Distribution of PM2.5 Air Pollution in Mexico City: Spatial Analysis with Land-Use Regression Model
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Meteorological Variables
2.2. Geographic Information System
2.3. Raster Data and Interpolation
- (a)
- A value of 0 meant that the wind ran in the same direction of the surface (leeward). Concerning the contaminants, no deposits were assumed.
- (b)
- A value of 1 meant that the angle of incidence of the wind according to the surface was parallel and there could be either erosion or deposition.
- (c)
- A value of 2 meant that wind impacted on the surface at angles between 30 and 60 degrees; that is, oblique. High deposits and less erosion were expected.
- (d)
- A value of 3 meant that the wind impacted the surface perpendicularly, that is, in angles, close or equal to 90 degrees (windward). It was considered a surface where the possibility of high deposition of contaminants exists. (Detailed information on the geographic, demographic, and meteorological variables used is provided in Supplementary Materials Table S1).
2.4. Multivariate Analysis
U2 = a21X1 + a22X2 + … + a2pXp
Ur = ar1X1 + ar2X2 + … + arpXp
V2 = b21Y1 + b22Y2 + … + b2qYq
Vr = br1Y1 + br2Y2 + … + brqYq
3. Results
3.1. Comparison of the Ambient Distribution of Meteorological Variables and PM2.5 Air Pollution within Each Borough between Day and Night
3.2. Spatial Distribution of PM2.5
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Acronyms
CAMe | Comisión Ambiental para la Megalópolis |
IFE | Instituto Federal Electoral (Now INE, Instituto Nacional Electoral) |
INEGI | Instituto Nacional de Estadística Geografía |
MZVM | Metropolitan Zone of the Valley of Mexico (In Spanish ZMVM, or Greater Mexico City) |
NDVI | Normalized Difference Vegetation Index |
PCAA | Programa para Contingencias Ambientales Atmosféricas |
RAMA | Red Automática de Monitoreo Atmosférico |
REDMET | Red de Meteorología Radiación Solar |
SIMAT | Sistema de Monitoreo Atmosférico |
SRTM | Shuttle Radar Topography Mission |
USGS | United States Geological Survey |
References
- WHO. Ambient (Outdoor) Air Pollution Database, by Country and City. Version Cited July; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Osornio-Vargas, Á.R.; Bonner, J.C.; Alfaro-Moreno, E.; Martínez, L.; García-Cuellar, C.; Rosales, S.P.-d.-L.; Miranda, J.; Rosas, I. Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition. Environ. Health Perspect. 2003, 111, 1289–1293. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Rodríguez, J.A. Los Suelos Volcánico-Lacustres de la Ciudad de México. Rev. Int. Desastres Nat. Accid. E Infraestruct. 2006, 155, 44. [Google Scholar]
- IFE-INEGI. Estadíslticas Censales a Escala Geoelectoral. INEGI: Aguascalientes, Mexico, 2010; Available online: http://gaia.inegi.org.mx/geoelectoral/viewer.html (accessed on 4 April 2018).
- INEGI. Vehiculos de Motor Registrados en Circulación, Información 1980 a 2016; INEGI: Aguascalientes, Mexico, 2018. [Google Scholar]
- Vallejo, M.; Jáuregui-Renaud, K.; Hermosillo, A.; Márquez, M.; Cárdenas, M. Effects of air pollution on human health and their importance in Mexico City. Gac. Med. Mex. 2003, 139, 57–63. [Google Scholar] [PubMed]
- OECD. Territorial Reviews: Valle de México, Mexico; Editions l’OCDE; OECD: Paris, France, 2015. [Google Scholar]
- SEGOB. NORMA Oficial Mexicana NOM-025-SSA1-2014, Salud Ambiental. Valores Límite Permisible Para la Concentración de Partículas Suspendidas PM10 y PM2: Diario Oficial de La Federación; SEGOB: Mexico City, Mexico, 2014; Available online: http://www.spabc.gob.mx/wp-content/uploads/2017/12/NOM-025-SSA1-2014.pdf (accessed on 4 April 2018).
- DMA. Programa para contingencias ambientales Atmosféricas (PCAA) en la ZMVM. Historia de contingencias ambientales de la Ciudad de Mexico y la Zona conurbada. 2017. Available online: http://www.aire.cdmx.gob.mx/default.php?opc=%27YqBhnmU=%27 (accessed on 5 April 2018).
