Advances in the Study of the Behavior of Full-Depth Reclamation (FDR) with Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Mix Design
2.3. Testing Program
3. Results and Discussion
3.1. Relationship Between Flexural and Unconfined Compressive Strength
3.2. Relationship Between Flexural Strength at Long-Term and Indirect Tensile Strength at Long-Term
3.3. Relationship Between Indirect Tensile Strength and Unconfined Compressive Strength at Long-Term
3.4. Estimation of Flexural Strength at Long-Term Using the UCS and ITS Values
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xiao, F.; Yao, S.; Wang, J.; Li, X.; Amirkhanian, S. A literature review on cold recycling technology of asphalt pavement. Constr. Build. Mater. 2018, 180, 579–604. [Google Scholar] [CrossRef]
- Yu, B.; Liu, Q.; Tian, X.; Zhou, L.; Lin, M. Empirical performance models of hot in-place recycling of asphalt pavements. Int. J. Pavement Eng. 2017, 18, 1081–1088. [Google Scholar] [CrossRef]
- Jones, D.; Louw, S.; Wu, R. Full-Depth Reclamation: Cost-Effective Rehabilitation Strategy for Low-Volume Roads. Transp. Res. Rec. 2016, 2591, 1–10. [Google Scholar] [CrossRef]
- Smith, S.; Braham, A. Comparing layer types for the use of PavementME for asphalt emulsion Full Depth Reclamation design. Constr. Build. Mater. 2018, 158, 481–489. [Google Scholar] [CrossRef]
- Suebsuk, J.; Horpibulsuk, S.; Suksan, A.; Suksiripattanapong, C.; Phoo-ngernkham, T.; Arulrajah, A. Strength prediction of cement-stabilised reclaimed asphalt pavement and lateritic soil blends. Int. J. Pavement Eng. 2019, 20, 332–338. [Google Scholar] [CrossRef]
- Ghanizadeh, A.R.; Rahrovan, M.; Bafghi, K.B. The effect of cement and reclaimed asphalt pavement on the mechanical properties of stabilized base via full-depth reclamation. Constr. Build. Mater. 2018, 161, 165–174. [Google Scholar] [CrossRef]
- Hill, R.; Braham, A. Investigating the raveling test for full-depth reclamation. Front. Struct. Civ. Eng. 2018, 12, 222–226. [Google Scholar] [CrossRef]
- Fedrigo, W.; Núñez, W.P.; Castañeda López, M.A.; Kleinert, T.R.; Ceratti, J.A.P. A study on the resilient modulus of cement-treated mixtures of RAP and aggregates using indirect tensile, triaxial and flexural tests. Constr. Build. Mater. 2018, 171, 161–169. [Google Scholar] [CrossRef]
- Alizadeh, A.; Modarres, A. Mechanical and Microstructural Study of RAP–Clay Composites Containing Bitumen Emulsion and Lime. J. Mater. Civ. Eng. 2019, 31, 04018383. [Google Scholar] [CrossRef]
- Reeder, G.D.; Harrington, D.; Ayers, M.E.; Adaska, W.S. Guide to Full-Depth Reclamation (FDR) with Cement; National Concrete Pavement Technology Center, Institute for Transportation of Iowa State University, Portland Cement Association: Ames, IA, USA, 2017. [Google Scholar]
- Wirtgen. Cold Recycling Manual, 3rd ed.; Wirtgen GmbH: Windhagen, Germany, 2010. [Google Scholar]
- Babashamsi, P.; Yusoff, N.I.M.; Ceylan, H.; Nor, N.G.M. Recycling toward sustainable pavement development: End-of-life considerations in asphalt pavement. J. Teknol. 2016, 78, 25–32. [Google Scholar]
- Ghasemi, P.; Christopher Williams, R.; Jahren, C.; Ledtji, P.; Yu, J. Field Investigation of Stabilized Full-Depth Reclamation (SFDR); Minnesota Department of Transportation Research Service & Library: St. Paul, MN, USA, 2018; No. MN/RC 2018-33. [Google Scholar]
- Castañeda López, M.A.; Fedrigo, W.; Kleinert, T.R.; Matuella, M.F.; Núñez, W.P.; Ceratti, J.A.P. Flexural fatigue evaluation of cement-treated mixtures of reclaimed asphalt pavement and crushed aggregates. Constr. Build. Mater. 2018, 158, 320–325. [Google Scholar] [CrossRef]
