A Reflective Augmented Reality Integral Imaging 3D Display by Using a Mirror-Based Pinhole Array
Abstract
:1. Introduction
2. Principle
2.1. Pinhole Array Based II Display
2.2. Proposed Reflective AR Display
3. Experiments and Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Azuma, R.; Baillot, Y.; Behringer, R.; Feiner, S.; Julier, S.; MacIntyre, B. Recent advances in augmented reality. IEEE Comput. Graph. Appl. 2001, 21, 34–47. [Google Scholar] [CrossRef]
- Azuma, R.T. A survey of augmented reality. Presence Teleoper. Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Van Krevelen, R. Augmented Reality: Technologies, Applications, and Limitations. 2007. Available online: https://www.researchgate.net/publication/292150312_Augmented_Reality_Technologies_Applications_and_Limitations (accessed on 30 June 2019).
- Zhou, F.; Duh, H.B.L.; Billinghurst, M. Trends in Augmented Reality Tracking, Interaction and Display: A Review of Ten Years of ISMAR. In Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, Cambridge, UK, 15–18 September 2008; pp. 193–202. [Google Scholar]
- Carmigniani, J.; Furht, B.; Anisetti, M.; Ceravolo, P.; Damiani, E.; Ivkovic, M. Augmented reality technologies, systems and applications. Multimed. Tools Appl. 2011, 51, 341–377. [Google Scholar] [CrossRef]
- Kang, X.; Azizian, M.; Wilson, E.; Wu, K.; Martin, A.D.; Kane, T.D.; Peters, C.A.; Cleary, K.; Shekhar, R. Stereoscopic augmented reality for laparoscopic surgery. Surg. Endosc. 2014, 28, 2227–2235. [Google Scholar] [CrossRef] [PubMed]
- Li, L. Application of Augmented Reality Technology in Piano Teaching System Design. Educ. Sci. Theory Pract. 2018, 18, 1712–1721. [Google Scholar] [CrossRef]
- Wang, J.C.; Suenaga, H.; Liao, H.G.; Hoshi, K.; Yang, L.J.; Kobayashi, E.; Sakuma, I. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation. Comput. Med. Imaging Graph. 2015, 40, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, F.; Fontana, U.; Carbone, M.; D’Amato, R.; Ferrari, V. Hybrid Video/Optical See-Through HMD. In Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality (Ismar-Adjunct), Nantes, France, 9–13 October 2017; Volume 31, pp. 52–57. [Google Scholar]
- Genc, Y.; Sauer, F.; Wenzel, F.; Tuceryan, M.; Navab, N. Optical see-through HMD calibration: A stereo method validated with a video see-through system. In Proceedings of the IEEE and ACM International Symposium on Augmented Reality, Munich, Germany, 5–6 October 2000; pp. 165–174. [Google Scholar]
- Hua, H.; Javidi, B. A 3D integral imaging optical see-through head-mounted display. Opt. Express 2014, 22, 13484–13491. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, Y.; Zhou, P.; Chen, Q.; Su, Y. Reverse-mode PSLC multi-plane optical see-through display for AR applications. Opt. Express 2018, 26, 3394–3403. [Google Scholar] [CrossRef]
- Shen, X.; Javidi, B. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens. Appl. Optics. 2018, 57, B184–B189. [Google Scholar] [CrossRef]
- Caruso, G.; Cugini, U. Augmented Reality Video See-through HMD Oriented to Product Design Assessment. In Proceedings of the International Conference on Virtual and Mixed Reality, Las Vegas, FL, USA, 15–20 July 2009; Volume 5622, pp. 532–541. [Google Scholar]
- Cutolo, F.; Ferrari, V. The Role of Camera Convergence in Stereoscopic Video See-through Augmented Reality Displays. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 12–17. [Google Scholar] [CrossRef]
- Jung-Young, S.; Shin-Hwan, K.; Dae-Sik, K.; Javidi, B.; Kae-Dal, K. Image-Forming Principle of Integral Photography. J. Disp. Technol. 2008, 4, 324–331. [Google Scholar] [CrossRef]
- Lippmann, G. Reversible test prints. Integral photographies. Cr. Hebd. Acad. Sci. 1908, 146, 446–451. [Google Scholar]