- Borja-Aburto, V.H.; Castillejos, M.; Gold, D.R.; Bierzwinski, S.; Loomis, D. Mortality and ambient fine particles in southwest Mexico City, 1993–1995. Environ. Health Perspect. 1998, 106, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Gold, D.R.; Damokosh, A.I.; Pope, I.I.I.C.A.; Dockery, D.W.; McDonnell, W.F.; Serrano, P.; Retama, A.; Castillejos, M. Particulate and ozone pollutant effects on the respiratory function of children in southwest Mexico City. Epidemiology 1999, 10, 8–16. [Google Scholar] [CrossRef]
- Loomis, D.; Castillejos, M.; Gold, D.R.; McDonnell, W.; Borja-Aburto, V.H. Air pollution and infant mortality in Mexico City. Epidemiology 1999, 10, 118–123. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Solt, A.C.; Henríquez-Roldán, C.; Torres-Jardón, R.; Nuse, B.; Herritt, L.; Villarreal-Calderón, R.; Osnaya, N.; Stone, I.; García, R.; et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid β-42 and α-synuclein in children and young adults. Toxicol. Pathol. 2008, 36, 289–310. [Google Scholar] [CrossRef]
- Cárdenas, M.; Vallejo, M.; Romano-Riquer, P.; Ruiz-Velasco, S.; Ferreira-Vidal, A.D.; Hermosillo, A.G. Personal exposure to PM2.5 air pollution and heart rate variability in subjects with positive or negative head-up tilt test. Environ. Res. 2008, 108, 1–6. [Google Scholar] [CrossRef]
- Riojas-Rodríguez, H.; Escamilla-Cejudo, J.A.; González-Hermosillo, J.A.; Téllez-Rojo, M.M.; Vallejo, M.; Santos-Burgoa, C.; Rojas-Bracho, L. Personal PM2.5 and CO exposures and heart rate variability in subjects with known ischemic heart disease in Mexico City. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 131. [Google Scholar] [CrossRef]
- GDE. Programa para mejorar la calidad del aire de la Zona Metropolitana del Valle de México 2011–2020. Ciudad de Mexico, 2011. Available online: http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/proaire-2011-2020-anexos/ (accessed on 9 July 2018).
- Briggs, D.J.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.; Pryl, K.; Reeuwijk, H.V.; Smallbone, K.; der Veen, A.V. Mapping urban air pollution using GIS: A regression-based approach. Int. J. Geogr. Inf. Sci. 1997, 11, 699–718. [Google Scholar] [CrossRef]
- Hoek, G.; Beelen, R.; De Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; Dons, E.; de Nazelle, A.; et al. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef] [PubMed]
- Coker, E.; Ghosh, J.; Jerrett, M.; Gomez-Rubio, V.; Beckerman, B.; Cockburn, M.; Liverani, S.; Su, J.; Li, A.; Kile, M.L.; et al. Modeling spatial effects of PM2.5 on term low birth weight in Los Angeles County. Environ. Res. 2015, 142, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Mukerjee, S.; Smith, L.; Neas, L.; Norris, G. Evaluation of land use regression models for nitrogen dioxide and benzene in four US cities. Sci. World J. 2012, 2012, 865150. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Brauer, M.; Wong, P.; Tang, R.; Tsui, T.H.; Choi, C.; Cheng, W.; Lai, P.-C.; Tian, L.; Thach, T.-Q.; et al. Land use regression modelling of air pollution in high density high rise cities: A case study in Hong Kong. Sci. Total Environ. 2017, 592, 306–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.-F.; Delfino, R.J.; Floro, J.N.; Quintana, P.J.; Samimi, B.S.; Kleinman, M.T.; Allen, R.W.; Liu, L.-J.S. Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers. Atmos. Environ. 2005, 39, 3457–3469. [Google Scholar] [CrossRef]
- Amini, H.; Taghavi-Shahri, S.M.; Henderson, S.B.; Naddafi, K.; Nabizadeh, R.; Yunesian, M. Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran. Sci. Total Environ. 2014, 488, 343–353. [Google Scholar] [CrossRef]
- Saraswat, A.; Apte, J.S.; Kandlikar, M.; Brauer, M.; Henderson, S.B.; Marshall, J.D. Spatiotemporal land use regression models of fine, ultrafine, and black carbon particulate matter in New Delhi, India. Environ. Sci. Technol. 2013, 47, 12903–12911. [Google Scholar] [CrossRef]
- Steinle, S.; Reis, S.; Sabel, C.E. Quantifying human exposure to air pollution—Moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci. Total Environ. 2013, 443, 184–193. [Google Scholar] [CrossRef]
