Use of Texture Feature Maps for the Refinement of Information Derived from Digital Intraoral Radiographs of Lytic and Sclerotic Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval and Consent to Participate
2.2. Experiment Overview
- Data collection—the medical-dental data describing the lesions was gathered. In all the cases, it was assured that a quality of obtained dental images was adequate. The data was carefully scrutinized for technically improper images to be rejected. Only 12-bit images recorded in digital imaging and communications in medicine (DICOM) format were accepted. Personal information in images was concealed by special software.
- Texture feature map computation—the digitized radiographs were of various quality, therefore some standardization was necessary. Sometimes, improving the contrast by image processing methods (e.g., histogram stretching or equalization - HISTEQ) was sufficient, yet in the presented problem it was not satisfactory. Therefore, for each image a set of texture feature maps were prepared. Those maps may also be characterized with low contrast, hence again (as in the preprocessing step) the standard methods for its improvement were applied in the post-processing stage.
- Results evaluation—finally the data was revised by experienced radiologists whose statements were the basis for the assessment of results.
2.3. Dataset Description
2.4. Texture Feature Map Computation
2.5. Pre- and Post-Processing of Images
2.6. Experiment Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Natkin, E.; Oswald, R.J.; Carnes, L.I. The relationship of lesion size to diagnosis, incidence, and treatment of periapical cysts and granulomas. Oral Surg. Oral Med. Oral Pathol. 1984, 57, 82–94. [Google Scholar] [PubMed]
- Shrout, M.K.; Hall, J.M.; Hildebolt, C.E. Differentiation of periapical granulomas and radicular cysts by digital radiometric analysis. Oral Surg. Oral Med. Oral Pathol. 1993, 76, 356–361. [Google Scholar] [PubMed]
- Lofthag-Hansen, S.; Huumonen, S.; Gröndahl, K.; Gröndahl, H.G. Limited cone-beam CT and intraoral radiography for the diagnosis of periapical pathology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 103, 114–119. [Google Scholar] [PubMed]
- Ramachandran Nair, P.N.; Pajarola, G.; Schroeder, H.E. Types and incidence of human periapical lesions obtained with extracted teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1996, 81, 93–102. [Google Scholar] [PubMed]
- Patel, S.; Dawood, A.; Mannocci, F.; Wilson, R.; Pitt Ford, T. Detection of periapical bone defects in human jaws using cone beam computed tomography and intraoral radiography. Int. Endod. J. 2009, 42, 507–515. [Google Scholar]
- Kolacinski, M.; Kozakiewicz, M.; Materka, A. Textural entropy as a potential feature for quantitative assessment of jaw bone healing process. Arch. Med. Sci. 2015, 11, 78–84. [Google Scholar] [PubMed]
- Campello, A.F.; Gonçalves, L.S.; Guedes, F.R.; Marques, F.V. Cone-beam computed tomography versus digital periapical radiography in the detection of artificially created periapical lesions: A pilot study of the diagnostic accuracy of endodontists using both techniques. Imaging Sci. Dent. 2017, 47, 25–31. [Google Scholar]
- De Paula-Silva, F.W.; Wu, M.K.; Leonardo, M.R.; Da Silva, L.A.; Wesselink, P.R. Accuracy of periapical radiography and cone-beam computed tomography scans in diagnosing apical periodontitis using histopathological findings as a gold standard. J. Endod. 2009, 35, 1009–1012. [Google Scholar]
- Kavitha, M.S.; An, S.Y.; An, C.H.; Huh, K.H.; Yi, W.J.; Heo, M.S.; Lee, S.S.; Choi, S.C. Texture analysis of mandibular cortical bone on digital dental panoramic radiographs for the diagnosis of osteoporosis in Korean women. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 119, 346–356. [Google Scholar]
- Harrar, K.; Jennane, R. Quantification of trabecular bone porosity on X-ray images. In Proceedings of the 4th International Conference on Industrial and Intelligent Information (ICIII 2015), Roma, Italy, 18–19 May 2015. [Google Scholar]
- Roberts, M.G.; Graham, J.; Devlin, H. Image texture in dental panoramic radiographs as a potential biomarker of osteoporosis. IEEE Trans. Biomed. Eng. 2013, 60, 2384–2392. [Google Scholar]
