Verdet Constant of Magneto-Active Materials Developed for High-Power Faraday Devices
Abstract
:1. Introduction
1.1. Faraday Effect and Its Applications
1.2. Thermal Effects in High-Power Faraday Devices
1.3. Methods for the Thermal Effects Compensation or Reduction
- A method for simultaneous characterization of the Verdet constant wavelength and temperature dependence.
- A brief summary of the reported room-temperature investigations of the Verdet constant for several magneto-active materials suitable for the high-power FDs.
2. Characterization of the Verdet Constant as a Function of Wavelength and Temperature
2.1. Experimental Setup for the Characterization
2.2. Model Function for the Verdet Constant Temperature-Wavelength Dependence
3. Verdet Constant Investigations of Magneto-Active Materials Developed for High-Power Faraday Devices
- Fitting parameters () of the single-transition model in Equation (13), which could be used for the description of the listed materials’ Verdet constant wavelength dependence within the discussed spectral region.
- Values of the Verdet constant at two wavelengths selected from the spectral region.
- Additional references leading to further investigations of the parameters related to the high-power benchmarking (e.g., Verdet constant temperature dependence, Q and P constants, optical anisotropy parameter, thermal properties or LIDT tests) or to studies dealing with the optimization of the fabrication process of the listed materials.
3.1. UV Region ( < 400 nm)
3.2. VIS-NIR Region ( < 1100 nm)
3.3. NIR-MIR Region ( > 1100 nm)
4. Conclusions
- Optical layout for compensation of the thermally-induced polarization and wavefront distortions
- Enhancement of the applied magnetic field
- Design of optimal geometry and cooling of the magneto-optical elements
- Development of new magneto-active materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zvezdin, A.K.; Kotov, V.A. Modern Magnetooptics and Magnetooptical Materials, 1 ed.; Taylor & Francis Group: New York, NY, USA, 1997; pp. 1–109. [Google Scholar]
- Scott, G.; Lacklison, D. Magnetooptic properties and applications of bismuth substituted iron garnets. IEEE Trans. Magn. 1976, 12, 292–311. [Google Scholar] [CrossRef]
- Dötsch, H.; Bahlmann, N.; Zhuromskyy, O.; Hammer, M.; Wilkens, L.; Gerhardt, R.; Hertel, P.; Popkov, A.F. Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B 2005, 22, 240–253. [Google Scholar] [CrossRef]
- Stadler, B.J.H.; Mizumoto, T. Integrated Magneto-Optical Materials and Isolators: A Review. IEEE Photonics J. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Shoji, Y.; Mizumoto, T.; Shoji, Y.; Mizumoto, T. Silicon Waveguide Optical Isolator with Directly Bonded Magneto-Optical Garnet. Appl. Sci. 2019, 9, 609. [Google Scholar] [CrossRef]
- Kumari, S.; Chakraborty, S. Study of different magneto-optic materials for current sensing applications. J. Sens. Sens. Syst. 2018, 7, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Palashov, O.V.; Zheleznov, D.S.; Voitovich, A.V.; Zelenogorsky, V.V.; Kamenetsky, E.E.; Khazanov, E.A.; Martin, R.M.; Dooley, K.L.; Williams, L.; Lucianetti, A.; et al. High-vacuum-compatible high-power Faraday isolators for gravitational-wave interferometers. J. Opt. Soc. Am. B 2012, 29, 1784–1792. [Google Scholar] [CrossRef] [Green Version]
- Weng, S.; Zhao, Q.; Sheng, Z.; Yu, W.; Luan, S.; Chen, M.; Yu, L.; Murakami, M.; Mori, W.B.; Zhang, J. Extreme case of Faraday effect: Magnetic splitting of ultrashort laser pulses in plasmas. Optica 2017, 4, 1086–1091. [Google Scholar] [CrossRef]
- Kiriyama, H.; Mori, M.; Pirozhkov, A.S.; Ogura, K.; Sagisaka, A.; Kon, A.; Esirkepov, T.Z.; Hayashi, Y.; Kotaki, H.; Kanasaki, M.; et al. High-contrast, high-intensity petawatt-class laser and applications. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 232–249. [Google Scholar] [CrossRef]
- Danson, C.; Hillier, D.; Hopps, N.; Neely, D. Petawatt class lasers worldwide. High Power Laser Sci. Eng. 2015, 3, e3. [Google Scholar] [CrossRef]
- Mason, P.; Divoký, M.; Ertel, K.; Pilař, J.; Butcher, T.; Hanuš, M.; Banerjee, S.; Phillips, J.; Smith, J.; De Vido, M.; et al. Kilowatt average power 100 J-level diode pumped solid state laser. Optica 2017, 4, 438–439. [Google Scholar] [CrossRef]
- Fujioka, K.; Mochida, T.; Fujimoto, Y.; Tokita, S.; Kawanaka, J.; Maruyama, M.; Sugiyama, A.; Miyanaga, N. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance. Opt. Mater. 2018, 79, 353–357. [Google Scholar] [CrossRef]
- Chi, H.; Dehne, K.A.; Baumgarten, C.M.; Wang, H.; Yin, L.; Reagan, B.A.; Rocca, J.J. In situ 3-D temperature mapping of high average power cryogenic laser amplifiers. Opt. Express 2018, 26, 5240–5252. [Google Scholar] [CrossRef] [PubMed]
