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Abstract: Feature tracking in image collections significantly affects the efficiency and accuracy of
Structure from Motion (SFM). Insufficient correspondences may result in disconnected structures and
incomplete components, while the redundant correspondences containing incorrect ones may yield
to folded and superimposed structures. In this paper, we present a Superpixel-based feature tracking
method for structure from motion. In the proposed method, we first propose to use a joint approach
to detect local keypoints and compute descriptors. Second, the superpixel-based approach is used to
generate labels for the input image. Third, we combine the Speed Up Robust Feature and binary test
in the generated label regions to produce a set of combined descriptors for the detected keypoints.
Fourth, the locality-sensitive hash (LSH)-based k nearest neighboring matching (KNN) is utilized to
produce feature correspondences, and then the ratio test approach is used to remove outliers from the
previous matching collection. Finally, we conduct comprehensive experiments on several challenging
benchmarking datasets including highly ambiguous and duplicated scenes. Experimental results
show that the proposed method gets better performances with respect to the state of the art methods.

Keywords: feature tracking; superpixel; structure from motion; three-dimensional reconstruction;
local feature; multi-view stereo

1. Introduction

In recent years, structure from motion (SFM) has received much attention from the computer
vision and graphics communities. SFM is a collection of technologies, which is able to reconstruct 3D
point-cloud model, and can estimate camera parameters (including intrinsic and extrinsic parameters)
from image sequences [1]. A classic SFM framework usually consists of camera calibration, feature
tracking, camera pose estimation, triangulation, and bundle adjustment [2]. It is well-known that SFM
plays an important role in many research areas [3], such as augment reality, multi-view stereo [4],
image-based localization [5], 3D reconstruction, image-based navigation [6], place recognition,
autonomous driving, camera localization, and geographic information system (GIS) [7,8]. Based
on different focuses, different types of SFM technologies have been proposed, such as incremental SFM,
Global SFM, and Hybrid SFM [9].

Among existing Incremental SFMs, Bundler [10] is prestigious, which is a standard implementation
of SFM, in which the scale invariant feature transform (SIFT) [11] is adopted to detect keypoints,
then resulting in a highly computational cost. With the development of Graphics Process Unit (GPU),
Wu et al. [12] implemented a GPU accelerated SIFT named SIFTGPU to reduce the computation time
of feature tracking. Based on the SIFTGPU, Wu et al. developed a fast SFM system called Visual SFM
(VSFM) [12], thus resulting in a significantly improvement in the aspect of time efficiency. In addition to
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the promising speed, the VSFM is user friendly due to its Graphic User Interface (GUI), and can not only
work with multi-view stereo (MVS), such as the patch-based multi-view stereo (PMVS) [13], but also
can be combined with Poisson surface reconstruction [14] to produce textured model of the scene.
Dong et al. [15] developed a robust and real-time camera tracking system based on keyframes, called
ACTS, for multi-view 3D reconstruction. The ACTS system consists of offline and online modules,
both two modules work together can quickly recover the point-cloud model of the scene, and estimate
camera’s parameters containing intrinsic and extrinsic parameters. After a series of improvements
on the ACTS, which is extended to work in large-scale surroundings [16]. Ni et al. [17] proposed a
hierarchical SFM in a divide and conquer manner by using the bipartite graph structure of the scene.
COLMAP [18] is an excellent incremental SFM implementation that contains many novel techniques
such as scene augmentation, re-triangulation, and depth-fusion approach. All SFMs mentioned before
use SIFT or SIFT’s variants to locate keypoints and compute descriptors, other excellent local features
may be ignored. Zach et al. [19] is the first time to use Speeded Up and Robust Features (SURF) [20] to
detect keypoints and compute descriptors for feature for SFM, then leading a significantly boosting
on speed.

Agarwal et al. [21] consider that feature tracking method may largely affect the quality of SFM.
For example, if the captured image data contains few features, or many repeating features, the matching
precision of feature tracking cloud be decreased significantly. To improve the problem of repeating
features, some incomplete approaches has been proposed, such as loop constraint-based approach [22]
where the observed redundancy in the hypothesized relations is used to reason the repetitive visual
structures in the scene. Fan et al. [23] proposed to utilize the low distortion constraint approach to
match pairs of interest points and then obtained feature correspondences from the matched pairs of
interest points. Roberts et al. [24] found that the geometric ambiguities are usually caused by the
presence of repeated structures and then proposed an expectation maximization (EM)-based algorithm
that estimate camera poses and identifies the false match-pairs with an efficient sampling method to
discover plausible data association hypotheses. Snavely et al. [25] presented a novel approach to solving
the ambiguous problems by considering the local visibility structure of the repeated features and then
presented a network theory-based method to score the repeated features. Recently, Ceylan et al. [26]
designed an optimization framework for extracting repeated features in images of urban facades,
while simultaneously calibrating the input images and estimating the 3D point-cloud model using a
graph-based global analysis. Although some novel approaches have been proposed for the problem of
ambiguous structures, they only work in the symmetric scenes.

