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Featured Application: Neural Network Structure Learning is expected to overcome difficulty of
constructing a neural network structure.

Abstract: This paper proposes the variable chromosome genetic algorithm (VCGA) for structure
learning in neural networks. Currently, the structural parameters of neural networks, i.e., number
of neurons, coupling relations, number of layers, etc., have mostly been designed on the basis of
heuristic knowledge of an artificial intelligence (AI) expert. To overcome this limitation, in this study
evolutionary approach (EA) has been utilized to automatically generate the proper artificial neural
network (ANN) structures. VCGA has a new genetic operation called a chromosome attachment.
By applying the VCGA, the initial ANN structures can be flexibly evolved toward the proper
structure. The case study applied to the typical exclusive or (XOR) problem shows the feasibility of
our methodology. Our approach is differentiated with others in that it uses a variable chromosome
in the genetic algorithm. It makes a neural network structure vary naturally, both constructively
and destructively. It has been shown that the XOR problem is successfully optimized using a VCGA
with a chromosome attachment to learn the structure of neural networks. Research on the structure
learning of more complex problems is the topic of our future research.

Keywords: variable chromosome genetic algorithm; deep learning; structure learning; artificial
neural network; neural architecture search

1. Introduction

The purpose of artificial intelligence (AI) is to imitate the human intelligence [1]. In order to
imitate human intelligence, the research of AI has been developed as an algorithm to figure out a certain
issue. Artificial neural network (ANN) is one of these algorithms. In other words, the development
of ANN is to imitate the process of the human brain [2]. The ANN is already widely used for an
estimation of automotive brake pressure, which has a great potential to achieve a simple design of the
braking control system without sensors [3].

The compute unified device architecture (CUDA) is a parallel processing technology that used
GPU. Since the introduction of the CUDA, deep learning has been rapidly developed and applied to
various fields in the industry. Recently, big tech companies and car makers such as Google, BMW,
and Tesla have expanded their interests to research in deep learning [4]. In particular, the convolutional
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neural network (CNN) is widely implemented to image recognition [5,6] and the recurrent neural
network (RNN) is used for various applications such as sentence and voice recognition [7].

As ANNs have been scaled up and improved, they have become much more complex [8]. Even to
realistically imitate a human brain, a system must be able to acquire the individual personality models
of that individual [9]. Although human engineers are able to tune and optimize parameters through
experimentation, neural networks are prone to have complex topologies or hyper-parameters. Previously,
the design of neural networks was based on heuristics [10]. Since the structure significantly varies
according to the number of neurons or the purpose of the problem, the optimal structure is hard to find.

Currently, employed architectures have mostly been developed by human experts, which is a
time-consuming and error-prone process [11]. As deep learning has scaled up to more challenging
tasks, the architectures have become difficult to design by hand [8]. For these reasons, various studies
have been carried out to generate the network architecture automatically [11,12]. Structure learning
is a very useful instrument that is able to automatically find an appropriate ANN architecture [13].
For this reason, the structure learning algorithm is used to generate the topology of ANN in this study.

This study proposed a chromosome attachment as a new genetic operation to implement the
structure learning of ANN. It makes the ANN vary both constructively and destructively. Through this
operation, a structure learning method in the process of a neural architecture search (NAS) is possible.
NAS has three challenges: Designing a network structure, putting components into the network
topology, and hyper-parameters tuning [8]. The proposed method in this study presents a challenge
through structure learning.

Evolutionary approach (EA) is usually used to automatically design the topology of an ANN
topology. There are many neural network architecture search algorithms with an EA. Generally,
constructive or destructive algorithms are used to automatically design architectures [14]. However,
most EAs only use a constructive algorithm.

A typical constructive algorithm starting with a minimal network is the genetic algorithm (GA).
GA has been the most common method used for designing neural network architecture [11–18].
In these studies, GA was used to generate the network structures depending on their purposes. It can
be applied to a system having a network structure, such as a Bayesian network or a neural network.

In most research focused on the automatic generation of the neural network structure, they were
carried out to control the number of neurons through a genetic algorithm in a network structure
that has one hidden layer [13,16,17]. In these studies, the neurons belonging to the hidden layer are
increased or decreased according to generations while searching the suitable number of neurons.

NeuroEvolution of Augmenting Topologies (NEAT) is a representative EA methodology.
NEAT outperform the best fixed topology methodology on challenging benchmarking reinforcement
learning [15]. NEAT is used as a typical evolutionary approach [8]. The constructive algorithm uses
GA, starting with a minimal structure of artificial neural network. The initial neural network has a
minimal structure, however it becomes gradually more complex to search an optimal architecture with
NEAT methodology.

On the other hand, NEAT methodology only can evolve the neural network architecture to a
larger structure because it has to start with a minimal structure. If the neural network architecture in
the solution area is too large to increase gradually, it is time consuming to search a right answer. Thus,
destructive operation is necessary to design a more complex or larger neural network.

Variable chromosome genetic algorithm (VCGA) is applied to this method to implement the
structure learning of ANN so as to imitate a human brain. The previous structure learning method
of the ANN could only evolve constructively. However, VCGA uses chromosome attachment for a
system that is able to evolve the structure of an ANN, not only constructively but also destructively.
Destructive method like pruning is necessary. Since the size of the ANN is unknown at the beginning,
design method such as pruning is required. Furthermore, the structure learning of a big neural network
spends a large amount of time [16,19].
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The proposed method is applied to the problem of generating a XOR network. Although this task
is a simple problem, it requires growing and pruning hidden neurons [15].