- Portland Cement Association. Full Depth Reclamation: Recycling Roads Saves Money and Natural Resource; PCA: Skokie, IL, USA, 2005; p. 6. [Google Scholar]
- Godenzoni, C.; Graziani, A.; Bocci, E.; Bocci, M. The evolution of the mechanical behaviour of cold recycled mixtures stabilised with cement and bitumen: Field and laboratory study. Road Mater. Pavement Des. 2018, 19, 856–877. [Google Scholar] [CrossRef]
- Santos, J.; Bryce, J.; Flintsch, G.; Ferreira, A. A comprehensive life cycle costs analysis of in-place recycling and conventional pavement construction and maintenance practices. Int. J. Pavement Eng. 2017, 18, 727–743. [Google Scholar] [CrossRef]
- Díaz Minguela, J.; López Bachiller, M. Reciclado de Firmes In Situ con Cemento (Full Depth Reclamation with Cement); Instituto Español del Cemento y sus Aplicaciones (IECA) & Asociación Nacional Técnica de Estabilizados de Suelos y Reciclado de Firmes (ANTER): Madrid, Spain, 2018; p. 270. [Google Scholar]
- Jofré, C.; Kraemer, C.; Díaz, J. Manual de Firmes Reciclados In Situ con Cemento (Guide of Full Depth Reclamation with Cement); Instituto Español del Cemento y sus Aplicaciones (IECA): Madrid, Spain, 1999. [Google Scholar]
- Boz, I.; Solaimanian, M. Investigating the effect of rejuvenators on low-temperature properties of recycled asphalt using impact resonance test. Int. J. Pavement Eng. 2018, 19, 1007–1016. [Google Scholar] [CrossRef]
- Miró, R.; Edmundo Pérez Jiménez, F.; Castillo Aguilar, S. Mixed recycling with emulsion and cement of asphalt pavements. Design procedure and improvements achieved. Mater. Struct. 2000, 33, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J. State of the Art of In Situ Subgrade Stabilisation and Pavement Recycling with Cement in Spain; Asociación Española de la Carretera (AEC) e Instituto Español del Cemento y sus Aplicaciones (IECA): Madrid, Spain, 2001; pp. 133–161. [Google Scholar]
- Ozarín, T.; Gonzalo-Orden, H. Reciclado “In Situ” de firmes con cemento en carreteras autonómicas de la provincia de Palencia (On-site pavement recycling with Portlant cement on regional roads in Palencia). Carreteras 2006, 144, 34–44. [Google Scholar]
- Grilli, A.; Bocci, E.; Graziani, A. Influence of reclaimed asphalt content on the mechanical behaviour of cement-treated mixtures. Road Mater. Pavement Des. 2013, 14, 666–678. [Google Scholar] [CrossRef]
- Kolias, S.; Katsakou, M.; Kaloidas, V. Mechanical properties of flexible pavement materials recycled with cement. In Proceedings of the First International Symposium on Subgrade Stabilisation and In Situ Pavement Recycling Using Cement, Salamanca, Spain, 1–4 October 2001; Asociación Española de la Carretera (AEC) e Instituto Español del Cemento y sus Aplicaciones (IECA): Madrid, Spain, 2001; pp. 659–674. [Google Scholar]
- Díaz, J.; Murga, P.; Gonzalo-Orden, H.; González, D. Estudio del Comportamiento de Firmes Reciclados In Situ con Cemento (Study of the Behaviour of Full Depth Reclamation with Cement); Asociación Española de la Carretera (AEC): Madrid, Spain, 2008; pp. 519–527. [Google Scholar]
- BS. BS-1924-1: Stabilized Materials for Civil Engineering Purposes. General Requirements, Sampling, Sample Preparation and Tests on Materials before Stabilization; British Standards Institution: London, UK, 1990. [Google Scholar]
- Ministerio De Fomento. Pliego de Prescripciones Técnicas Generales para Obras de Carretera y Puentes (PG-3) (Statement of General Requirements for Construction of Roads and Bridges (PG-3)); MFOM: Madrid, Spain, 2015.