- Furuse, H.; Koike, Y.; Yasuhara, R. Sapphire/Nd:YAG composite by pulsed electric current bonding for high-average-power lasers. Opt. Lett. 2018, 43, 3065–3068. [Google Scholar] [CrossRef] [PubMed]
- Snetkov, I.L.; Voitovich, A.V.; Palashov, O.V.; Khazanov, E.A. Review of faraday isolators for kilowatt average power lasers. IEEE J. Quantum Electron. 2014, 50, 434–443. [Google Scholar] [CrossRef]
- Khazanov, E. Thermooptics of magnetoactive medium: Faraday isolators for high average power lasers. Uspekhi Fiz. Nauk 2016, 186, 975–1000. [Google Scholar] [CrossRef] [Green Version]
- Khazanov, E.A. Compensation of thermally induced polarization distortions in Faraday isolators. Quantum Electron. 1999, 29, 59–64. [Google Scholar] [CrossRef]
- Khazanov, E.; Andreev, N.F.; Mal’shakov, A.; Palashov, O.; Poteomkin, A.K.; Sergeev, A.; Shaykin, A.A.; Zelenogorsky, V.; Ivanov, I.A.; Amin, R.; et al. Compensation of thermally induced modal distortions in Faraday isolators. IEEE J. Quantum Electron. 2004, 40, 1500–1510. [Google Scholar] [CrossRef]
- Snetkov, I.; Mukhin, I.; Palashov, O.; Khazanov, E. Compensation of thermally induced depolarization in Faraday isolators for high average power lasers. Opt. Express 2011, 19, 6366–6376. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Palashov, O.V. Compensation of thermal effects in Faraday isolator for high average power lasers. Appl. Phys. B Lasers Opt. 2012, 109, 239–247. [Google Scholar] [CrossRef]
- Shiraishi, K.; Tajima, F.; Kawakami, S. Compact Faraday rotator for an optical isolator using magnets arranged with alternating polarities. Opt. Lett. 1986, 11, 82–84. [Google Scholar] [CrossRef]
- Gauthier, D.J.; Narum, P.; Boyd, R.W. Simple, compact, high-performance permanent-magnet Faraday isolator. Opt. Lett. 1986, 11, 623–625. [Google Scholar] [CrossRef] [Green Version]
- Fischer, G.L.; Moore, T.R.; Boyd, R.W. Enhancement of the Uniformity and Rotation of Large Aperture, Permanent Magnet, Tunable Faraday Rotators. J. Mod. Opt. 1995, 42, 1137–1143. [Google Scholar] [CrossRef]
- Mukhin, I.; Voitovich, A.; Palashov, O.; Khazanov, E. 2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers. Opt. Commun. 2009, 282, 1969–1972. [Google Scholar] [CrossRef]
- Trénec, G.; Volondat, W.; Cugat, O.; Vigué, J. Permanent magnets for Faraday rotators inspired by the design of the magic sphere. Appl. Opt. 2011, 50, 4788–4797. [Google Scholar] [CrossRef]
- Mironov, E.A.; Snetkov, I.L.; Voitovich, A.V.; Palashov, O.V. Permanent-magnet Faraday isolator with the field intensity of 25 kOe. Quantum Electron. 2013, 43, 740–743. [Google Scholar] [CrossRef]
- Mukhin, I.B.; Khazanov, E.A. Use of thin discs in Faraday isolators for high-average-power lasers. Quantum Electron. 2004, 34, 973–978. [Google Scholar] [CrossRef]
- Palashov, O.V.; Ievlev, I.B.; Perevezentsev, E.A.; Katin, E.V.; Khazanov, E.A. Cooling and thermal stabilisation of Faraday rotators in the temperature range 300-200 K using Peltier elements. Quantum Electron. 2011, 41, 858–861. [Google Scholar] [CrossRef]
- Slezak, O.; Yasuhara, R.; Lucianetti, A.; Vojna, D.; Mocek, T. Thermally induced depolarization in terbium gallium garnet ceramics rod with natural convection cooling. J. Opt. 2015, 17. [Google Scholar] [CrossRef]
- Zheleznov, D.S.; Mukhin, I.B.; Palashov, O.V.; Khazanov, E.A.; Voitovich, A.V. Faraday Rotators with Short Magneto-Optical Elements for 50-kW Laser Power. IEEE J. Quantum Electron. 2007, 43, 451–457. [Google Scholar] [CrossRef]
- Zheleznov, D.S.; Zelenogorskii, V.V.; Katin, E.V.; Mukhin, I.B.; Palashov, O.V.; Khazanov, E.A. Cryogenic Faraday isolator. Quantum Electron. 2010, 40, 276–281. [Google Scholar] [CrossRef]
- Starobor, A.V.; Zheleznov, D.S.; Palashov, O.V.; Khazanov, E.A. Magnetoactive media for cryogenic Faraday isolators. J. Opt. Soc. Am. B 2011, 28, 1409–1415. [Google Scholar] [CrossRef]
- Weber, M.J. Faraday Rotator Materials For Laser Systems. Proc. SPIE 1987, 681, 75–90. [Google Scholar] [CrossRef]
- Dai, J.; Li, J. Promising magneto-optical ceramics for high power Faraday isolators. Scr. Mater. 2018, 155, 78–84. [Google Scholar] [CrossRef]
- Mukhin, I.B.; Palashov, O.V.; Khazanov, E.A.; Ivanov, I.A. Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers. J. Exp. Theor. Phys. Lett. 2005, 81, 90–94. [Google Scholar] [CrossRef]
- Snetkov, I.; Vyatkin, A.; Palashov, O.; Khazanov, E. Drastic reduction of thermally induced depolarization in CaF_2 crystals with [111] orientation. Opt. Express 2012, 20, 13357–13367. [Google Scholar] [CrossRef]