- Montagne, D.; Hoek, G.; Nieuwenhuijsen, M.; Lanki, T.; Pennanen, A.; Portella, M.; Kees, M.K.; Eeftens, M.; Yli-Tuomi, T.; Cirach, M.; et al. Agreement of land use regression models with personal exposure measurements of particulate matter and nitrogen oxides air pollution. Environ. Sci. Technol. 2013, 47, 8523–8531. [Google Scholar] [CrossRef]
- Donovan, G.H.; Butry, D.T.; Michael, Y.L.; Prestemon, J.P.; Liebhold, A.M.; Gatziolis, D.; Mao, M.Y. The relationship between trees and human health: Evidence from the spread of the emerald ash borer. Am. J. Prev. Med. 2013, 44, 139–145. [Google Scholar] [CrossRef] [PubMed]
- MIE. Manufactures Manual Personal DataRAM pDR1200; MIE: Bedfor, MA, USA, 2000. [Google Scholar]
- Vallejo, M.; Lerma, C.; Infante, O.; Hermosillo, A.G.; Riojas-Rodriguez, H.; Cárdenas, M. Personal exposure to particulate matter less than 2.5 μm in Mexico City: A pilot study. J. Expo. Sci. Environ. Epidemiol. 2004, 14, 323–329. [Google Scholar] [CrossRef] [PubMed]
- SIMAT. Sistema de Monitoreo Atmosférico de la Ciudad de México. Available online: http://www.aire.cdmx.gob.mx/default.php (accessed on 20 February 2017).
- Liu, L.-J.S.; Slaughter, J.C.; Larson, T.V. Comparison of light scattering devices and impactors for particulate measurements in indoor, outdoor, and personal environments. Environ. Sci. Technol. 2002, 36, 2977–2986. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, B.; Fine, P.M.; Ralph, D.; Sioutas, C. Performance evaluation of the active-flow personal DataRAM PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements. Atmos. Environ. 2004, 38, 3329–3340. [Google Scholar] [CrossRef]
- Laulainen, N.S. Summary of Conclusions and Recommendations from a Visibility Science Workshop; Technical Basis and Issues for a National Assessment for Visibility Impairment; US DOE. Pacific Northwest Laboratory: Richland, WA, USA, 1993.
- ESRI, R. ArcGIS desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Spadavecchia, L.; Williams, M. Can spatio-temporal geostatistical methods improve high resolution regionalisation of meteorological variables? Agric. Forest Meteorol. 2009, 149, 1105–1117. [Google Scholar] [CrossRef]
- Oliver, M.; Webster, R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Sluiter, R. Interpolation Methods for the Climate Atlas; KNMI Technical Rapport TR–335; Royal Netherlands Meteorological Institute: De Bilt, The Netherlands, 2012; pp. 1–71. [Google Scholar]
- Sluiter, R. Interpolation Methods for Climate Data Literature Review; KNMI: De Bilt, The Netherlands, 2009. [Google Scholar]
- Tveito, O.; Wegehenkel, M.; van der Wel, F.; Dobesch, H. COST Action 719: The Use of Geographic Information Systems in Climatology and Meteorology: Final Report. EUR-OP; Office for Official Publications of the European Communities: Luxembourg, 2008. [Google Scholar]
- Amador-Muñoz, O.; Villalobos-Pietrini, R.; Miranda, J.; Vera-Avila, L. Organic compounds of PM2.5 in Mexico Valley: Spatial and temporal patterns, behavior and sources. Sci. Total Environ. 2011, 409, 1453–1465. [Google Scholar] [CrossRef]
- Dias, D.; Tchepel, O. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment. Int. J. Environ. Res. Public Health 2018, 15, 558. [Google Scholar] [CrossRef]
- Hoek, G.; Brunekreef, B.; Goldbohm, S.; Fischer, P.; van den Brandt, P.A. Association between mortality and indicators of traffic-related air pollution in The Netherlands: A cohort study. Lancet 2002, 360, 1203–1209. [Google Scholar] [CrossRef]
- Kenworthy, J. Seoul: The Stream of Consciousness [Internet]. 2006. Available online: https://www.pbs.org/e2/teachers/teacher_310.html (accessed on 22 September 2018).
- IFE-INEGI. Estadísticas Censales a Escala Geoelectoral Aguascalientes; INEGI: Aguascalientes, Mexico, 2005. [Google Scholar]
- USGS. SRTM Global Digital Elevation Model; NASA: Redlands, CA, USA, 2008. [Google Scholar]
- Hair, B.; Babin, A. Multivariate Data Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Harrell, F.E. Multivariable modeling strategies. In Regression Modeling Strategies; Springer: Berlin/Heidelberg, Germany, 2015; pp. 63–102. [Google Scholar]
- GRASS. Geographic Resources Analysis Support System (GRASS) Software. Version 7.4. Open Source Geospatial Foundation, 2018. Available online: https://grass.osgeo.org (accessed on 22 September 2018).