To defend the ambiguous problem, we have paid much attention to investigate deeply the existing
works [9,27,28], the following reasons may cause to produce ambiguous point-cloud model, that is
repeated feature, untextured region where few keypoints can be found. As a result, we propose
a superpixel segmentation-based feature tracking method for repeated and untextured scenes.
Considering the simplicity, the superpixel-based feature tracking is abbreviated as “SPFT”. The SPFT
consists of feature detection, superpixel segmentation, and Markov Random Field (MRF)-based
superpixel matching. Owing to the used superpixel segmentation, the SPFT can find sufficient
keypoints in untextured scenes. Moreover, the SPFT can be considered as a general framework for
feature tracking, which can be integrated with various local feature approaches such as SIFT, SURF,
KAZE [29], and MSD [30]. Several challenging experiments made in Section 5 can efficiently prove the
effectiveness and efficiency of the SPFT.

The main contributions of this work are summarized as follows:

• A Superpixel-based feature tracking method is proposed to locate keypoints and produce feature
correspondences. The SPFT method has the fast speed and high matching confidence. Thus,
SPFT can largely improve the quality of point-cloud model produced by SFM system.

• A combined descriptor extractor is proposed for producing robust descriptions for the detected
keypoints. The proposed descriptor is robust to image rotation, lighting changes, and even can
distinguish repeated features.
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• We conduct a comprehensive experiment on several challenging datasets to assess the SPFT method,
and comparison with the state-of-the-art methods. According to the evaluation, some valuable
remarks are presented, which can be as a guide for developers and researchers.

The rest of this paper is organized as follows: related work is presented in Section 2. The proposed
method is described in Section 3. In Section 4, a prototype 3D reconstruction system based on SFM is
presented. Experimental results are given in Section 5. The conclusions and final remarks are given
in Section 6.

2. Related Work

In this section, we will briefly review existing feature tracking methods and various SFM
frameworks for better understanding the proposed feature tracking method.

2.1. Feature Tracking

Over the past years, many feature tracking methods has been proposed in the field of
3D reconstruction. The existing methods can be roughly divided into two categories, KLT-like
approaches [31], and detection-matching framework (DMF)-based methods [32]. For the former, they
compute displacement of keypoints between consecutive video frames when the image brightness
constancy constraint is satisfied, and image motion is fairly small. However, KLT-like methods are
only suitable to video data [33] in which each image frames have same resolution. To defend the
drawbacks of KLTs, the DFM-based methods been proposed. In general, the DMF consists of keypoint
detection, descriptor computing, and descriptor matching. For example, Snavely et al. [34] proposed
a simple feature tracking method in which the SIFT and Brute-Force-Matching (BFM) were used to
locate keypoints and to match descriptors respectively. Zhang et al. [35] developed a segment-based
feature tracking method for camera tracking, the method can efficiently track non-consecutive video or
image frames by the backend feature matching.

Moreover, researches proposed many novel local features to replace the SIFT in feature tracking
procedure, such as speed up robust features (SURF) [20], Oriented Fast and Rotated Brief (ORB) [36],
Binary Robust Invariant Scalable keypoints (BRISK) [37], maximally stable extremal regions (MSER) [38],
and KAZE [29], features from accelerated segment test (FAST) [39], AGAST [40] and center surround
detectors (CenSurE) [41]. Among these detectors, FAST and AGAST have fast speed, which are widely
used in some real-time environments such as large scale simultaneous localization and mapping
(SLAM) systems [42]. But they easily suffer from image rotation due to the local feature without main
direction. To address this issue, Leutenegger et al. [37] proposed the BRISK detector, which is an
invariant version of AGAST in multiple scale spaces. Unfortunately, BRISK has a low repeatability,
which can further aggravate the drift problem in the process of feature tracking. Recently, binary
descriptor has attracted much attention from the field of 3D reconstruction, such as local difference
binary (LDB) [43,44], learned arrangements of three patch codes descriptors (LATCH) [45], boosting
binary keypoint descriptors (BinBoost) [46], fast retina keypoint (FREAK) [47], and KAZE [29], etc.
However, these binary descriptors can easily produce same descriptor in the scene with repeating
structures according to [43]. Thus, the resulting ambiguous descriptors may further aggravate the
ambiguity of feature matching especially in outdoors.