- Xiao, X.; Javidi, B.; Martinez-Corral, M.; Stern, A. Advances in three-dimensional integral imaging: Sensing, display, and applications. Appl. Opt. 2013, 52, 546–560. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Wang, Y.; Hua, H.; Sasian, J. Design of a wide-angle, lightweight head-mounted display using free-form optics tiling. Opt. Lett. 2011, 36, 2098–2100. [Google Scholar] [CrossRef]
- Kim, S.-B.; Park, J.-H. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox. Opt. Lett. 2018, 43, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Min, S.-W.; Lee, B. Integral floating display systems for augmented reality. Appl. Opt. 2012, 51, 4201–4209. [Google Scholar] [CrossRef] [PubMed]
- He, M.Y.; Zhang, H.L.; Deng, H.; Li, X.W.; Li, D.H.; Wang, Q.H. Dual-view-zone tabletop 3D display system based on integral imaging. Appl. Opt. 2018, 57, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.L.; Deng, H.; Yu, W.T.; He, M.Y.; Li, D.H.; Wang, Q.H. Tabletop augmented reality 3D display system based on integral imaging. J. Opt. Soc. Am. B 2017, 34, B16–B21. [Google Scholar] [CrossRef]
- Jang, C.; Hong, K.; Yeom, J.; Lee, B. See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element. Opt. Express 2014, 22, 27958–27967. [Google Scholar] [CrossRef]
- Deng, H.; Chen, C.; He, M.-Y.; Li, J.-J.; Zhang, H.-L.; Wang, Q.-H. High-resolution augmented reality 3D display with use of a lenticular lens array holographic optical element. J. Opt. Soc. Am. A 2019, 36, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Wang, Q.-H.; Wu, F.; Luo, C.-G.; Liu, Y. Cross-talk-free integral imaging three-dimensional display based on a pyramid pinhole array. Photonics Res. 2015, 3, 173–176. [Google Scholar] [CrossRef]
- Deng, H.; Wang, Q.H.; Li, L.; Li, D.H. An integral-imaging three-dimensional display with wide viewing angle. J. Soc. Inf. Disp. 2011, 19, 679–684. [Google Scholar] [CrossRef]
- Deng, H.; Wang, Q.; Li, D. Method of generating orthoscopic elemental image array from sparse camera array. Chin. Opt. Lett. 2012, 10, 061102. [Google Scholar] [CrossRef]
- Schwarz, A.; Wang, J.G.; Shemer, A.; Zalevsky, Z.; Javidi, B. Lensless three-dimensional integral imaging using variable and time multiplexed pinhole array. Opt. Lett. 2015, 40, 1814–1817. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.; Oh, Y.S. Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display. Opt. Express 2004, 12, 557–563. [Google Scholar] [CrossRef] [PubMed]
Components | Specifications | Values |
---|---|---|
Projector | Resolution Product model luminance | 3840 pixels × 2160 pixels BenQ HD2934 2000-2999 lm |
EIA | Resolution Size Pixel pitch Resolution of each EI | 3840 pixels × 2160 pixels 250 mm × 140 mm 65.1 µm 23 pixels × 23 pixels |
MBPA | Pinhole size Pinhole pitch Numbers of pinholes Thickness of MBPA viewing angle Spatial angle resolution | 0.25 mm 1.5 mm 167 × 94 0.2 mm 41.1° 0.575 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Deng, H.; Pang, S.; Jiang, W.; Wang, Q. A Reflective Augmented Reality Integral Imaging 3D Display by Using a Mirror-Based Pinhole Array. Appl. Sci. 2019, 9, 3124. https://doi.org/10.3390/app9153124
Li Q, Deng H, Pang S, Jiang W, Wang Q. A Reflective Augmented Reality Integral Imaging 3D Display by Using a Mirror-Based Pinhole Array. Applied Sciences. 2019; 9(15):3124. https://doi.org/10.3390/app9153124
Chicago/Turabian StyleLi, Qiang, Huan Deng, Senlin Pang, Wenhao Jiang, and Qionghua Wang. 2019. "A Reflective Augmented Reality Integral Imaging 3D Display by Using a Mirror-Based Pinhole Array" Applied Sciences 9, no. 15: 3124. https://doi.org/10.3390/app9153124
APA StyleLi, Q., Deng, H., Pang, S., Jiang, W., & Wang, Q. (2019). A Reflective Augmented Reality Integral Imaging 3D Display by Using a Mirror-Based Pinhole Array. Applied Sciences, 9(15), 3124. https://doi.org/10.3390/app9153124