- Lin, P.L.; Huang, P.Y.; Huang, P.W.; Hsu, H.C.; Chen, P. Alveolar bone-loss area localization in periapical radiographs by texture analysis based on fBm model and GLC matrix. In Proceedings of the IEEE 2014 International Symposium on Bioelectronics and Bioinformatics, Chung Li, Taiwan, 11–14 April 2014. [Google Scholar]
- Lin, P.L.; Huang, P.Y.; Huang, P.W.; Hsu, H.C.; Chen, C.C. Teeth segmentation of dental periapical radiographs based on local singularity analysis. Comput. Methods Programs Biomed. 2014, 113, 433–445. [Google Scholar]
- Lin, P.L.; Huang, P.Y.; Huang, P.W. Automatic methods for alveolar bone loss degree measurement in periodontitis periapical radiographs. Comput. Methods Programs Biomed. 2017, 148, 1–11. [Google Scholar]
- Huang, P.W.; Huang, P.Y.; Lin, P.L.; Hsu, H.C. Alveolar bone-loss area detection in periodontitis radiographs using hybrid of intensity and texture analyzed based on FBM model. In Proceedings of the International Conference on Machine Learning and Cybernetics, Lanzhou, China, 13–16 July 2014; Volume 2, pp. 487–492. [Google Scholar]
- Borowska, M.; Szarmach, J.; Oczeretko, E. Fractal texture analysis of the healing process after bone loss. Comput. Med. Imaging Graph. 2015, 46, 191–196. [Google Scholar]
- Borowska, M.; Bębas, E.; Szarmach, J.; Oczeretko, E. Multifractal characterization of healing process after bone loss. Biomed. Signal. Process. Control 2019, 52, 179–186. [Google Scholar]
- Koca, H.; Ergun, S.; Guneri, P.; Boyacıoglu, H. Evaluation of trabecular bone healing by fractal analysis and digital subtraction radiography on digitized panoramic radiographs: A preliminary study. Oral Radiol. 2010, 26, 1–8. [Google Scholar]
- Vijayakumari, B.; Ulaganathan, G.; Banumathi, A.; Banu, A.F.S.; Kayalvizhi, M. Dental cyst diagnosis using texture analysis. In Proceedings of the 2012 International Conference on Machine Vision and Image Processing, Taipei, Taiwan, 4–15 December 2012; pp. 117–120. [Google Scholar]
- Banu, A.F.S.; Kayalvizhi, M.; Arumugam, B.; Gurunathan, U. Texture based classification of dental cysts. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies, Kanyakumari, India, 10–11 July 2014; pp. 1248–1253. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. Syst. 1973, SMC-3, 610–621. [Google Scholar]
- Amadasun, M.; King, R. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. Syst. 1998, 19, 1264–1274. [Google Scholar]
- Galloway, M.M. Texture analysis using grey level run lengths. Comput. Graph. Image Process. 1975, 4, 172–179. [Google Scholar]
- Ojala, T.; Pietikäinen, M.; Mäenpää. Grey scale and rotation invariant texture classification with local binary patterns. In Computer Vision-ECCV 2000; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 1842, pp. 404–420. [Google Scholar]
- Ojala, T.; Pietikäinen, M.; Mäenpää. Multiresolution grey-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar]
- Obuchowicz, R.; Nurzynska, K.; Obuchowicz, B.; Urbanik, A.; Piórkowski, A. Caries detection enhancement using texture feature maps of intraoral radiographs. Oral Radiol. 2019. [Google Scholar] [CrossRef]
- Strzelecki, M.; Kociołek, M.; Materka, A. On the influence of image features on texture classification. In Information Technology in Biomedicine (ITIB 2018); Springer: Cham, Switzerland, 2018; Volume 762, pp. 15–26. [Google Scholar]
- Skiba, M.; Mlynarczuk, M. Identification of macerals of the inertinite group using neural classifiers, based on selected textural features. Arch. Min. Sci. 2018, 63, 827–837. [Google Scholar]
- Nurzynska, K.; Czardybon, M. Defect detection in textiles with co-occurrence matrix as a texture model description. In International Workshop on Combinatorial Image Analysis; Springer: Cham, Switzerland, 2018; pp. 216–226. [Google Scholar]
- Szczypinski, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda-A software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar]
- Shrout, M.K.; Hildebolt, C.E.; Vannier, M.W. Effects of region of interest (ROI) outline variations on gray-scale frequency distributions for alveolar bone. Oral Surg. Oral Med. Oral Pathol. 1993, 75, 638–644. [Google Scholar]