In addition to ambiguity, the existing local features have expensive computational cost. Even for
binary local features, such as ORB, BRISK, the computational costs are also very high in large-scale
scenarios. To accelerate the feature tracking method, Wu et al. [48] developed a SIFTGPU routine,
which is the parallel implementation of the SIFT on GPU devices, then the SIFTGPU can achieve
10 times acceleration than that of original SIFT. Thus, the SIFTGPU is widely used in various computer
tasks including SFM, simultaneous localization and mapping (SLAM), and robotic navigation. Inspired
by SIFTGPU, Graves et al. [49] developed KLTGPU routines using OpenCL, then resulting in a
92% reduction in runtime compared to a CPU-based implementation. Cao et al. [50] proposed a
GPU-accelerated feature tracking (GFT) method for SFM-based 3D reconstruction, which has a 20 times
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faster than that of SIFTGPU. Xu et al. [51] designed a GPU-accelerated image matching method with
improved Cascade Hashing named CasHash-GPU, in which a disk-memory-GPU data exchange
approach is proposed to optimize the load order of data, so the proposed method is able to deal with
big data. According to their experiments, the CasHash-GPU can achieve hundreds of times faster than
the CPU-based implementation.

2.2. Structure from Motion

Recent years, many 3D multi-view 3D reconstruction systems based on SFM technique have been
proposed. For example, Snavely et al. [10] designed and implemented an excellent 3D reconstruction
system, called Bundler, to reconstruct spare point-cloud model from unordered image collections. In the
Bundler system, the authors employ scale invariant feature transform (SIFT) [11] to detect keypoints
and compute descriptors, and use brute-force matching (BFM) strategy to match descriptors for image
pair. However, owing to the usage of SIFT and BFM, the Bundler system has high computation cost.
To save the computation time for 3D reconstruction based SFM, Wu et al. [12] developed a Visual SFM
(VSFM) system based on Bundler, which use SIFTGPU to detect keypoints and compute descriptors
for saving computation time. Micusik et al. [52] presented a novel SFM pipeline, which estimates
motion and wiry 3D point clouds from imaged line segments across multiple views. The proposed
SFM system tackle the problem of unstable endpoints by using relaxed constraints on their positions,
both during feature tracking and in the bundle adjustment stage. Sweeney et al. [53] introduced the
distributed camera model for 3D reconstruction based on SFM technique, in which, the proposed
model describes image observations in terms of light rays with ray origins and directions rather than
pixels. As a result, the camera model can describe a single camera or multiple cameras simultaneously
as the collection of all light rays observed.

Based on the successes in solving for global camera rotations using averaging technique,
Kyle et al. [54] proposed a simple, effective method for solving SFM problems by averaging epipolar
geometries. The proposed unstructured SFM system (1DSFM) can overcome several disadvantages of
existing sequential SFM. Moulon et al. [55] proposed a novel global calibration approach based on the
global fusion of relative motions between image pairs for robust, accurate and scalable SFM. After
an efficient contrario trifocal tensor estimation, the authors define an efficient translation registration
method to recover accurate positions. Besides accurate camera position, Moulon et al. use KAZE [29]
feature to detect keypoints in feature tracking, then resulting in a high-precision score. Based on
optimized viewgraph, Chris et al. [56] designed and implemented an excellent SFM system, named
Theia-SFM, to produce compact and accurate point-cloud model for both indoor and outdoor scenes.
To recover the location of an object, Goldstein et al. [57] designed a scalable SFM system by utilizing
ShapeFit and ShapeKick, even in the presence of adversarial outliers. Cohen et al. [58] proposed a novel
solution for 3D reconstruction based on SFM to reconstruct the inside and the outside of a building
into a single model by utilizing the semantic information, in which, novel cost function is proposed to
determine the best alignment. To solve the degeneracies introduced by rolling shutter camera models,
Albl et al. [59] show that many common camera configurations such as cameras with parallel readout
directions, become critical and allow for a large class of ambiguities in 3D reconstruction based on
SFM technique.

With the development of the depth camera, such as Kinect and RealSense, many RGBD datasets
are publicly available for 3D reconstruction. Xiao et al. [60] developed RGBD-SFM system to produce
dense point cloud model from RGBD images. Recently, Cui et al. [61] hold that SFM methods can
be broadly categorized as incremental or global according to their ways to estimate initial camera
poses. They proposed a unified framework to tackle the issues of efficiency, accuracy, and robustness,
and developed a hybrid structure from motion (HSFM) system.



