Contactless Ultrasonic Wavefield Imaging to Visualize Near-Surface Damage in Concrete Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concrete Sample and Damage Implementation
2.2. Ultrasonic Wavefield Data Collection
2.3. Frequency-Wavenumber (f-k) Domain Wavefield Data Processing
3. Results
3.1. Ultrasonic Wavefield Data
3.2. Concrete Damage Visualization
4. Discussion
5. Conclusions
- Near-surface concrete cracking damage introduced by mechanical impact scatter incident surface waves and set up distinct non-propagating oscillatory wavefields that exhibit broadened wavenumbers;
- The proposed f-k domain wavefield data processing approach can extract non-propagating oscillatory field contributions to the wavefields caused by near-surface damage; and
- An extracted non-propagating wave energy map enables visualization and location of near-surface damage in concrete.
Author Contributions
Funding
Conflicts of Interest
References
- Michaels, J.E. Ultrasonic wavefield imaging: Research tool or emerging NDE method? AIP Conf. Proc. 2017, 1806, 020001. [Google Scholar]
- Ruzzene, M. Frequency-wavenumber domain filtering for improved damage visualization. Smart Mater. Struct. 2007, 16, 2116–2129. [Google Scholar] [CrossRef]
- Yu, L.; Tian, Z.; Leckey, C.A. Crack imaging and quantification in aluminum plates with guided wave wavenumber analysis methods. Ultrasonics 2015, 62, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Mesnil, O.; Yan, H.; Ruzzene, M.; Paynabar, K. Fast wavenumber measurement for accurate and automatic location and quantification of defect in composite. Struct. Health Monit. 2016, 15, 223–234. [Google Scholar] [CrossRef]
- Michaels, T.E.; Michaels, J.E.; Ruzzene, M. Frequency-wavenumber domain analysis of guided wavefields. Ultrasonics 2011, 51, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Flynn, E.B.; Chong, S.Y.; Jarmer, G.J.; Lee, J.R. Structural imaging through local wavenumber estimation of guided waves. Ndt E Int. 2013, 59, 1–10. [Google Scholar] [CrossRef]
- Park, B.; An, Y.K.; Sohn, H. Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Compos. Sci. Technol. 2014, 100, 10–18. [Google Scholar] [CrossRef]
- Lee, J.R.; Cho, C.M.; Park, C.Y.; Truong, C.T.; Shin, H.J.; Jeong, H.; Flynn, E.B. Spar disbond visualization in in-service composite UAV with ultrasonic propagation imager. Aerosp. Sci. Technol. 2015, 45, 180–185. [Google Scholar] [CrossRef]
- An, Y.K.; Park, B.; Sohn, H. Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate. Smart Mater. Struct. 2013, 22, 025022. [Google Scholar] [CrossRef]
- Kudela, P.; Radzieński, M.; Ostachowicz, W. Identification of cracks in thin-walled structures by means of wavenumber filtering. Mech. Syst. Signal Process. 2015, 50, 456–466. [Google Scholar] [CrossRef]
- Yu, L.; Tian, Z.; Li, X.; Zhu, R.; Huang, G. Core–skin debonding detection in honeycomb sandwich structures through guided wave wavefield analysis. J. Intell. Mater. Syst. Struct. 2018, 30, 1306–1317. [Google Scholar] [CrossRef]
- Algernon, D.; Grafe, B.; Mielentz, F.; Köhler, B.; Schubert, F. Imaging of the elastic wave propagation in concrete using scanning techniques: Application for impact-echo and ultrasonic echo methods. J. Nondestruct. Eval. 2008, 27, 83–97. [Google Scholar] [CrossRef]
- Aggelis, D.G.; Shiotani, T. Experimental study of surface wave propagation in strongly heterogeneous media. J. Acoust. Soc. Am. 2007, 122, EL151–EL157. [Google Scholar] [CrossRef] [PubMed]
- Chekroun, M.; Le Marrec, L.; Abraham, O.; Durand, O.; Villain, G. Analysis of coherent surface wave dispersion and attenuation for non-destructive testing of concrete. Ultrasonics 2009, 49, 743–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, O.; Piwakowski, B.; Villain, G.; Durand, O. Non-contact, automated surface wave measurements for the mechanical characterisation of concrete. Constr. Build. Mater. 2012, 37, 904–915. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Piwakowski, B.; Drelich, R. Noncontact Ultrasonic Nondestructive Techniques: State of the Art and Their Use in Civil Engineering. J. Infrastruct. Syst. 2016, 23, B4016003. [Google Scholar] [CrossRef]
- Song, H.; Popovics, J.S.; Park, J. Development of an automated contactless ultrasonic scanning measurement system for wavefield imaging of concrete elements. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017. [Google Scholar]
- Song, H.; Park, J.; Popovics, J.S. Contactless ultrasonic wavefield imaging of concrete using a MEMS microphone array and compressed sensing. Mech. Syst. Signal Process. 2019. submitted. [Google Scholar]
- Song, H.; Popovics, J.S. Extracting non-propagating oscillatory fields in concrete to detect distributed cracking. J. Acoust. Soc. Am. 2019. submitted, under review. [Google Scholar]
- Mesnil, O.; Ruzzene, M. Sparse wavefield reconstruction and source detection using Compressed Sensing. Ultrasonics 2016, 67, 94–104. [Google Scholar] [CrossRef] [PubMed]
Contents | Unit Weight [kg/m3] |
---|---|
Cement | 406.5 |
Water | 192.7 |
Fly ash | 71.7 |
Coarse aggregate * | 953.5 |
Fine aggregate | 663.5 |
Case | The Number of Impact Damage Points |
---|---|
0 | 0 (Pristine) |
1 | 1 (D1 only) |
2 | 2 (D1 & D2) |
3 | 3 (D1 to D3) |
4 | 4 (D1 to D4) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Popovics, J.S. Contactless Ultrasonic Wavefield Imaging to Visualize Near-Surface Damage in Concrete Elements. Appl. Sci. 2019, 9, 3005. https://doi.org/10.3390/app9153005
Song H, Popovics JS. Contactless Ultrasonic Wavefield Imaging to Visualize Near-Surface Damage in Concrete Elements. Applied Sciences. 2019; 9(15):3005. https://doi.org/10.3390/app9153005
Chicago/Turabian StyleSong, Homin, and John S. Popovics. 2019. "Contactless Ultrasonic Wavefield Imaging to Visualize Near-Surface Damage in Concrete Elements" Applied Sciences 9, no. 15: 3005. https://doi.org/10.3390/app9153005
APA StyleSong, H., & Popovics, J. S. (2019). Contactless Ultrasonic Wavefield Imaging to Visualize Near-Surface Damage in Concrete Elements. Applied Sciences, 9(15), 3005. https://doi.org/10.3390/app9153005