- White, S.C.; Sapp, J.P.; Seto, B.G.; Mankovich, N.J. Absence of radiometric differentiation between periapical cysts and granulomas. Oral Surg. Oral Med. Oral Pathol. 1994, 78, 650–654. [Google Scholar]
- Kim, D.; Jeong, H.; Kim, M.; Kim, C.; Lee, B.D. Multiscale image analysis for the quantitative evaluation of periapical lesion healings. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010; Volume 1, pp. 424–427. [Google Scholar]
- Veena, D.K.; Jatti, A.; Joshi, R.; Deepu, K.S. Characterization of dental pathologies using digital panoramic X-ray images based on texture analysis. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Korea, 11–15 July 2017; pp. 592–595. [Google Scholar]
- Leite, A.F.; De Souza Figueiredo, P.T.; Caracas, H.; Sindeaux, R.; Guimaraes, A.T.B.; Lazarte, L.; De Melo, N.S. Systematic review with hierarchical clustering analysis for the fractal dimension in assessment of skeletal bone mineral density using dental radiographs. Oral Radiol. 2015, 31, 1–13. [Google Scholar]
- Gröndahl, H.G.; Huumonen, S. Radiographic manifestations of periapical inflammatory lesions. Endod. Topics 2004, 8, 55–67. [Google Scholar]
- Becconsall-Ryan, K.; Tong, D.; Love, R.M. Radiolucent inflammatory jaw lesions: A twenty-year analysis. Int. Endod. J. 2010, 43, 859–865. [Google Scholar]
Sensitivity | Specificity | F1 | Accuracy | ||
---|---|---|---|---|---|
CLU | radiodensity | 0.8286 | 0.7429 | 0.7945 | 0.7857 |
border def | 0.7714 | 0.9714 | 0.8571 | 0.8714 | |
tissue contr | 0.8000 | 0.5143 | 0.7000 | 0.6571 | |
FOF | radiodensity | 0.6000 | 0.9429 | 0.7241 | 0.7714 |
border def | 0.6857 | 0.9143 | 0.7742 | 0.8000 | |
tissue contr | 0.5143 | 0.6857 | 0.5625 | 0.6000 | |
GTDM | radiodensity | 0.3143 | 0.8857 | 0.4400 | 0.6000 |
border def | 0.3714 | 0.8571 | 0.4906 | 0.6143 | |
tissue contr | 0.2857 | 0.8000 | 0.3846 | 0.5429 | |
LBP | radiodensity | 0.5143 | 0.6857 | 0.5625 | 0.6000 |
border def | 0.1714 | 0.8571 | 0.2609 | 0.5143 | |
tissue contr | 0.3714 | 0.5143 | 0.4000 | 0.4429 | |
HISTEQ-RLM | radiodensity | 0.9429 | 0.8571 | 0.9041 | 0.9000 |
border def | 0.8857 | 0.8857 | 0.8857 | 0.8857 | |
tissue contr | 0.9429 | 0.4286 | 0.7500 | 0.6857 |
Sensitivity | Specificity | F1 | Accuracy | ||
---|---|---|---|---|---|
CLU | radiodensity | 0.6000 | 0.5333 | 0.5806 | 0.5667 |
border def | 0.6000 | 0.5333 | 0.5806 | 0.5667 | |
tissue contr | 0.0333 | 1.0000 | 0.0645 | 0.5167 | |
FOF | radiodensity | 0.7333 | 0.6000 | 0.6875 | 0.6667 |
border def | 0.7000 | 0.8333 | 0.7500 | 0.7667 | |
tissue contr | 0.5667 | 0.7333 | 0.6182 | 0.6500 | |
GTDM | radiodensity | 0.6333 | 0.6333 | 0.6333 | 0.6333 |
border def | 0.3667 | 0.9333 | 0.5116 | 0.6500 | |
tissue contr | 0.5000 | 0.7667 | 0.5769 | 0.6333 | |
LBP | radiodensity | 0.7000 | 0.4667 | 0.6269 | 0.5833 |
border def | 0.4000 | 0.8333 | 0.5106 | 0.6167 | |
tissue contr | 0.5333 | 0.6667 | 0.5714 | 0.6000 | |
HISTEQ-RLM | radiodensity | 0.9667 | 0.4667 | 0.7733 | 0.7167 |
border def | 0.8000 | 0.9000 | 0.8421 | 0.8500 | |
tissue contr | 0.9667 | 0.5333 | 0.7945 | 0.7500 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obuchowicz, R.; Nurzynska, K.; Obuchowicz, B.; Urbanik, A.; Piórkowski, A. Use of Texture Feature Maps for the Refinement of Information Derived from Digital Intraoral Radiographs of Lytic and Sclerotic Lesions. Appl. Sci. 2019, 9, 2968. https://doi.org/10.3390/app9152968
Obuchowicz R, Nurzynska K, Obuchowicz B, Urbanik A, Piórkowski A. Use of Texture Feature Maps for the Refinement of Information Derived from Digital Intraoral Radiographs of Lytic and Sclerotic Lesions. Applied Sciences. 2019; 9(15):2968. https://doi.org/10.3390/app9152968
Chicago/Turabian StyleObuchowicz, Rafał, Karolina Nurzynska, Barbara Obuchowicz, Andrzej Urbanik, and Adam Piórkowski. 2019. "Use of Texture Feature Maps for the Refinement of Information Derived from Digital Intraoral Radiographs of Lytic and Sclerotic Lesions" Applied Sciences 9, no. 15: 2968. https://doi.org/10.3390/app9152968
APA StyleObuchowicz, R., Nurzynska, K., Obuchowicz, B., Urbanik, A., & Piórkowski, A. (2019). Use of Texture Feature Maps for the Refinement of Information Derived from Digital Intraoral Radiographs of Lytic and Sclerotic Lesions. Applied Sciences, 9(15), 2968. https://doi.org/10.3390/app9152968