Appl. Sci. 2019, 9, 2961 5 of 21

3. SLIC Method

Superpixel was first proposed by Ren et al. [62], and was used for image segmentation. In general,
a superpixel in the image is a group of pixels that have continuous depths. The following properties
for the superpixel are generally desirable: Superpixels should adhere well to image boundaries,
and Superpixels should be fast to compute, memory efficient, and simple to use. Therefore, in the recent
years, many superpixel algorithms, such as simple linear iterative clustering (SLIC) [63], superpixels
extracted via energy-driven sampling (SEEDS) [64], Lattices [65], and GMMSP [66], have been proposed
for various applications.

In this paper, the superpixel algorithm is selected as a preprocess step to segment tiny regions,
as shown in Figure 1, the SLIC is the best choice due to its two important properties: (1) The number
of distance calculations in the optimization is dramatically reduced by limiting the search space to a
region proportional to the superpixel size. This reduces the complexity to be linear in the number of
pixels N and independent of the number of superpixels k. (2) A weighted distance measure combines
color and spatial proximity, while simultaneously providing control over the size and compactness of
the superpixels. By default, the only parameter of the SLIC algorithm is k, which is the desired number
of approximately equally-sized superpixels. For a given color image in the CIELAB color space, to get
superpixel segmentations the following steps are required:

Step 1: Initialize cluster centers Ci =
[

li ai bi xi yi
]T

, which are sampled on the regular grid
spaced S pixels apart.

Step 2: Move the cluster centers to the lowest gradient position in a 3× 3 neighborhood.
Step 3: Compute the distance E between each cluster center Ck and pixel i in a 2S× 2S region around

Ck, if D < d(i) then set d(i) = D, l(i) = k.
Step 4: Compute new cluster centers C′k and residual error E.

Step 5: Repeat Step 3 and Step 4 until the residual E less than the threshold.
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4. The Proposed Method

To improve the quality of SFM, we propose a superpixel-based feature tracking method (SPFT),
which consists of feature detection, descriptor computing, feature matching, and outliers removing.
The flowchart of SPFT is depicted in Figure 2. For given an image, we first use SLIC algorithm to
segment it to obtain non-overlapping regions Ci, and then use SIFTGPU feature detector to locate
keypoints K j, thus the total keypoints K′i =

{
Ci ∪ K j

∣∣∣i = 1 · · ·N, j = 1 · · ·M
}
. Second, use ORB feature

to describe the detected keypoints K′i , and use SLIC labels to compute a patch-based description,
then resulting a combined descriptor. Third, use k nearest neighboring method (KNN) to match the
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combined descriptors between the reference image and the query image. Finally, we use cross-check to
remove incorrect matches from the KNN matching, then resulting in a set of correct correspondences
as shown in Figure 2.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 21 
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4.1. Joint Keypoint Detector

To accelerate the speed of feature tracking, we propose a Joint Keypoint detector (JKD) that is
based on FAST detector, as described in [39]. The JKD consists of two major stages: learning keypoint
and superpixel-based keypoint location—each of which, in turn, takes several steps. In the stages of
the learning keypoint, the input image is first convoluted. The output of convolution, known as the
integral image, is then used as the basis of the scale-space analysis. The responses obtained from the
scale-space analysis are utilized to detect the keypoints, kpi(x, y). In the stage of superpixel-based
keypoint location, the SLIC is used to segment the input image to several labels, and then those labels
have their center position, cpi(x, y). Finally, combine the kpi(x, y) and cpi(x, y), we can get the final
keypoints, ki(x, y), via non-maximal suppression. The pipeline of the JKD keypoint detector is shown
in Figure 3.
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Let O(x, y) represents a candidate keypoint, and NO(x, y) represents the 7× 7 neighbors of O(x, y).
Compute the DOG image of RO(x, y) to get DOGO(x, y) by Equation (1)

DOGO(x, y) = G(x, y, kσ) −G(x, y, σ) (1)
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where k is a constant, G(x, y, σ) = 1
2πσ exp

(
−

x2+y2

2σ2

)
represents Gaussian density function with variance

σ. Changing the value of σ, a set of DOG image is obtained as DOGset(x, y) =
{
dog1, · · · , dog5

}
where

5 DOG images is constructed only for saving computation time.
For each location on the given DOG image I, the pixel at that position relative to O can have one

of three states:

SO→N =


d, Io→n ≤ Io − t

s, Io − t < Io→n < Io + t
b, Io→n > Io + t

(2)

where, SO→N is a correlation between pixel o and n. d denotes darker, s denotes similar, and b denotes
brighter. t is a threshold with a tiny value.

For all O ∈ No, the No can be divided into three subsets Nd, Ns, and Nb by computing SO→N.
Use ID3 [67] algorithm to choose the first pixel n to compare with the candidate keypoint O(x, y),
and decide whether O(x, y) is keypoint or not according to the entropy H(O) of KO.