- Yasuhara, R.; Snetkov, I.; Starobor, A.; Mironov, E.; Palashov, O. Faraday rotator based on TSAG crystal with <001> orientation. Opt. Express 2016, 24, 15486–15493. [Google Scholar] [CrossRef]
- Snetkov, I.L. Features of Thermally Induced Depolarization in Magneto-Active Media With Negative Optical Anisotropy Parameter. IEEE J. Quantum Electron. 2018, 54, 1–8. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Mukhin, I.B.; Palashov, O.V.; Khazanov, E.A. Properties of a thermal lens in laser ceramics. Quantum Electron. 2007, 37, 633–638. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Silin, D.E.; Palashov, O.V.; Khazanov, E.A.; Yagi, H.; Yanagitani, T.; Yoneda, H.; Shirakawa, A.; Ueda, K.i.; Kaminskii, A.A. Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials. Opt. Express 2013, 21, 21254–21263. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Yasuhara, R.; Starobor, A.V.; Mironov, E.A.; Palashov, O.V. Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals. IEEE J. Quantum Electron. 2015, 51, 1–7. [Google Scholar] [CrossRef]
- Mironov, E.A.; Volkov, M.R.; Palashov, O.V.; Karimov, D.N.; Khaydukov, E.V.; Ivanov, I.A. Thermo-optical properties of EuF2-based crystals. Appl. Phys. Lett. 2019, 114, 073506. [Google Scholar] [CrossRef]
- Yakovlev, A.; Snetkov, I.; Palashov, O. The dependence of optical anisotropy parameter on dopant concentration in Yb:CaF2 and Tb:CaF2 crystals. Opt. Mater. 2018, 77, 127–131. [Google Scholar] [CrossRef]
- Flores, J.L.; Ferrari, J.A. Verdet constant dispersion measurement using polarization-stepping techniques. Appl. Opt. 2008, 47, 4396–4399. [Google Scholar] [CrossRef]
- Slezák, O.; Yasuhara, R.; Lucianetti, A.; Mocek, T. Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant. Opt. Mater. Express 2016, 6, 3683–3691. [Google Scholar] [CrossRef]
- Vojna, D.; Yasuhara, R.; Slezák, O.; Mužík, J.; Lucianetti, A.; Mocek, T. Verdet constant dispersion of CeF3 in the visible and near-infrared spectral range. Opt. Eng. 2017, 56, 067105. [Google Scholar] [CrossRef]
- Vojna, D.; Yasuhara, R.; Furuse, H.; Slezak, O.; Hutchinson, S.; Lucianetti, A.; Mocek, T.; Cech, M. Faraday effect measurements of holmium oxide (Ho2O2) ceramics-based magneto-optical materials. High Power Laser Sci. Eng. 2018, 6, e2. [Google Scholar] [CrossRef]
- Slezák, O.; Yasuhara, R.; Vojna, D.; Furuse, H.; Lucianetti, A.; Mocek, T. Temperature-wavelength dependence of Verdet constant of Dy2O3 ceramics. Opt. Mater. Express 2019, 9, 2971–2981. [Google Scholar] [CrossRef]
- Barnes, N.P.; Petway, L.B. Variation of the Verdet constant with temperature of terbium gallium garnet. J. Opt. Soc. Am. B 1992, 9, 1912–1915. [Google Scholar] [CrossRef]
- Karimov, D.N.; Sobolev, B.P.; Ivanov, I.A.; Kanorsky, S.I.; Masalov, A.V. Growth and magneto-optical properties of Na0.37Tb0.63F2.26 cubic single crystal. Crystallogr. Rep. 2014, 59, 718–723. [Google Scholar] [CrossRef]
- Yasuhara, R.; Tokita, S.; Kawanaka, J.; Kawashima, T.; Kan, H.; Yagi, H.; Nozawa, H.; Yanagitani, T.; Fujimoto, Y.; Yoshida, H.; et al. Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics. Opt. Express 2007, 15, 11255–11261. [Google Scholar] [CrossRef]
- Majeed, H.; Shaheen, A.; Anwar, M.S. Complete Stokes polarimetry of magneto-optical Faraday effect in a terbium gallium garnet crystal at cryogenic temperatures. Opt. Express 2013, 21, 25148–25158. [Google Scholar] [CrossRef]
- Serber, R. The Theory of the Faraday Effect in Molecules. Phys. Rev. 1932, 41, 489–506. [Google Scholar] [CrossRef]
- Van Vleck, J.H.; Hebb, M.H. On the paramagnetic rotation of tysonite. Phys. Rev. 1934, 46, 17–32. [Google Scholar] [CrossRef]
- Buckingham, A.D.; Stephens, P.J. Magnetic Optical Activity. Annu. Rev. Phys. Chem. 1966, 17, 399–432. [Google Scholar] [CrossRef]
- Mukimov, K.M.; Sokolov, B.Y.; Valiev, U.V. The Faraday Effect of Rare-Earth Ions in Garnets. Phys. Status Solidi (a) 1990, 119, 307–315. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005; pp. 297–361. [Google Scholar]
- Slezak, O.; Yasuhara, R.; Lucianetti, A.; Mocek, T. Wavelength dependence of magneto-optic properties of terbium gallium garnet ceramics. Opt. Express 2015, 23, 13641–13647. [Google Scholar] [CrossRef]
- Vasyliev, V.; Villora, E.G.; Nakamura, M.; Sugahara, Y.; Shimamura, K. UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3. Opt. Express 2012, 20, 14460–14470. [Google Scholar] [CrossRef]
- Mironov, E.A.; Starobor, A.V.; Snetkov, I.L.; Palashov, O.V.; Furuse, H.; Tokita, S.; Yasuhara, R. Thermo-optical and magneto-optical characteristics of CeF3 crystal. Opt. Mater. 2017, 69, 196–201. [Google Scholar] [CrossRef]
- Molina, P.; Vasyliev, V.; Víllora, E.G.; Shimamura, K. CeF3 and PrF3 as UV-Visible Faraday rotators. Opt. Express 2011, 19, 11786–11791. [Google Scholar] [CrossRef]
