. Int. J. Adv. Robot. Syst. 2017, 14, 1729881416687110. [CrossRef]

30. Tai, L.; Liu, M. Mobile robots exploration through cnn-based reinforcement learning. Robot. Biomim. 2016, 3,
24. [CrossRef] [PubMed]

31. Tai, L.; Li, S.; Liu, M. Autonomous exploration of mobile robots through deep neural networks. Int. J. Adv.
Robot. Syst. 2017, 14. [CrossRef]

32. Caley, J.A.; Lawrance, N.R.; Hollinger, G.A. Deep learning of structured environments for robot search.
In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Daejeon, South Korea, 9–14 October 2016.

33. Papoutsidakis, M.; Kalovrektis, K.; Drosos, C.; Stamoulis, G. Design of an Autonomous Robotic Vehicle for
Area Mapping and Remote Monitoring. Int. J. Comput. Appl. 2017, 167, 36–41. [CrossRef]

34. Tai, L.; Liu, M. Deep-learning in mobile robotics-from perception to control systems: A survey on why and
why not. arXiv 2016, arXiv:1612.07139.

35. Sharma, S.; Shukla, A.; Tiwari, R. Multi robot area exploration using nature inspired algorithm. Biol. Inspir.
Cognit. Archit. 2016, 18, 80–94. [CrossRef]

36. Wang, D.; Wang, H.; Liu, L. Unknown environment exploration of multi-robot system with the FORDPSO.
Swarm Evolut. Comput. 2016, 26, 157–174. [CrossRef]

37. De Almeida, J.P.L.S.; Nakashima, R.T.; Neves-Jr, F.; de Arruda, L.V.R. Bio-inspired on-line path planner for
cooperative exploration of unknown environment by a Multi-Robot System. Robot. Auton. Syst. 2019, 112,
32–48. [CrossRef]

38. Puig, D.; García, M.A.; Wu, L. A new global optimization strategy for coordinated multi-robot exploration:
Development and comparative evaluation. Robot. Auton. Syst. 2011, 59, 635–653. [CrossRef]

39. Benavides, F.; Ponzoni Carvalho Chanel, C.; Monzón, P.; Grampín, E. An Auto-Adaptive Multi-Objective
Strategy for Multi-Robot Exploration of Constrained-Communication Environments. Appl. Sci. 2019, 9, 573.
[CrossRef]

40. Thabit, S.; Mohades, A. Multi-Robot Path Planning Based on Multi-Objective Particle Swarm Optimization.
IEEE Access 2019, 7, 2138–2147. [CrossRef]

41. Chen, X.; Zhang, P.; Du, G.; Li, F. Ant colony optimization based memetic algorithm to solve bi-objective
multiple traveling salesmen problem for multi-robot systems. IEEE Access 2018, 6, 21745–21757. [CrossRef]

42. Hu, P.; Chen, S.; Huang, H.; Zhang, G.; Liu, L. Improved alpha-guided Grey wolf optimizer. IEEE Access
2018, 7, 5421–5437. [CrossRef]

http://dx.doi.org/10.1016/j.ress.2005.11.018
http://dx.doi.org/10.1016/j.eswa.2015.10.039
http://dx.doi.org/10.1109/TRO.2004.839232
http://dx.doi.org/10.1177/02783640122067435
http://dx.doi.org/10.3390/s19061400
http://dx.doi.org/10.1109/TMECH.2009.2013617
http://dx.doi.org/10.1177/1729881416687110
http://dx.doi.org/10.1186/s40638-016-0055-x
http://www.ncbi.nlm.nih.gov/pubmed/28066702
http://dx.doi.org/10.1177/1729881417703571
http://dx.doi.org/10.5120/ijca2017914496
http://dx.doi.org/10.1016/j.bica.2016.09.003
http://dx.doi.org/10.1016/j.swevo.2015.09.004
http://dx.doi.org/10.1016/j.robot.2018.11.005
http://dx.doi.org/10.1016/j.robot.2011.05.004
http://dx.doi.org/10.3390/app9030573
http://dx.doi.org/10.1109/ACCESS.2018.2886245
http://dx.doi.org/10.1109/ACCESS.2018.2828499
http://dx.doi.org/10.1109/ACCESS.2018.2889816