H(O) = (c + c) log2(c + c) − c log2 c− c log2 c (3)

where c =
∣∣∣∣{p∣∣∣Kp is true

}∣∣∣∣ represents the number of keypoints and c =
∣∣∣∣{p∣∣∣Kp is true

}∣∣∣∣ represents the
number of non-keypoints.

If the selected n belongs to Od and produce the max value of H(O), then Od can be further divided
into the following five categories: Odd, Odd, Ods, Odb, Odb. For Os, divide it into Osd, Osd, Oss, Osb, Osb.
The process is applied recursively on all five subsets until H(O) equals to zero. The candidate keypoint
can be detected according to the value of KO.

O(x, y) =
{

true, KO = 1
f alse, KO = 0

(4)

where O is a keypoint if Ko is one. Repeat above process until all input images processed over, then a
set of FAST keypoints can be obtained as follows:

K f ast = {ki|i = 1, · · · , n} (5)

However, the keyoints detected by FAST are often distributed not average, then the resulting
point-cloud models are discontinuous.

To avoid the in-averaging distributed of FAST keypoints, we use superpixel segmentation approach
as a post-process step to find many small regions. Thus, the centers of the regions are selected as the
candidate keypoints. For a given image in CIELAB color space, the candidate keypoints, Kslic, could be
obtained by SLIC algorithm as described in Section 3.

Kslic =
{
k j

slic

∣∣∣∣ j = 1, · · · , m
}

(6)

Once, the K f ast and Kslic are computed, the combined keypoints can be obtained as follows:

K f ind =
{
k j

slic ∪ ki
f ast

∣∣∣∣ j ∈ [1, m]Λi ∈ [1, n]
}

(7)

To choose high-quality keypoints that have maximal responses, we use non-maximal suppression
(NMS) [39] to eliminate the unstable keypoints that have minimal responses. The NMS is defined as

V = max

∑
xεSs

|Io→x − I0| − t,
∑
xεSd

|I0 − I0→x| − t,

 (8)
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As a result, by suppression the low-quality keypoints, the final keypoints that locate by the JKD is

K f inal =
{
k j
∣∣∣ j ∈ [1, m + n]

}
(9)

It should be note that the number of keypoints by JKD is vary, which depends on the value of σ in
Equation (1). Thus, we can change σ to obtain more keypoints for special applications such as dense
simultaneous localization and mapping (SLAM) [68] and face recognition [69,70].

4.2. Joint Descriptor Computing

The robustness of descriptor is very important to achieve robust feature tracking, which has been
analyzed deeply in [43]. According to the last recent evaluation work made by Zhu et al. [71], the SURF
feature has desirable performance on aspect of matching speed and precision. However, the SURF
feature easily suffers from affine transform, this may break the compactness of point-cloud model when
it is used in 3D reconstruction system. To improve the quality of 3D reconstruction system, we propose
a joint computing procedure that include SURF and binary test [36], the former is use to describe the
keypoints located in the texture areas, then the latter is used in the textureless areas. For convenience,
we called the proposed feature descriptor as joint feature descriptor (JFD), the pipeline for computing
a JFD feature descriptor is depicted in Figure 4, in which it is run on GPU device for accelerating.
In addition to the matching precision and fast speed, the proposed JFD feature is also robust to various
perturbations such as noise, illumination or contrast change.

For the k j located in the texture areas, we first use SURF feature to compute a vector of
64 dimensional which is an normalized gradient statistics extracted from a spatial grid R divided into
4× 4 regions. These subregions are referred to as R =

{
Ri, j

∣∣∣1 ≤ i, j ≤ 4
}
. According to [20], the weighted

gradient at point (u, v) is defined as,(
dx(u, v)
dy(u, v)

)
= R−θk

 DLk
x

DLk
y

ϕ(x, y) ×G1(u, v) (10)

where DLk
x and DLk

y denote first order box filters, which are used to compute the gradient components.
To this end, the SURF uses first order statistical results on vertical and horizontal gradient responses

to produce the good description that achieves the best performance between accuracy and efficiency,
then the resulting statistical vector with respect to Ri, j can be calculated by the following formula,

µk(i, j) =



Ri, j∑
u,v

dx(u, v)

Ri, j∑
u,v

dy(u, v)

Ri, j∑
u,v

∣∣∣dx(u, v)
∣∣∣

Ri, j∑
u,v

⌈
dy(u, v)

⌉


, i, j ∈ [1, 4] (11)

The SURF descriptor of ki can be directly computed by concatenating the µk(i, j), which is
defined as

µk = vstack(µk(i, j)) (12)

where vstack(·) is function that represents stacking the matrix in vertical direction.
To improve the invariance to linear transform, the SURF descriptor should be normalized to a

unit vector by L2 normal, the enhanced SURF descriptor can be calculated by the following formula