- Berger, S.B.; Rubinstein, C.B.; Kurkjian, C.R.; Treptow, A.W. Faraday Rotation of Rare-Earth (III) Phosphate Glasses. Phys. Rev. 1964, 133, A723–A727. [Google Scholar] [CrossRef]
- Rubinstein, C.B.; Van Uitert, L.G.; Grodkiewicz, W.H. Magneto-Optical Properties of Rare Earth (III) Aluminum Garnets. J. Appl. Phys. 1964, 35, 3069–3070. [Google Scholar] [CrossRef]
- Rubinstein, C.B.; Berger, S.B.; Van Uitert, L.G.; Bonner, W.A. Faraday Rotation of Rare-Earth (III) Borate Glasses. J. Appl. Phys. 1964, 35, 2338–2340. [Google Scholar] [CrossRef]
- Crossley, W.A.; Cooper, R.W.; Page, J.L.; van Stapele, R.P. Faraday Rotation in Rare-Earth Iron Garnets. Phys. Rev. 1969, 181, 896–904. [Google Scholar] [CrossRef]
- Potseluyko, A.; Edelman, I.; Malakhovskii, A.; Yeshurun, Y.; Zarubina, T.; Zamkov, A.; Zaitsev, A. RE containing glasses as effective magneto-optical materials for 200–400 nm range. Microelectron. Eng. 2003, 69, 216–220. [Google Scholar] [CrossRef]
- Tanaka, K.; Tatehata, N.; Fujita, K.; Hirao, K.; Soga, N. The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing. J. Phys. D Appl. Phys. 1998, 31, 2622–2627. [Google Scholar] [CrossRef]
- Qiu, J.; Tanaka, K.; Sugimoto, N.; Hirao, K. Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses. J. Non-Cryst. Solids 1997, 213-214, 193–198. [Google Scholar] [CrossRef]
- Petrovskii, G.; Edelman, I.; Zarubina, T.; Malakhovskii, A.; Zabluda, V.; Ivanov, M. Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region. J. Non-Cryst. Solids 1991, 130, 35–40. [Google Scholar] [CrossRef]
- Koralewski, M. Dispersion of the faraday rotation in KDP-type crystals by pulse high magnetic field. Phys. Status Solidi (a) 1981, 65, K49–K53. [Google Scholar] [CrossRef]
- Dexter, J.; Landry, J.; Cooper, D.; Reintjes, J. Ultraviolet optical isolators utilizing KDP-isomorphs. Opt. Commun. 1990, 80, 115–118. [Google Scholar] [CrossRef]
- Weber, M.J.; Morgret, R.; Leung, S.Y.; Griffin, J.A.; Gabbe, D.; Linz, A. Magneto-optical properties of KTb3F10 and LiTbF4 crystals. J. Appl. Phys. 1978, 49, 3464–3469. [Google Scholar] [CrossRef]
- Leycuras, C.; Le Gall, H.; Guillot, M.; Marchand, A. Magnetic susceptibility and Verdet constant in rare earth trifluorides. J. Appl. Phys. 1984, 55, 2161–2163. [Google Scholar] [CrossRef]
- Xu, Y.; Duan, M. Theory of Faraday rotation and susceptibility of rare-earth trifluorides. Phys. Rev. B 1992, 46, 11636–11641. [Google Scholar] [CrossRef]
- Víllora, E.G.; Shimamura, K.; Plaza, G.R. Ultraviolet-visible optical isolators based on CeF3 Faraday rotator. J. Appl. Phys. 2015, 117, 8–12. [Google Scholar] [CrossRef]
- Zelmon, D.E.; Erdman, E.C.; Stevens, K.T.; Foundos, G.; Kim, J.R.; Brady, A. Optical properties of lithium terbium fluoride and implications for performance in high power lasers. Appl. Opt. 2016, 55, 834–837. [Google Scholar] [CrossRef]
- Villaverde, A.B.; Donatti, D.A.; Bozinis, D.G. Terbium gallium garnet Verdet constant measurements with pulsed magnetic field. J. Phys. C: Solid State Phys. 1978, 11, L495–L498. [Google Scholar] [CrossRef]
- Slack, G.A.; Oliver, D.W. Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions. Phys. Rev. B 1971, 4, 592–609. [Google Scholar] [CrossRef]
- Wynands, R.; Diedrich, F.; Meschede, D.; Telle, H.R. A compact tunable 60-dB Faraday optical isolator for the near infrared. Rev. Sci. Instrum. 1992, 63, 5586–5590. [Google Scholar] [CrossRef]
- Khazanov, E.; Kulagin, O.; Yoshida, S.; Tanner, D.; Reitze, D. Investigation of self-induced depolarization of laser radiation in terbium gallium garnet. IEEE J. Quantum Electron. 1999, 35, 1116–1122. [Google Scholar] [CrossRef]
- Víllora, E.G.; Molina, P.; Nakamura, M.; Shimamura, K.; Hatanaka, T.; Funaki, A.; Naoe, K. Faraday rotator properties of {Tb3}Sc1.95Lu0.05(Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators. Appl. Phys. Lett. 2011, 99, 1–4. [Google Scholar] [CrossRef]
- Linares, R.C. Growth of garnet laser crystals. Solid State Commun. 1964, 2, 229–231. [Google Scholar] [CrossRef]
- Mironov, E.A.; Zheleznov, D.S.; Starobor, A.V.; Voitovich, A.V.; Palashov, O.V.; Bulkanov, A.M.; Demidenko, A.G. Large-aperture Faraday isolator based on a terbium gallium garnet crystal. Opt. Lett. 2015, 40, 2794–2797. [Google Scholar] [CrossRef]
- Malshakov, A.N.; Pasmanik, G.A.; Potemkin, A.K. Comparative characteristics of magneto-optical materials. Appl. Opt. 1997, 36, 6403–6410. [Google Scholar] [CrossRef]
- Hayakawa, T.; Nogami, M.; Nishi, N.; Sawanobori, N. Faraday Rotation Effect of Highly Tb2O3/Dy2O3- Concentrated B2O3-Ga2O3-SiO2-P2O5 Glasses. Chem. Mater. 2002, 14, 3223–3225. [Google Scholar] [CrossRef]