- DGGCARETC-SEMARNAT. Programa para Mejorar la Calidad del aire de la Zona Metropolitana del Valle de México 2011–2020; Comision Ambiental Metropolitana: Ciudad de Mexico, Mexico, 2014. [Google Scholar]
- Adam-Poupart, A.; Brand, A.; Fournier, M.; Jerrett, M.; Smargiassi, A. Spatiotemporal modeling of ozone levels in Quebec (Canada): A comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches. Environ. Health Perspect. 2014, 122, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Olvera, H.A.; Garcia, M.; Li, W.-W.; Yang, H.; Amaya, M.A.; Myers, O.; Burchiel, S.W.; Berwick, M.; Pingitore, N.E.J. Principal component analysis optimization of a PM2.5 land use regression model with small monitoring network. Sci. Total Environ. 2012, 425, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ross, Z.; Jerrett, M.; Ito, K.; Tempalski, B.; Thurston, G.D. A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmos. Environ. 2007, 41, 2255–2269. [Google Scholar] [CrossRef]
- Wang, M.; Beelen, R.; Bellander, T.; Birk, M.; Cesaroni, G.; Cirach, M.; Cyrys, J.; de Hoogh, K.; Declercq, C.; Dimakopoulou, K.; et al. Performance of multi-city land use regression models for nitrogen dioxide and fine particles. Environ. Health Perspect. 2014, 122, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-L.; Wang, C.-H.; Liu, M.-C.; Kuo, Y.-M. Estimation of fine particulate matter in Taipei using landuse regression and Bayesian maximum entropy methods. Int. J. Environ. Res. Public Health 2011, 8, 2153–2169. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.P.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Hinojosa-Baliño, I. Anti peatonalidad. In Historia Sobre La Transformación de La Calzada de Tlalpan. Historia 20: Conocimiento Histórico en Clave Digital; Historia Abierta: Bucaramanga, Colombia, 2016; pp. 224–251. Available online: http://dro.dur.ac.uk/20502/ (accessed on 19 July 2019).
- Morawska, L.; Ayoko, G.; Bae, G.; Buonanno, G.; Chao, C.; Clifford, S.; Fu, S.C.; Hänninen, O.; He, C.; Isaxon, C.; et al. Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environ. Int. 2017, 108, 75–83. [Google Scholar] [CrossRef]
- Yang, F.; Lau, C.F.; Tong, V.W.T.; Zhang, K.K.; Westerdahl, D.; Ng, S.; Ning, Z. Assessment of personal integrated exposure to PM2.5 of Urban residents in Hong Kong. J. Air Waste Manag. Assoc. 2018, 6, 1–11. [Google Scholar]
- Wierzbicka, A.; Bohgard, M.; Pagels, J.; Dahl, A.; Löndahl, J.; Hussein, T.; Swietlicki, E.; Gudmundsson, A. Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments. Atmos. Environ. 2015, 106, 419–428. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geog. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Alfaro-Moreno, E.; Martínez, L.; García-Cuellar, C.; Bonner, J.C.; Murray, J.C.; Rosas, I.; Ponce de León-Rosales, S.; Osornio-Vargas, A.R. Biologic effects induced in vitro by PM10 from three different zones of Mexico City. Environ. Health Perspect. 2002, 110, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Roubicek, D.A.; Gutiérrez-Castillo, M.E.; Sordo, M.; Cebrián-García, M.E.; Ostrosky-Wegman, P. Micronuclei induced by airborne particulate matter from Mexico City. Mutat. Res. Genetic Toxicol. Environ. Mutag. 2007, 631, 9–15. [Google Scholar] [CrossRef] [PubMed]
- FICEDA. Central de Abasto de la Ciudad de México-El mercado más grande del mundo. CEDA CDMX. Available online: https://ficeda.com.mx/ (accessed on 10 November 2018).