SURF(ki) = µk/‖µk‖2 (13)
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However, for the keypoints distributed in textureless regions, we use binary test to produce robust
descriptors in the neighbor regions that labeled by the superpixel-based segmentation. The binary test
τ in [36] is defined as

τ(L, x, y) =
{

0, p(x) ≥ p(y)
1, p(x) < p(y)

(14)

where p(x) represents the intensity of p at a point (x, y). Thus, the resulting feature vector is defined as

vn(ki) = vn(p(x, y)) =
∑

1≤i≤n

2i−1(τ(Li, xi, yi)) (15)

Note that n is set to 32 for saving computation time in the whole experiment, thus the resulting
feature vector has 32 binary elements.

To this end, the JKD descriptor can be obtained by concatenating the SURF(ki) and vn(ki),
then resulting a 96 dimensional of feature descriptor.

JKD(ki) = concat(SURF(ki), vn(ki)) (16)

Owing to the JKD is hybrid type, namely it not only includes float type elements, but also contains
binary type ones, thus, we need urgently a novel matching approach to match them.
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4.3. Fast Descriptor Matching

Feature matching aims to measure the similarity between the two feature descriptors. The float-type
descriptors, such as SIFT, SURF et al. usually use Euclidean distance (L2 distance) to measure the
similarity of two feature descriptors [11]. For binary descriptors such as BRISK [37] and LGHD [72],
the Hamming distance is used [43]. Because our descriptor is hybrid type that not only includes
float-type elements, but also contains binary-type ones. Thus, we use two metrics to measure the
similarity of the proposed feature descriptors, namely Hamming distance and Euclidean distance as
shown in Figure 5.
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The former is utilized to measure similarity of superpixel-based feature descriptors, then the
latter is exploited to handle float-type feature descriptors. For the given two binary-type descriptors,
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DBr =
{
d1

r , · · · , dn
r

}
, DBq =

{
d1

q , · · · , dn
q

}
, then the similarity between DBr and DBq can be calculated by

the simple bitwise operation.
MSq,r = DBr xor DBq (17)

where xor denotes XOR operation which returns the number of different elements between DBr

and DBq.
However, for float-type feature descriptor, DFq =

{
q1, · · · , qm

}
and DFr = {r1, · · · , rm}, we use the

Euclidean distance (L2 normal) to estimate the similarity of them, the matching confidence can be
calculated as

Cqr = ‖p(qi) − p(ri)‖, i ∈ [1, m] (18)

where p(qi) and p(ri) denote the descriptor for keypoint qi and keypoint ri respectively.
Once, the metrics are defined, we can simply loop the above procedure until the feature descriptors

in the feature database is processed over, then every feature descriptor in query feature database has
two potentially corresponding candidates. Let p(ri) and p

(
r j
)

denote the candidates with respect to the
query descriptor p(qi), then we can judge whether the matching is successful by the following formula.

C f =
‖p(qi) − p(ri)‖

‖p(qi) − p
(
r j
)
‖

(19)

If c < 0.7, the
〈
qi, r j

〉
is a correct match. Base on the hybrid matching approach, we can use the

Brute-Force-Match (BFM) [73] to find a candidate for each query keypoint.
However, BFM-based KNN approach is a greedy algorithm and has an expensive computational

cost. If the matching method is utilized in large-scale 3D reconstruction, then the process of
recovering 3D model is very slow. Thus, we must improve the computation efficiency of BFM-based
KNN to accelerate the feature tracking method. After a deep investigation in descriptor matching
methods [74,75], we found that local sensitive hash (LSH) [51,76] is an efficient approach to achieve
descriptor matching. Thus, the LSH is utilized to match feature descriptors. The core of LSH algorithm
is an approximate approach to compute k-nearest neighbors, which use N hash functions h1(·), · · · , hN(·)

to transform the D-dimensional space RD into a lattice space LD, and the original each data is distributed
into one lattice cell:

H(v) =
{
h1(v), · · · , (v)

}
(20)

where v denotes a vector of query descriptor.
To this end, the LSH-based KNN can use the L2 distance to measure the similarity between the

query descriptor and the reference descriptor.

Algorithm 1 Superpixel-based feature tracking scheme

Input: image sequences, I = {I1, I2, · · · , IN}.

Output: a set of matching pairs, S=
{〈

ki j, khc
〉∣∣∣∣i, h ∈ [1, N]

}
.

Step1: Compute keypoints for each image in {I1, I2, · · · , IN}, then resulting in a set of keypoints,
{k1, k2, · · · , km}.

Step2: Compute feature descriptor for each located keypoint, if they are located in texture areas, then use
Equations (11) and (12) to obtain robust description, otherwise, use binary test that defined in
Equation (15) to describe the keypoints.