- Gao, G.; Winterstein-Beckmann, A.; Surzhenko, O.; Dubs, C.; Dellith, J.; Schmidt, M.A.; Wondraczek, L. Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics. Sci. Rep. 2015, 5, 8942. [Google Scholar] [CrossRef]
- Ding, J.; Man, P.; Chen, Q.; Guo, L.; Hu, X.; Xiao, Y.; Su, L.; Wu, A.; Zhou, Y.; Zeng, F. Influence of Tb3+ concentration on the optical properties and Verdet constant of magneto-optic ABS-PZZ glass. Opt. Mater. 2017, 69, 202–206. [Google Scholar] [CrossRef]
- Yin, H.; Gao, Y.; Guo, H.; Wang, C.; Yang, C. Effect of B2O3 Content and Microstructure on Verdet Constant of Tb2O3-Doped GBSG Magneto-Optical Glass. J. Phys. Chem. C 2018, 122, 16894–16900. [Google Scholar] [CrossRef]
- Yakovlev, A.; Snetkov, I.; Dorofeev, V.; Motorin, S. Magneto-optical properties of high-purity zinc-tellurite glasses. J. Non-Cryst. Solids 2018, 480, 90–94. [Google Scholar] [CrossRef]
- Geho, M.; Sekijima, T.; Fujii, T. Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine. J. Cryst. Growth 2004, 267, 188–193. [Google Scholar] [CrossRef]
- Liu, H.; Zhan, G.; Wu, G.; Song, C.; Wu, X.; Xu, Q.; Chen, X.; Hu, X.; Zhuang, N.; Chen, J. Improved Edge-defined film-fed growth of incongruent-melting Tb3Al5O12 crystal with high magneto-optical and thermal performances. Cryst. Growth Des. 2019, 19, 1525–1531. [Google Scholar] [CrossRef]
- Ganschow, S.; Klimm, D.; Reiche, P.; Uecker, R. On the Crystallization of Terbium Aluminium Garnet. Cryst. Res. Technol. 1999, 34, 615–619. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Zhou, S.; Teng, H. Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications. Opt. Mater. 2011, 33, 1833–1836. [Google Scholar] [CrossRef]
- Zheleznov, D.; Starobor, A.; Palashov, O.; Chen, C.; Zhou, S. High-power Faraday isolators based on TAG ceramics. Opt. Express 2014, 22, 2578–2583. [Google Scholar] [CrossRef]
- Zheleznov, D.; Starobor, A.; Palashov, O.; Lin, H.; Zhou, S. Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping. Opt. Lett. 2014, 39, 2183–2186. [Google Scholar] [CrossRef]
- Starobor, A.; Zheleznov, D.; Palashov, O.; Chen, C.; Zhou, S.; Yasuhara, R. Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power. Opt. Mater. Express 2014, 4, 2127–2132. [Google Scholar] [CrossRef]
- Dai, J.; Pan, Y.; Li, X.; Xie, T.; Yang, Z.; Li, J. Fabrication and properties of (Tb1 - xCex)3Al5O12 magneto-optical ceramics with different doping concentrations. Scr. Mater. 2018, 155, 46–49. [Google Scholar] [CrossRef]
- Starobor, A.; Palashov, O.; Zhou, S. Thermo-optical properties of terbium-aluminum garnet ceramics doped with silicon and titanium. Opt. Lett. 2016, 41, 1510–1513. [Google Scholar] [CrossRef]
- Furuse, H.; Yasuhara, R.; Hiraga, K.; Zhou, S. High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics. Opt. Mater. Express 2016, 6, 191–196. [Google Scholar] [CrossRef]
- Dai, J.; Pan, Y.; Xie, T.; Kou, H.; Li, J. A novel (Tb0.995Ho0.005)3Al5O12 magneto-optical ceramic with high transparency and Verdet constant. Scr. Mater. 2018, 150, 160–163. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Dai, J.; Yang, Z.; Xie, T.; Li, J. Fabrication and characterizations of (Tb1 - xPrx)3Al5O12 magneto-optical ceramics for Faraday isolators. Opt. Mater. 2018, 84, 330–334. [Google Scholar] [CrossRef]
- Hao, D.; Chen, J.; Ao, G.; Tian, Y.; Tang, Y.; Yi, X.; Zhou, S. Fabrication and performance investigation of Thulium-doped TAG transparent ceramics with high magneto-optical properties. Opt. Mater. 2019, 94, 311–315. [Google Scholar] [CrossRef]
- Dai, J.; Pan, Y.; Chen, H.; Xie, T.; Kou, H.; Li, J. Synthesis of Tb4O7 nanopowders by the carbonate-precipitation method for Tb3Al5O12 magneto-optical ceramics. Opt. Mater. 2017, 73, 706–711. [Google Scholar] [CrossRef]
- Hao, D.; Chen, J.; Ao, G.; Tian, Y.; Tang, Y.; Yi, X.; Zhou, S. Effect of Tb4O7 excess on the microstructure and magneto-optical properties of TAG transparent ceramic. Opt. Mater. 2019, 94, 47–52. [Google Scholar] [CrossRef]
- Khazanov, E.A. Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers. Proc. SPIE 2003, 4968, 115–126. [Google Scholar] [CrossRef]
- Kagan, M.A.; Khazanov, E.A. Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics. Appl. Opt. 2004, 43, 6030–6039. [Google Scholar] [CrossRef]
- Yoshida, H.; Tsubakimoto, K.; Fujimoto, Y.; Mikami, K.; Fujita, H.; Miyanaga, N.; Nozawa, H.; Yagi, H.; Yanagitani, T.; Nagata, Y.; et al. Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator. Opt. Express 2011, 19, 15181–15187. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Yasuhara, R.; Starobor, A.V.; Palashov, O.V. TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization. Opt. Express 2014, 22, 4144–4151. [Google Scholar] [CrossRef]