- González, S. Policentralidad a Partir de los Patrones Viaje–Actividad en la Zmvm. La Ciudad que Hoy es Centro; Universidad Autónoma Metropolitana unidad Azcapotzalco, Consejo Nacional de Ciencia y Tecnología: Mexico City, México, 2010; pp. 27–52. [Google Scholar]
- Correa, A.; García, G. Análisis del comportamiento histórico de la temperatura en el valle de México. In Proceedings of the Congreso Nacional de Ingeniería Sanitaria y Ciencias Ambientales, FEMISCA, Mexico City, Mexico, 2000. [Google Scholar]
- Jáuregui Ostos, E. Algunas alteraciones de largo periodo del clima de la Ciudad de México debidas a la urbanización: Revisión y perspectivas. Investig. Geogr. 1995, 31, 9–44. [Google Scholar] [CrossRef]
- Galindo, I. Aspectos físicos de la contaminación del aire-implicaciones en la salud. Ciencias 1990, 41, 163–175. [Google Scholar]
- Barba Romero, M. Características del crecimiento urbano reciente en la periferia de la Zona Metropolitana de la Ciudad de México. Espac. Públ. 2005, 8, 190–216. [Google Scholar]
- Suelo de Conservación: Conservation Land. Available online: https://www.sedema.cdmx.gob.mx/storage/app/media/Libro_Suelo_de_Conservacion.pdf (accessed on 10 November 2018).
- Garcia, F.; Shendell, D.G.; Madrigano, J. Relationship among environmental quality variables, housing variables, and residential needs: A secondary analysis of the relationship among indoor, outdoor, and personal air (RIOPA) concentrations database. Int. J. Biometeorol. 2017, 61, 513–525. [Google Scholar] [CrossRef]
- White-Newsome, J.L.; Sánchez, B.N.; Jolliet, O.; Zhang, Z.; Parker, E.A.; Dvonch, J.T.; O’Neill, M.S. Climate change and health: Indoor heat exposure in vulnerable populations. Environ. Res. 2012, 112, 20–27. [Google Scholar] [CrossRef]
- Smargiassi, A.; Fournier, M.; Griot, C.; Baudouin, Y.; Kosatsky, T. Prediction of the indoor temperatures of an urban area with an in-time regression mapping approach. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 282–288. [Google Scholar] [CrossRef]
Boroughs within Map Areas | Raw Values of PM2.5 δ | Normalized Values of PM2.5 φ |
---|---|---|
First Area | 87.4 (53.3–117.3) | 79.1 (67.1–89.9) |
Azcapotzalco | 111.6 * | 80 * |
Miguel Hidalgo | 78.6 (39.1–118.1) | 77 (61.9–92) |
Cuauhtemoc | 85.2 (58.9–144.3) | 81.8 (75.4–103.4) |
Benito Juarez | 69 (46.6–160.2) | 67.1 (65–118.9) |
Iztacalco | 87.4 * | 79.1 * |
Iztapalapa | 79.6 (37.8–112.1) | 76.7 (40.5–89.9) |
Second Area | 79.8 (48.5–112.1) | 78.2 (67.8–104.1) |
Tlalpan | 80.9 (79.8–112.1) | 68.1 (67.8–104.1) |
Magdalena Contreras | 51.3 (26.3–77.1) | 78.1 ** |
Third Area | 42.8 (39.7–46.5) | 47.5 (39.5–48) |
Gustavo A. Madero | 41.3 (43.3–45.8) | 43.5 (35.2–47.7) |
Venustiano Carranza | 46.5 * | 50.8 * |
Fourth Area | 62.9 (39–71.7) | 60.6 (51–68.6) |
Alvaro Obregon | 60.8 (41.3–80.3) | 69.6 ** |
Coyoacan | 63 (62.7–69.2) | 55.5 (51.4–65.7) |
Xochimilco | 36.8 * | 50.6 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinojosa-Baliño, I.; Infante-Vázquez, O.; Vallejo, M. Distribution of PM2.5 Air Pollution in Mexico City: Spatial Analysis with Land-Use Regression Model. Appl. Sci. 2019, 9, 2936. https://doi.org/10.3390/app9142936
Hinojosa-Baliño I, Infante-Vázquez O, Vallejo M. Distribution of PM2.5 Air Pollution in Mexico City: Spatial Analysis with Land-Use Regression Model. Applied Sciences. 2019; 9(14):2936. https://doi.org/10.3390/app9142936
Chicago/Turabian StyleHinojosa-Baliño, Israel, Oscar Infante-Vázquez, and Maite Vallejo. 2019. "Distribution of PM2.5 Air Pollution in Mexico City: Spatial Analysis with Land-Use Regression Model" Applied Sciences 9, no. 14: 2936. https://doi.org/10.3390/app9142936
APA StyleHinojosa-Baliño, I., Infante-Vázquez, O., & Vallejo, M. (2019). Distribution of PM2.5 Air Pollution in Mexico City: Spatial Analysis with Land-Use Regression Model. Applied Sciences, 9(14), 2936. https://doi.org/10.3390/app9142936