Step3: Construct hash tables via Equation (20), the large set of JKD descriptors is distributed into many
lattice cells independently.

Step4: For JKD(ki) and JKD
(
k j
)

the similarity can be measured by Equations (17) and 19. If those formulas

are true, JKD(ki) and JKD
(
k j
)

are considered matching.

Step5: Repeat Step4 for any two keypoints in {k1, k2, · · · , km} the resulting matching pairs is

S =
{〈

ki j, khc
〉∣∣∣∣i, h ∈ [1, N]

}
.
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5. Experimental Results

The proposed SPFT is developed in C++, NVIDIA CUDA SDK 10.0 and OpenCV SDK 4.0, on a
PC with Intel i7 CPU processor 3.40 GHz and 32.0GB memory. We have evaluated the SPFT method
on several challenging dataset, and have compared it with the state-of-the-art methods, including
HPM [77], ROML [78], MODS [79], ENFT [35] and SuperPoint [80]. It should be noted that SuperPoint
is deep learning-based approach to feature detection and descriptor computing, and is published on
the European Conference on Computer Vision in 2018.

5.1. Evaluation of Colosseum Dataset

We have evaluated the performance of the SPFT on the Colosseum dataset which is constructed by
the authors of this paper. Samples of the Oxford benchmark are shown in Figure 6 where the lighting
of every images is different to each other, and they also have many repeated features and structures.
In the whole process of experiment, we use a standard evaluation metric to measure the performance
for each method. The evaluation metric is defined as:

Precision =
#correct matches

#tentative matches
(21)

where #correct matches stands for the number of correct matches, #tentative matches represents the
number of raw matches, namely does not have any post-process steps such as RANSAC, cross-check
and ratio-test.
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5.1.1. Matching Precession

Figure 7 presents visualized results for each method, the green lines denotes correct matches.
The HPM obtained the minimal number of feature correspondences. The number of feature
correspondences from ROML is more than that of HPM. The number of feature correspondences
of SuperPoint is the second place. The SPFT has the maximal number of feature correspondences.
According to the common sense in the field of 3D reconstruction, the more the number of feature
correspondences, the denser the point-cloud model from 3D reconstruction system. Thus, the SPFT
can significantly increase the density of the reconstructed point-cloud model.
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Moreover, we have tallied up the matching precision for each feature tracking method, the statistical
results are depicted in Figure 8. Among those methods [77–80], the proposed SPFT has the highest
matching precision, namely the matching precision is 85.6%; The SuperPoint is in the second place;
The ENFT is in the third place; and the matching precision of HPM is the lowest. The matching
performance of MODS is better that that of HMP and ROML. According to this experiment, we have
the following valuable findings: (1) ENFT have robustness to rotation change due to the usage of
SIFT feature; (2) The viewpoint change has a significantly impact on the matching precision of feature
tracking method; (3) The scale-space has heavily impact on the matching precision because the number
of keypoints in multiple scale spaces is more than that of the keypoint detector in single scale space;
(4) Superpixel-based segmentation can be used to find potentially keypoints that in the textureless
regions. As a result, the matching precision of the SPFT is largely attributed to the usage of multiple
scale spaces and superpixel segmentation; (5) Deep learning-based method, such as SuperPoint,
can improve the matching precession in the single scale space of the image.
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5.1.2. Computation Time

Computational cost is one of the most evaluation metrics for feature tracking methods, thus,
we have collected the computation times for each compared feature tracking method according to the
assessment that conducted on Colosseum dataset. The statistical results of computation times for each
method are depicted in Figure 9 where the computation time is the sum of that spend on the whole
pipeline including keypoint detection, descriptor computing, and feature matching. We can clearly see
that the SPFT has the fastest speed, the averaging computation time is 6.7 s. The ENFT is in the second
place, its averaging computation time is 9.2 s. Among those compared methods, the ROML has the
lowest speed, which requires 21.3 s averagely for image pairs matching. After deeply investigation
for ROML, we found that the main reason attributed to the highest computational cost of ROML is
implementation in MATLAB routines. We hold that the ROML may be significantly accelerated when
implementation in C++ programming language. As shown in Figure 9, the speed of the proposed SPFT
is about 3 times faster than that of ROML, and is about 2–3 times faster than that of HPM and MODS.
According to the statistical results of matching precision and computation time, we can conclude that
the SPFT feature has the best performance in both accuracy and efficiency. In addition to ROML,
the SuperPoint has the lowest speed, the averaging time is 18.2 s according to the experiment.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 21 
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5.2. Evaluation on HFUT Dataset