- Ministerio de Fomento. Pliego de Prescripciones Técnicas Generales PG-4 (Statement of General Requirements for Road Maintenance Works (PG-4)); MFOM: Madrid, Spain, 2001.
- Mi, S. Material and mechanics performance of full depth asphalt pavement. Fresenius Environ. Bull. 2019, 28, 2063–2066. [Google Scholar]
- Ismail, A.; Baghini, M.S.; Karim, M.R.; Shokri, F.; Al-Mansob, R.A.; Firoozi, A.A.; Firoozi, A.A. Laboratory Investigation on the Strength Characteristics of Cement-Treated Base. Appl. Mech. Mater. 2014, 507, 353–360. [Google Scholar] [CrossRef]
- Otte, E. A Structural Design Procedure for Cement-Treated Layers in. Pavements.Sc.D. Thesis, University of Pretoria, Pretoria, South Africa, 1978. [Google Scholar]
- Linares-Unamunzaga, A.; Gonzalo-Orden, H.; Minguela, J.; Pérez-Acebo, H. New Procedure for Compacting Prismatic Specimens of Cement-Treated Base Materials. Appl. Sci. 2018, 8, 970. [Google Scholar] [CrossRef]
- Linares-Unamunzaga, A.; Pérez-Acebo, H.; Rojo, M.; Gonzalo-Orden, H. Flexural Strength Prediction Models for Soil–Cement from Unconfined Compressive Strength at Seven Days. Materials 2019, 12, 387. [Google Scholar] [CrossRef]
- Kolias, S.; Williams, R.I.T. Cement-Bound Road Materials: Strength and Elastic Properties Measured in the Laboratory; Report SR 344; Transport and Road Research Laboratory: Crowthorne, UK, 1978. [Google Scholar]
- Austroads. Publication No. AP–T101/08. The Development and Evaluation of Protocols for the Laboratory Characterisation of Cemented Materials.; Austroads: Sydney, Australia, 2008. [Google Scholar]
- Mansoor, J.; Shah, S.; Khan, M.; Sadiq, A.; Anwar, M.; Siddiq, M.; Ahmad, H. Analysis of Mechanical Properties of Self Compacted Concrete by Partial Replacement of Cement with Industrial Wastes under Elevated Temperature. Appl. Sci. 2018, 8, 364. [Google Scholar] [CrossRef]
- Díaz, J. El Estudio de Comportamiento de los Firmes Reciclados In Situ con Cemento (Study of the Behaviour of Pavements Recycled In Situ with Cement). Ph.D. Thesis, Universidad de Burgos, Burgos, Spain, 2011. [Google Scholar]
- American Society for Testing and Materials International (ASTM). D1632-17: Standard Practice for Making and Curing Soil-Cement Compression and Flexure Test Specimens in the Laboratory; ASTM: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Xuan, D.X.; Houben, L.J.M.; Molenaar, A.A.A.; Shui, Z.H. Mechanical properties of cement-treated aggregate material—A review. Mater. Des. 2012, 33, 496–502. [Google Scholar] [CrossRef]
- Lim, S.; Zollinger, D.G. Estimation of the compressive strength and modulus of elasticity of cement-treated aggregate base materials. Transp. Res. Rec. 2003, 1837, 30–38. [Google Scholar] [CrossRef]
- Kersten, M.S. Soil Stabilization with Portland Cement; National Academy of Sciences-National Research Council: Washington, DC, USA, 1961. [Google Scholar]
- Portland Cement Association (PCA). Soil-Cement Laboratory Handbook; PCA: Skokie, IL, USA, 1992. [Google Scholar]
- Asociación Española de Normalización y Certificación (AENOR). UNE-EN 197-1. Part 1: Composition, Specifications and Conformity Criteria for Common Cements; AENOR: Madrid, Spain, 2011. [Google Scholar]