- Yasuhara, R.; Snetkov, I.; Starobor, A.; Zheleznov, D.; Palashov, O.; Khazanov, E.; Nozawa, H.; Yanagitani, T. Terbium gallium garnet ceramic Faraday rotator for high-power laser application. Opt. Lett. 2014, 39, 1145–1148. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Jiang, N.; Hu, Z.; Feng, Y.; Pan, H.; Liu, X.; Yang, Z.; Xie, T.; Li, J. Fabrication and characterizations of highly transparent Tb3Ga5O12 magneto-optical ceramics. Opt. Mater. 2019, 88, 238–243. [Google Scholar] [CrossRef]
- Yasuhara, R.; Snetkov, I.; Starobor, A.; Palashov, O. Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power. Appl. Phys. Lett. 2014, 105, 241104. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Kagamitani, Y.; Pawlak, D.; Sato, H.; Machida, H.; Fukuda, T. Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator. Mater. Res. Bull. 2002, 37, 1–10. [Google Scholar] [CrossRef]
- Kagamitani, Y.; Pawlak, D.; Sato, H.; Yoshikawa, A.; Martinek, J.; Machida, H.; Fukuda, T. Dependence of Faraday effect on the orientation of terbium–scandium–aluminum garnet single crystal. J. Mater. Res. 2004, 19, 579–583. [Google Scholar] [CrossRef]
- Valiev, U.V.; Gruber, J.B.; Burdick, G.W.; Ivanov, I.A.; Fu, D.; Pelenovich, V.O.; Juraeva, N.I. Optical and magnetooptical properties of terbium–scandium–aluminum and terbium-containing (gallates and aluminates) garnets. J. Lumin. 2016, 176, 86–94. [Google Scholar] [CrossRef]
- Ivanov, I.; Karimov, D.; Snetkov, I.; Palashov, O.; Kochurikhin, V.; Masalov, A.; Fedorov, V.; Ksenofontov, D.; Kabalov, Y. Study of the influence of Tb-Sc-Al garnet crystal composition on Verdet constant. Opt. Mater. 2017, 66, 106–109. [Google Scholar] [CrossRef]
- Mironov, E.A.; Palashov, O.V. Faraday isolator based on TSAG crystal for high power lasers. Opt. Express 2014, 22, 23226–23230. [Google Scholar] [CrossRef]
- Starobor, A.; Yasyhara, R.; Snetkov, I.; Mironov, E.; Palashov, O. TSAG-based cryogenic Faraday isolator. Opt. Mater. 2015, 47, 112–117. [Google Scholar] [CrossRef]
- Starobor, A.V.; Snetkov, I.L.; Palashov, O.V. TSAG-based Faraday isolator with depolarization compensation using a counterrotation scheme. Opt. Lett. 2018, 43, 3774–3777. [Google Scholar] [CrossRef]
- Mironov, E.A.; Palashov, O.V.; Voitovich, A.V.; Karimov, D.N.; Ivanov, I.A. Investigation of thermo-optical characteristics of magneto-active crystal Na0.37Tb0.63F2.26. Opt. Lett. 2015, 40, 4919–4922. [Google Scholar] [CrossRef]
- Jalali, A.A.; Rogers, E.; Stevens, K. Characterization and extinction measurement of potassium terbium fluoride single crystal for high laser power applications. Opt. Lett. 2017, 42, 899–902. [Google Scholar] [CrossRef]
- Zelmon, D.E.; Foundos, G.; Stevens, K.T. Magneto-optical properties of potassium terbium fluoride. Proc. SPIE 2018, 10553, 105530E1–105530E8. [Google Scholar] [CrossRef]
- Veber, P.; Velázquez, M.; Gadret, G.; Rytz, D.; Peltz, M.; Decourt, R. Flux growth at 1230 ∘C of cubic Tb2O3 single crystals and characterization of their optical and magnetic properties. CrystEngComm 2015, 17, 492–497. [Google Scholar] [CrossRef]
- Snetkov, I.; Palashov, O. Cryogenic temperature characteristics of Verdet constant of terbium sesquioxide ceramics. Opt. Mater. 2016, 62, 697–700. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Permin, D.A.; Balabanov, S.S.; Palashov, O.V. Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics. Appl. Phys. Lett. 2016, 108, 161905. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.L.; Makikawa, S.; Yahagi, A. Polycrystalline (TbXY1 - X)2O3 Faraday rotator. Opt. Lett. 2017, 42, 4399–4401. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.; Makikawa, S.; Yahagi, A.; Ikesue, A.; Aung, Y.L.; Makikawa, S.; Yahagi, A. Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure. Materials 2019, 12, 421. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Wang, J.; Wang, D.; Han, D.; Zhang, J.; Wang, S. Phase transformation process of Tb2O3 at elevated temperature. Scr. Mater. 2019, 171, 108–111. [Google Scholar] [CrossRef]
- Morales, J.R.; Amos, N.; Khizroev, S.; Garay, J.E. Magneto-optical Faraday effect in nanocrystalline oxides. J. Appl. Phys. 2011, 109, 093110. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Yakovlev, A.I.; Permin, D.A.; Balabanov, S.S.; Palashov, O.V. Magneto-optical Faraday effect in dysprosium oxide (Dy2O3) based ceramics obtained by vacuum sintering. Opt. Lett. 2018, 43, 4041–4044. [Google Scholar] [CrossRef]
- Yakovlev, A.; Snetkov, I.; Permin, D.; Balabanov, S.; Palashov, O. Faraday rotation in cryogenically cooled dysprosium based (Dy2O3) ceramics. Scr. Mater. 2019, 161, 32–35. [Google Scholar] [CrossRef]