In the field of 3D reconstruction, if a feature tracking method is integrated into a 3D reconstruction
system, which can produce high-quality point-cloud model, we consider the feature tracking method
as a good approach to 3D reconstruction. Based on this judgement criteria, we create a new dataset
captured by Canon EOS 550D camera, we named the new dataset as HFUT dataset for short. Figure 10
presents samples of the HFUT dataset, which contains 120 images and have many repeated features
and repeated structures on the surface of each image. In addition to repeated features, the light for
each image is very weak, which pose a new challenge for feature tracking method. In this experiment,
we integrated the SPFT feature tracking method into ISFM system [2] to recover the point-cloud
model, the results are shown in Figure 11. We can see that the reconstructed point-cloud model has
highly geometric consistency with respect to the real scenario. Moreover, we found that the resulting
point-cloud model is very dense, which is attributed to the usage of the SPFT feature tracking method.
According to our record, the ISFM system with SPFT can recover a high-quality point-cloud model
having 338,391 vertices for the HFUT dataset in 5.5 min. As a result, we consider the SPFT has an
excellent performance in practice.
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5.3. Evaluation of Forensic Dataset

To assess the scalability of the SPFT, we have evaluated it on the Forensic dataset provided by the
PIX4D company. The samples of the UAV dataset are provided in Figure 12, which is captured by
unmanned aerial vehicle and has large-scale resolution and many repeated features on the surface
of each image. In summary, the Forensic dataset is very challenge for feature tracking method and
structure from motion.
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Figure 13 presents the visual correspondences of each feature tracking method for the Forensic
dataset, where the SPFT has obtained the maximum number of feature matches, and has the fastest
speed among the compared feature tracking methods. The HPM has the minimum number of visual
correspondences, and has the lowest speed. According to our statistic, the HPM has an average of 55
feature correspondences on the Forensic dataset. The number of visual correspondences of the MODS
in the second place, and it has lower speed than that of the HPM approach because of views synthesis.
Although the ENFT has number of visual correspondences less than that of MODS, which has a cheap
computational cost. After a deep analysis for the ENFT method, we found that the ENFT heavily
dependents on the segmentation for input video or image sequences to decrease the computational
burden. But, the segmented-based approach easily handicaps the quality of the point-cloud model
that is constructed by the SFM system. The SuperPoint has more feature correspondences than that
of ENFT, but less than that of ours. However, the proposed SPFT method not only has the cheapest
computational cost but also has the highest matching precision among these compared feature tracking
methods. According to our statistical results in experiment, the SPFT method has an average of
1876 correct feature matches.

In addition to making a comparison with the state-of-the-art method, we have integrated the SPFT
into the ISFM system [2], and use the combinational system to estimate the point-cloud model for the
Forensic dataset. Figure 14 provides the sparse point-cloud model for the Forensic dataset, which has
2,683,015 vertices and is reconstructed in 10.6 min. We can see that the constructed point-cloud model
has good geometric consistency with corresponding to the real scenarios. As a result, we can draw a
conclusion that the SPFT has the best performance in both accuracy and efficiency.
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6. Conclusions

In this paper, we proposed an accurate, fast and robust feature tracking method for SFM-based 3D
reconstruction, which is based on the superpixel segmentation to increase the number of potentially
keypoint and improve the descriptor’s quality. In the stage of feature detection, a multiple scale-space
analysis and the superpixel-based segmentation technique is used to candidate keypoints, then using
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non-maximal suppression technique to remove some unstable keypoints from the initial keypoint
collection. In the stage of descriptor computing, we use the segment-based binary test to produce
a robust descriptor for each keypoints. In the stage of feature matching, the GPU-accelerated KNN
method with ratio-test is used to measure the similarity of two descriptors for saving computation
time. Finally, we have evaluated the SPFT on the several challenging datasets, and compared it with
the state-of-the-arts feature tracking methods. Moreover, the SPFT is integrated into an SFM-based 3D
reconstruction system, then resulting high-quality point-cloud models on the challenging datasets.
I hold that the SPFT likes a unified framework of feature tracking, in which with different superpixel
methods or KNN-like methods, the SPFT may produce a novel feature tracking method. Thus, the SPFT
has good ex extendibility.

Besides of promising feature tracking method, we have other valuable findings according to
experiments: (1) the number of located keypoints largely depends on multiple scale spaces; (2) the
context information is very important to construct a robust descriptor for keypoint; (3) the usage of
shared memory in GPU device is also important to accelerate the feature matching speed. In summary,
we proposed a promising feature tracking method for SFM-based 3D reconstruction, the quality of
point-cloud model is significantly improved when it is used. In the future, we will try to propose a
novel feature tracking method based on the proposed SPFT framework for simultaneous localization
and mapping.
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