- IECA-CEDEX. Manual de Firmes con Capas Tratadas con Cemento (Guideline for Pavements with Cement Bound Materials), 2nd ed.; Centro de Estudios y Experimentación de Obras Públicas (CEDEX): Madrid, Spain, 2003; p. 265. [Google Scholar]
- Asociación Española de Normalización y Certificación (AENOR). UNE 103-501-94: Geotechnic Compactation Test. Modified Proctor; AENOR: Madrid, Spain, 1994. [Google Scholar]
- American Society for Testing and Materials International (ASTM). D1557-12e1: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ftlbf/ft3 (2,700 kN-m/m3)); ASTM: West Conshohocken, PA, USA, 2012. [Google Scholar]
- American Society for Testing and Materials International (ASTM). D1634-00: Standard Test Method for Compressive Strength of Soil-Cement Using Portions of Beams Broken in Flexure (Modified Cube Method) (Withdrawn 2015); ASTM: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Asociación Española de Normalización y Certificación (AENOR). Norma UNE-EN 13286-41. Unbound and Hydraulically Bound Mixtures—Part 41: Test Method for the Determination of the Compressive Strength of Hydraulically Bound Mixtures; AENOR: Madrid, Spain, 2003. [Google Scholar]
- JCyL. Recomendaciones de Proyecto y Construcción de Firmes y Pavimentos (Recommendations for the Design and Construction of Road Pavements); Dirección General de Carreteras e Infraestructuras, Consejería de Fomento, Junta de Castilla y León: Valladolid, Spain, 2004. [Google Scholar]
- Asociación Española de Normalización y Certificación (AENOR). UNE-EN 12390-5. Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens; AENOR: Madrid, Spain, 2009. [Google Scholar]
- American Society for Testing and Materials International (ASTM). D1635/D1635M-12: Standard Test Method for Flexural Strength of Soil-Cement Using Simple Beam with Third-Point Loading; ASTM: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Asociación Española de Normalización y Certificación (AENOR). UNE-EN 12390-2. Part 2: Making and Curing Specimens for Strength Tests; AENOR: Madrid, Spain, 2009. [Google Scholar]
- CEDEX. Norma NLT-305/90. Resistencia a Compresión Simple de Materiales Tratados con Conglomerantes Hidráulicos (Unconfined Compressive Strength for Bound Materials); CEDEX, Dirección General de Carreteras, Ministerio de Fomento: Madrid, Spain, 1990. [Google Scholar]
- Asociación Española de Normalización y Certificación (AENOR). UNE-EN 12390-6. Testing Hardened Concrete—Part 6: Tensile Splitting Strength of Test Specimens; AENOR: Madrid, Spain, 2010. [Google Scholar]
- Thompson, M.R. Mechanistic Design Concepts for Stabilized Base Pavements; University of Illinois: Urbana, IL, USA, 1986; p. 52. [Google Scholar]
- Solís Villa, L.A.; Díaz Minguela, J. Los firmes con suelocemento en la Red Autonómica de Castilla y León (Pavements with soil-cement in the regional road network of Castilla y León). Cem. Hormig. 2002, 835, 74–89. [Google Scholar]
- Marshall, B.P.; Kennedy, T.W. Tensile and Elastic Characteristics of Pavement Materials; Research Report 183-1; Center for Highway Research, The University of Texas at Austin: Austin, TX, USA, 1974. [Google Scholar]
Main Standardized Component | Value | Cement Standardized Specifications | Value |