- Furuse, H.; Yasuhara, R. Magneto-optical characteristics of holmium oxide (Ho2O3) ceramics. Opt. Mater. Express 2017, 7, 827–833. [Google Scholar] [CrossRef]
- Lu, B.; Cheng, H.; Xu, X.; Chen, H. Preparation and characterization of transparent magneto-optical Ho2O3 ceramics. J. Am. Ceram. Soc. 2018, 102, 118–122. [Google Scholar] [CrossRef]
- Cheng, H.; Lu, B.; Liu, Y.; Zhao, Y.; Sakka, Y.; Li, J.G. Transparent magneto-optical Ho2O3 ceramics: Role of self-reactive resultant oxyfluoride additive and investigation of vacuum sintering kinetics. Ceram. Int. 2019, 45, 14761–14767. [Google Scholar] [CrossRef]
- Starobor, A.; Palashov, O. Peculiarity of the thermally induced depolarization and methods of depolarization compensation in square-shaped Yb:YAG active elements. Opt. Commun. 2017, 402, 468–471. [Google Scholar] [CrossRef]
- Starobor, A.; Mironov, E.; Palashov, O. High-power Faraday isolator on a uniaxial CeF3 crystal. Opt. Lett. 2019, 44, 1297–1299. [Google Scholar] [CrossRef]
- Liu, J.; Guo, F.; Zhao, B.; Zhuang, N.; Chen, Y.; Gao, Z.; Chen, J. Growth and magneto-optical properties of NaTb(WO4)2. J. Cryst. Growth 2008, 310, 2613–2616. [Google Scholar] [CrossRef]
- Hu, Q.; Jia, Z.; Yin, Y.; Mu, W.; Zhang, J.; Tao, X. Crystal growth, thermal and optical properties of TSLAG magneto-optical crystals. J. Alloys Compd. 2019, 805, 496–501. [Google Scholar] [CrossRef]
- Chen, X.; Ruan, M.; Guo, F.; Chen, J. Czochralski growth, magnetic and magneto-optical properties of Na2Tb4(MoO4)7 crystal. J. Cryst. Growth 2015, 421, 8–12. [Google Scholar] [CrossRef]
- Li, R.K.; Wu, C.C.; Xia, M.J. LiCaTb5(BO3)6: A new magneto-optical crystal promising as Faraday rotator. Opt. Mater. 2016, 62, 452–457. [Google Scholar] [CrossRef]
- Chen, Z.; Hang, Y.; Yang, L.; Wang, J.; Wang, X.; Hong, J.; Zhang, P.; Shi, C.; Wang, Y. Fabrication and characterization of cerium-doped terbium gallium garnet with high magneto-optical properties. Opt. Lett. 2015, 40, 820–822. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, L.; Wang, X.; Hang, Y. Wavelength dependence of Verdet constant of Pr doped terbium gallium garnet crystal. Opt. Mater. 2016, 62, 475–478. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, L.; Wang, X.; Yin, H. High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal. Opt. Lett. 2016, 41, 2580–2583. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, L.; Hang, Y.; Wang, X. Improving characteristic of Faraday effect based on the Tm3+doped terbium gallium garnet single crystal. J. Alloys Compd. 2016, 661, 62–65. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, L.; Hang, Y.; Wang, X. Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal. J. Solid State Chem. 2016, 233, 277–281. [Google Scholar] [CrossRef]
- Zhu, Y.; Tu, H.; Jia, L.; Yue, Y.; Zhao, Y.; Hu, Z. Growth and thermophysical properties of magneto-optical crystal TbVO4. Opt. Mater. 2017, 65, 106–111. [Google Scholar] [CrossRef]
- Zhu, X.; Tu, H.; Hu, Z.; Zhuang, N. Preparation and characterization of Tb1-xNdxVO4 single crystals for optical isolators. Opt. Mater. 2019, 89, 549–553. [Google Scholar] [CrossRef]
- Guo, F.; Gui, X.; Tao, Z.; Sun, Y.; Chen, X.; Chen, J. Growth, magnetic anisotropy and Faraday characteristics of NaCe(MoO4)2 crystal. Opt. Mater. 2018, 84, 658–662. [Google Scholar] [CrossRef]
- Mironov, E.A.; Palashov, O.V. Spectral, magneto-optical and thermo-optical properties of terbium containing cubic zirconia crystal. Appl. Phys. Lett. 2018, 113, 063504. [Google Scholar] [CrossRef]
- Mironov, E.A.; Palashov, O.V. Characterization of terbium containing cubic zirconia crystal for high power laser applications. Opt. Quantum Electron. 2019, 51, 46. [Google Scholar] [CrossRef]
- Yasuhara, R.; Ikesue, A. Magneto-optic pyrochlore ceramics of Tb2Hf2O7 for Faraday rotator. Opt. Express 2019, 27, 7485–7490. [Google Scholar] [CrossRef]
- Guo, F.; Li, Q.; Zhang, H.; Yang, X.; Tao, Z.; Chen, X.; Chen, J.; Guo, F.; Li, Q.; Zhang, H.; et al. Czochralski Growth, Magnetic Properties and Faraday Characteristics of CeAlO3 Crystals. Crystals 2019, 9, 245. [Google Scholar] [CrossRef]
- Cooper, R.W.; Crossley, W.A.; Page, J.L.; Pearson, R.F. Faraday Rotation in YIG and TbIG. J. Appl. Phys. 1968, 39, 565–567. [Google Scholar] [CrossRef]
- Booth, R.C.; White, E.A.D. Magneto-optic properties of rare earth iron garnet crystals in the wavelength range 1.1–1.7 μm and their use in device fabrication. J. Phys. D Appl. Phys. 1984, 17, 579–587. [Google Scholar] [CrossRef]
- Zhao, W. Magneto-optic properties and sensing performance of garnet YbBi:YIG. Sens. Actuators A Phys. 2001, 89, 250–254. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, S.Y. Growth and characterization of cerium-substituted yttrium iron garnet single crystals for magneto-optical applications. Appl. Phys. A Mater. Sci. Process. 2002, 74, 177–180. [Google Scholar] [CrossRef]
