Screen-Based Sports Simulation Using Acoustic Source Localization †
Abstract
:Featured Application
Abstract
1. Introduction
2. Impulsive Sound Estimation
2.1. Direction-Based DSBF
2.2. Position-Based DSBF
3. Three-Dimensional Impulsive Acoustic Source Localization
4. System Overview
5. Experimental Results
5.1. System Implementation
5.2. Three-Dimensional Impulsive Acoustic Source Localization
5.3. Screen-Based Sports Simulation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kang, D.; Kim, J.-E. Fine, Ultrafine, and Yellow Dust: Emerging Health Problems in Korea. J. Korean Med. Sci. 2014, 29, 621–622. [Google Scholar] [CrossRef] [PubMed]
- Whiting, E.; Ouf, N.; Makatura, L.; Mousas, C.; Shu, Z.; Kavan, L. Environment-Scale Fabrication: Replicating Outdoor Climbing Experiences. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems—CHI ’17, Denver, CO, USA, 6–11 May 2017; pp. 1794–1804. [Google Scholar]
- Lee, H.-G.; Chung, S.; Lee, W.-H. Presence in virtual golf simulators: The effects of presence on perceived enjoyment, perceived value, and behavioral intention. New Media Soc. 2013, 15, 930–946. [Google Scholar] [CrossRef]
- Kim, J.; Kim, M. Smart vision system for soccer training. In Proceedings of the 2015 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 28–30 October 2015; pp. 257–262. [Google Scholar]
- Wang, S.; Xu, Y.; Zheng, Y.; Zhu, M.; Yao, H.; Xiao, Z. Tracking a Golf Ball With High-Speed Stereo Vision System. IEEE Trans. Instrum. Meas. 2018, 68, 2742–2754. [Google Scholar] [CrossRef]
- Li, B.; Sun, B.; Chen, C.F.; Jiao, X.J.; Zhang, S.Y.; Wang, Y. Simulation of Golf Realtime Tracking Based on Doppler Radar. Appl. Mech. Mater. 2015, 743, 828–835. [Google Scholar]
- Martin, J.J. Evaluation of Doppler Radar Ball Tracking and Its Experimental Uses. Ph.D. Thesis, Washington State University, Pullman, WA, USA, 2012. [Google Scholar]
- Burguera, A.; González, Y.; Oliver, G. Sonar Sensor Models and Their Application to Mobile Robot Localization. Sensors 2009, 9, 10217–10243. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, G.; Meyer, A.; Döbler, D. Beamforming in the Time-domain using 3D-microphone arrays. In Proceedings of the XIXth Biennial Conference of the New Zealand Acoustical Society, Auckland, New Zealand, 27–28 November 2008. [Google Scholar]
- Seo, S.-W.; Kim, M.; Kim, Y. Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators. Sensors 2018, 18, 1323. [Google Scholar] [CrossRef] [PubMed]
- Ishi, C.T.; Chatot, O.; Ishiguro, H.; Hagita, N. Evaluation of a MUSIC-based real-time sound localization of multiple sound sources in real noisy environments. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 2027–2032. [Google Scholar]
- Kim, Y.-H. Acoustic Holography. In Springer Handbook of Acoustics; Rossing, T.D., Ed.; Springer New York: New York, NY, USA, 2014; pp. 1115–1137. ISBN 978-1-4939-0755-7. [Google Scholar]
- Loesch, B.; Uhlich, S.; Yang, B. Multidimensional localization of multiple sound sources using frequency domain ICA and an extended state coherence transform. In Proceedings of the 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, Cardiff, UK, 31 August–3 September 2009; pp. 677–680. [Google Scholar]
- Yalta, N.; Nakadai, K.; Ogata, T. Sound Source Localization Using Deep Learning Models. J. Robot. Mechatron. 2017, 29, 37–48. [Google Scholar] [CrossRef]
- Suvorov, D.; Dong, G.; Zhukov, R. Deep residual network for sound source localization in the time domain. arXiv 2018, arXiv:1808.06429. [Google Scholar]
- Seo, S.-W.; Kim, M. 3D Impulsive Sound-Source Localization Method through a 2D MEMS Microphone Array using Delay-and-Sum Beamforming. In Proceedings of the 9th International Conference on Signal Processing Systems, Auckland, New Zealand, 27–30 November 2017; pp. 170–174. [Google Scholar]
- Porteous, R.; Prime, Z.; Doolan, C.J.; Moreau, D.J.; Valeau, V. Three-dimensional beamforming of dipolar aeroacoustic sources. J. Sound Vib. 2015, 355, 117–134. [Google Scholar] [CrossRef]
- Rizzo, P.; Bordoni, G.; Marzani, A.; Vipperman, J. Localization of sound sources by means of unidirectional microphones. Meas. Sci. Technol. 2009, 20, 055202. [Google Scholar] [CrossRef]
- Zimmermann, B.; Studer, C. FPGA-based real-time acoustic camera prototype. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; p. 1419. [Google Scholar]
- Paulraj, M.P.; Yaacob, S.B.; Nazri, A.; Kumar, S. Classification of vowel sounds using MFCC and feed forward Neural Network. In Proceedings of the 2009 5th International Colloquium on Signal Processing Its Applications, Kuala Lumpur, Malaysia, 6–8 March 2009; pp. 59–62. [Google Scholar]
- Liebich, S.; Fabry, J.; Jax, P.; Vary, P. Time-domain Kalman filter for active noise cancellation headphones. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017; pp. 593–597. [Google Scholar]
- Tervo, S.; Pätynen, J.; Lokki, T. Acoustic Reflection Localization from Room Impulse Responses. Acta Acust. United Acust. 2012, 98, 418–440. [Google Scholar] [CrossRef] [Green Version]
Training Group | Height (cm) | Weight (kg) | Age (years) | Body Mass Index (BMI) (kg/m2) |
---|---|---|---|---|
Virtual sport | 179.9 ± 7.5 | 39.0 ± 7.8 | 11.8 ± 1.0 | 17.6 ± 2.0 |
Outdoor | 151.5 ± 9.7 | 45.2 ± 10.2 | 11.4 ± 3.4 | 19.5 ± 2.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, S.-W.; Yun, S.; Kim, M.-G.; Sung, M.; Kim, Y. Screen-Based Sports Simulation Using Acoustic Source Localization. Appl. Sci. 2019, 9, 2970. https://doi.org/10.3390/app9152970
Seo S-W, Yun S, Kim M-G, Sung M, Kim Y. Screen-Based Sports Simulation Using Acoustic Source Localization. Applied Sciences. 2019; 9(15):2970. https://doi.org/10.3390/app9152970
Chicago/Turabian StyleSeo, Sang-Woo, Somi Yun, Myung-Gyu Kim, Mankyu Sung, and Yejin Kim. 2019. "Screen-Based Sports Simulation Using Acoustic Source Localization" Applied Sciences 9, no. 15: 2970. https://doi.org/10.3390/app9152970
APA StyleSeo, S. -W., Yun, S., Kim, M. -G., Sung, M., & Kim, Y. (2019). Screen-Based Sports Simulation Using Acoustic Source Localization. Applied Sciences, 9(15), 2970. https://doi.org/10.3390/app9152970