Appl. Sci. 2019, 9, 2931 16 of 16

43. Long, W.; Wu, T.; Cai, S.; Liang, X.; Jiao, J.; Xu, M. A Novel Grey Wolf Optimizer Algorithm with Refraction
Learning. IEEE Access 2019, 7, 57805–57819. [CrossRef]

44. Han, T.; Wang, X.; Liang, Y.; Wei, Z.; Cai, Y. A Novel Grey Wolf Optimizer with Random Walk Strategies for
Constrained Engineering Design. In Proceedings of the International Conference on Information Technology
and Electrical Engineering, Bandung, Padang, Indonesia, 22–25 October 2018.

45. Heidari, A.A.; Pahlavani, P. An efficient modified grey wolf optimizer with Lévy flight for optimization
tasks. Appl. Soft Comput. 2017, 60, 115–134. [CrossRef]

46. Gupta, S.; Deep, K. A novel random walk grey wolf optimizer. Swarm Evolut. Comput. 2019, 44, 101–112.
[CrossRef]

47. Fatima, A.; Javaid, N.; Anjum Butt, A.; Sultana, T.; Hussain, W.; Bilal, M.; Ilahi, M. An Enhanced
Multi-Objective Gray Wolf Optimization for Virtual Machine Placement in Cloud Data Centers. Electronics
2019, 8, 218. [CrossRef]

48. Sahoo, A.; Chandra, S. Multi-objective grey wolf optimizer for improved cervix lesion classification.
Appl. Soft Comput. 2017, 52, 64–80. [CrossRef]

49. Wu, C.; Wang, J.; Chen, X.; Du, P.; Yang, W. A novel hybrid system based on multi-objective optimization for
wind speed forecasting. Renew. Energy 2020, 146, 149–165. [CrossRef]

50. Qin, H.; Fan, P.; Tang, H.; Huang, P.; Fang, B.; Pan, S. An effective hybrid discrete grey wolf optimizer for the
casting production scheduling problem with multi-objective and multi-constraint. Comput. Ind. Eng. 2019,
128, 458–476. [CrossRef]

51. Available online: https://www.mathworks.com/help/robotics/ref/robotics.occupancygrid-class.htmlU30T
(accessed on 20 July 2019).

52. Kumar, N.; Vámossy, Z.; Szabó-Resch, Z.M. Robot path pursuit using probabilistic roadmap. In Proceedings
of the 2016 IEEE 17th International Symposium on Computational Intelligence and Informatics (CINTI),
Budapest, Hungary, 17–19 November 2016; pp. 139–144.

53. Available online: https://youtu.be/b_IiUjwM-bQ (accessed on 15 July 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2910813
http://dx.doi.org/10.1016/j.asoc.2017.06.044
http://dx.doi.org/10.1016/j.swevo.2018.01.001
http://dx.doi.org/10.3390/electronics8020218
http://dx.doi.org/10.1016/j.asoc.2016.12.022
http://dx.doi.org/10.1016/j.renene.2019.04.157
http://dx.doi.org/10.1016/j.cie.2018.12.061
https://www.mathworks.com/help/robotics/ref/robotics.occupancygrid-class.htmlU30T
https://youtu.be/b_IiUjwM-bQ
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Single and Multi-Objective Grey Wolf Optimizer
	Grey Wolf Optimizer
	Multi-Objective Grey Wolf Optimizer

	MOGWO Exploration for Multi-Robot System
	Mathematical Formulation of MOOPs in the Multi-Robot Exploration
	The Proposed MOGWO Exploration Algorithm

	Simulation Results and Analysis
	Simulation Results
	The Pareto Optimality Analysis for MOGWO Exploration Algorithm
	Comparison

	Conclusions
	References