- Stevens, G.; Legg, T.; Shardlow, P. Integrated disruptive components for 2μm fibre lasers (ISLA): project overview and passive component development. Proc. SPIE 2016, 9730, 973001. [Google Scholar] [CrossRef]
- Sekijima, T.; Kishimoto, H.; Fujii, T.; Wakino, K.; Okada, M. Magnetic, Optical and Microwave Properties of Rare-Earth-Substituted Fibrous Yttrium Iron Garnet Single Crystals Grown by Floating Zone Method. Jpn. J. Appl. Phys. 1999, 38, 5874–5878. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.L. Development of optical grade polycrystalline YIG ceramics for faraday rotator. J. Am. Ceram. Soc. 2018, 101, 5120–5126. [Google Scholar] [CrossRef]
- Mironov, E.; Palashov, O.; Karimov, D. EuF2-based crystals as media for high-power mid-infrared Faraday isolators. Scr. Mater. 2019, 162, 54–57. [Google Scholar] [CrossRef]
Material | at 248 nm | at 308 nm | Reference | Additional References | ||
---|---|---|---|---|---|---|
CeF | 743.6 | 239 | - | 1146 | [61] | [73,74,75] |
PrF | 1357.7 | 184 | 1658 | 752 | [61] | [73,74] |
LiTbF | 1190.6 | 198 | 2101 | 840 | [59] | [72,76] |
LiDyF | 1530.9 | 156 | 1002 | 528 | [59] | - |
LiHoF | 3815.0 | 87 | 536 | 331 | [59] | - |
LiErF | 1700.0 | 93 | 279 | 171 | [59] | - |
LiYbF | 58.0 | 163 | 44 | 23 | [59] | - |
PrO-doped oxide glass | - | - | 1538 | - | [66] | - |
DyO-doped oxide glass | - | - | 782 | - | [66] | - |
Pr-doped phosphate glass | - | - | - | 311 | [69] | - |
Dy-doped alumino-borate glass | - | - | - | 489 | [69] | - |
KDP | - | - | 31 | 18 | [71] | [70] |
DKDP | - | - | 36 | 21 | [71] | [70] |
ADP | - | - | 32 | 19 | [71] | [70] |
KDA | - | - | 61 | 35 | [71] | [70] |
DKDA | - | - | 71 | 39 | [71] | [70] |
ADA | - | - | 71 | 38 | [71] | [70] |
Material | at 633 nm | at 1064 nm | Reference | Additional References | ||
---|---|---|---|---|---|---|
TGG | 820.3, −6.2 | 239.3 | 130.6 | 37.5 | [45] | [17,18,29,49,51,56,58,77,78,79,80,105,106,107,108,109,110,111] |
MOG04 glass | -, - | - | - | 21.3 *** | [84] | - |
MOG10 glass | -, - | - | - | 25.6 *** | [84] | - |
Zinc-tellurite glass | -, - | - | 23.8 | 7.6 | [89] | - |
TSAG | 756.7, - | 262 | 156.6 | 48.9 | [115] | [37,41,112,113,114,116,117,118] |
TAG | -, - | - | 172.7 | ∼46.5 **** | [93,96] | [56,63,90,91,92] |
Si or Ti:TAG | 925, - | 259 | 186 | 58.3 | [98] | [99] |
Ce:TAG | 907.6, - | 272 | 205.5 | 63.5 | [98] | [94,95,96,97] |
Pr:TAG | -, - | - | 189.8 | - | [101] | - |
Ho:TAG | -, - | - | 183 | - | [100] | - |
Tm:TAG | -, - | - | 189.5 | - | [102] | - |
NTF | -, - | - | 104.7 | 31.1 | [50] | [119] |
KTF | -, - | - | 112 | 33 | [72] | [72,120,121] |
TbO | 1663.2, - | 284.9 | 422 | 128 | [124] | [122,123,125,126,127] |
DyO | -, - | - | 347.6 | 135.3 | [48] | [128,129,130] |
HoO | 1941.3, - | 173 | 178 * | 46.3 | [131] | [47,132,133] |
CeF | 697, - | 245 | 123 | 39 | [46] | [60,61,134,135] |
NaTb(WO) | -, - | - | 155 | 52 | [136] | - |
TSLAG | 801.6, - | 258.2 | 160 | 50.2 | [81] | [137] |
Ce:TGG | 803, - | 256.2 | 157.3 | 53.2 | [140] | - |
Ho:TGG | -, - | - | 214.9 | 77.8 | [142] | - |
Pr:TGG | -, - | - | 200.1 | 68.7 | [141] | - |
Dy:TGG | -, - | - | 178.6 | 60.2 | [144] | - |
Tm:TGG | -, - | - | 178.6 | 60.2 | [143] | - |
TCZ | 320.1, - | 301 | 174 | 48.5 **** | [148] | [149] |
TbHfO | 716.1, - | 270.5 | 160 | 50.4 | [150] | - |
NaTb(MoO) | -, - | - | 216 | 65 | [138] | - |
NaCe(MoO) | -, - | - | 203.8 ** | 63.8 | [147] | - |
LiCaTb(BO) | -, - | - | 227 | - | [139] | - |
TbVO | -, - | - | - | 60 | [145] | - |
Nd:TbVO | -, - | - | 198 | 71 | [146] | - |
CeAlO | -, - | - | 270 ** | 79.7 | [151] | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vojna, D.; Slezák, O.; Lucianetti, A.; Mocek, T. Verdet Constant of Magneto-Active Materials Developed for High-Power Faraday Devices. Appl. Sci. 2019, 9, 3160. https://doi.org/10.3390/app9153160
Vojna D, Slezák O, Lucianetti A, Mocek T. Verdet Constant of Magneto-Active Materials Developed for High-Power Faraday Devices. Applied Sciences. 2019; 9(15):3160. https://doi.org/10.3390/app9153160
Chicago/Turabian StyleVojna, David, Ondřej Slezák, Antonio Lucianetti, and Tomáš Mocek. 2019. "Verdet Constant of Magneto-Active Materials Developed for High-Power Faraday Devices" Applied Sciences 9, no. 15: 3160. https://doi.org/10.3390/app9153160
APA StyleVojna, D., Slezák, O., Lucianetti, A., & Mocek, T. (2019). Verdet Constant of Magneto-Active Materials Developed for High-Power Faraday Devices. Applied Sciences, 9(15), 3160. https://doi.org/10.3390/app9153160