---|---|---|---|
Clinker (K) | 25–55% | Sulfate | ≤3.5% |
Silica fumes (D) 1 | 45–75% | Initial setting time | ≥60 min |
Natural pozzolans (P) 1 | Final setting time | ≤720 min | |
Calcined natural pozzolans (Q) 1 | Expansion | ≤10 mm | |
Siliceous fly ash (V) 1 | UCS at 28 days | 22.5 ≤ R ≤ 42.5 MPa | |
Calcareous fly ash (W) 1 | UCS at 90 days 2 | ≥32.5 MPa | |
Minority components | 0–5% | Puzzolanicity | 8 to 15 days |
Chlorides | ≤0.10% | - | - |
Sample | % Cement | Dry Density (g/cm3) | UCS at 7 Days (MPa) | Average UCS (MPa) |
---|---|---|---|---|
P1.1 | 3.0 | 2.151 | 1.757 | 2.071 |
P1.2 | 3.0 | 2.108 | 1.465 | |
P1.3 | 3.0 | 2.122 | 2.991 | |
P2.1 | 3.5 | 2.070 | 2.259 | 2.637 |
P2.2 | 3.5 | 2.143 | 2.560 | |
P2.3 | 3.5 | 2.151 | 3.092 |
Sample | FS (MPa) | UCS (MPa) | ITS (MPa) |
---|---|---|---|
S1 | 0.806 | 3.766 | 0.520 |
S2 | 0.598 | 3.344 | 0.313 |
S3 | 0.580 | 3.203 | 0.402 |
S4 | 0.775 | 3.947 | 0.447 |
S5 | 0.787 | 3.580 | 0.423 |
S6 | 0.610 | 3.317 | 0.398 |
S7 | 0.361 | 2.273 | 0.198 |
S8 | 0.350 | 2.896 | 0.273 |
S9 | 0.599 | 3.649 | 0.393 |
S10 | 0.366 | 2.169 | 0.209 |
S11 | 0.538 | 4.199 | 0.488 |
S12 | 0.667 | 4.340 | 0.483 |
S13 | 0.556 | 3.918 | 0.457 |
S14 | 0.221 | 2.313 | 0.155 |
S15 | 0.638 | 3.827 | 0.394 |
S16 | 0.427 | 2.919 | 0.174 |
S17 | 0.420 | 2.465 | 0.128 |
S18 | 0.585 | 5.103 | 0.314 |
S19 | 0.673 | 4.651 | 0.345 |
S20 | 0.609 | 4.559 | 0.427 |
S21 | 0.561 | 3.663 | 0.380 |
S22 | 0.516 | 3.660 | 0.379 |
S23 | 0.667 | 4.423 | 0.386 |
S24 | 0.501 | 3.600 | 0.310 |
Materials | UCSLT (MPa) | FSLT (MPa) | UCSLT/FSLT |
---|---|---|---|
Soil-cement | 4 | 0.9 | 4–5 |
Cement-bound granular material and compacted concrete | 8 | 1.6 | 5–6 |
FDR with cement | 3.73 (2.9 to 4.9) | 0.60 (0.53 to 0.69) | 6.21 |
Materials | ITSLT (MPa) | FSLT (MPa) | ITSLT/FSLT |
---|---|---|---|
Soil-cement | 0.4 | 0.9 | 0.4–0.5 |
Cement-bound granular material and compacted concrete | 0.8 | 1.6 | 0.5–0.6 |
FDR with cement | 0.40 (0.33 to 0.48) | 0.60 (0.53 to 0.69) | 0.67 |
Materials | UCSLT/ITSLT |
---|---|
Soil-cement, cement-bound granular material, compacted concrete | 8–10 |
FDR pavement with cement | 10.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalo-Orden, H.; Linares-Unamunzaga, A.; Pérez-Acebo, H.; Díaz-Minguela, J. Advances in the Study of the Behavior of Full-Depth Reclamation (FDR) with Cement. Appl. Sci. 2019, 9, 3055. https://doi.org/10.3390/app9153055
Gonzalo-Orden H, Linares-Unamunzaga A, Pérez-Acebo H, Díaz-Minguela J. Advances in the Study of the Behavior of Full-Depth Reclamation (FDR) with Cement. Applied Sciences. 2019; 9(15):3055. https://doi.org/10.3390/app9153055
Chicago/Turabian StyleGonzalo-Orden, Hernán, Alaitz Linares-Unamunzaga, Heriberto Pérez-Acebo, and Jesús Díaz-Minguela. 2019. "Advances in the Study of the Behavior of Full-Depth Reclamation (FDR) with Cement" Applied Sciences 9, no. 15: 3055. https://doi.org/10.3390/app9153055
APA StyleGonzalo-Orden, H., Linares-Unamunzaga, A., Pérez-Acebo, H., & Díaz-Minguela, J. (2019). Advances in the Study of the Behavior of Full-Depth Reclamation (FDR) with Cement. Applied Sciences, 9(15), 3055. https://doi.org/10.3390/app9153055