The rest of this paper is organized as follows. Section 2 describes the proposed methodology of
applying VCGA to neural network structure learning. Section 3 analyzes the results of simple case
study. Finally, conclusions and future works are drawn in Section 4.

2. Methodology

As discussed in Section 2.2, previous methodologies typically start with a minimal structure of
neural network in order to become an optimized architecture. In contrast, VCGA with a chromosome
attachment is used to generate a neural architecture both constructively and destructively in this study.
The chromosome attachment operation gives a destructive approach to GA. It makes possible for
neurons and ls to increase or decrease various directions in order to search an optimized architecture
on a large solution area. Thus, it is more suitable to search a large and complex architecture of
neural network.

2.1. Structure Learning Based on Variable Chromosome Genetic Algorithm

In this study, VCGA is used to search the neural network architecture. Figure 1 provides
an overview of methodology used in this paper in the structure learning process. In Phase 1,
the chromosome set is generated first. These chromosomes represent neurons and connections.
An individual has multiple chromosomes and it composes an ANN structure. In Phase 2, each
generated ANN structures are simulated. Simulation results are calculated by fitness function and
ANN structures are sorted by result score. In Phase 3, genetic operations are implemented to make
offspring: Selection, cross over, mutation, and attachment. These new generated chromosome set make
new individuals and an ANN structure on Phase 1. Equation (1) shows a fitness function.

Fitness value =
1
2

score −
1
2

D×N
{
2× (score− 0.5)

}
(1)
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Score means the accuracy of predicted output value of the ANN structure and it has a real value
between 0.0 and 1.0. D means a dependency on the number of chromosomes. The larger D is, the more
important the minimum structure of the ANN is. And the smaller D is, the more important the
accuracy of the predicted output value is. N means relative number of chromosomes; (number of own
chromosomes)/(number of average chromosomes). In this case study, the constant D was set to 0.2.

2.2. Chromosome Type of Artificial Neural Network

In order to encode an ANN into a chromosome, ANN is represented as two cases of chromosome
types. A chromosome can be expressed as an ANN topology [20].

Figure 2 shows two types of chromosome type: Neuron information and connection information.
The chromosome type of neuron information consists of the unique number of neuron, the number of
the input ports, and the number of the output ports as shown in Figure 2a.
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The chromosome type of connection information consists of the unique number of target neuron,
the number of the port to input, and the unique number of the starting neuron as shown in Figure 2b.

Figure 3 shows examples of chromosomes and ANN topologies. The chromosome type of the
neuron N5 is shown in Figure 3b, assuming that there is a neural network of the ANN topology shown
in Figure 3a. It means the neuron N5 has two input ports and one output port. The chromosome type
of connection information is shown in Figure 3c. It is a connection from N3 to N5 by port 1 of N5.
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Figure 3. Example of artificial neural network (ANN) topology and chromosomes: (a) Example of ANN
topology; (b) example of neuron information ANN topology; and (c) example of linking information
ANN topology.

Chromosomes composed of these two types of chromosome constitute a single individual.
The number of chromosomes in an individual means the sum of the number of chromosomes that
store neuron information and the number of chromosomes that store connection information.

Figure 3 shows examples of chromosome types and ANN topologies. The chromosome type of the
neuron N5 is shown in Figure 3b, assuming that there is a neural network of the ANN topology shown
in Figure 3a. It means the neuron N5 has two input ports and one output port. And the connection
from N3 to N5 has a chromosome type of the form shown in Figure 3c.
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Chromosomes composed of these two types of chromosome types constitute a single entity.
The number of chromosomes in an individual means the sum of the number of chromosomes that
store neuron information and the number of chromosomes that store link information.

2.3. Application of Genetic Operation

The genetic operations applied in VCGA are mutation, cross-over, and chromosome attachment [21].
Mutation and cross-over can change the contents of chromosomes as shown in Figure 4. It changes the
number of input ports or output ports of existing neurons, and target or start the neuron of existing
connections. For example, mutation modifies a selected gene of a chromosome randomly as shown in
Figure 4a and cross-over exchanges a gene of each parent as shown in Figure 4b.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 10 
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Figure 4. Mutation and crossover: (a) Example of mutation and (b) example of crossover.

On the other hand, chromosome attachment adds or discards a neuron or a connection between
neurons by changing the number of chromosomes in an individual as shown in Figure 5. The mutation
in biology has two types: Gene mutation and chromosome mutation. Well-known mutations (in
biology) like mutation (in GA) or cross-over can be treated as a kind of gene mutation which changes the
base sequence of DNA [22]. However, chromosome mutation only changes the number of chromosomes.
Chromosome attachment is a chromosome mutation [23]. It is also called nondisjunction in biology [24].
It makes a change that varies the number of chromosome offspring. This is a kind of mutation that
causes chromosome aberration. However, through this operation both new neurons and connections
may appear or existing neurons may disappear. Since there are no restrictions on the layer, theoretically
there may also be multi-hidden layers and skip connections. This operation is first applied to the GA
and EA through this study.
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3. Case Study: XOR Problem

As a case study, the proposed methodology was applied to solve the XOR problem [25]. The XOR
problem is the most fundamental form of the problem in multilayer perceptron. Although the correct
answer is already a well-known problem, it is very important for the imitation of the human brain.
The proposed methodology is compared to NEAT. The simulation automatically found the optimized
structure for the XOR without giving any information about the correct answer. If it succeeds in
finding the correct answer, it should have five chromosomes of neuron information, six chromosomes
of connection information, and 11 chromosomes in total.

Two simulations for verifying a chromosome attachment operation applied on EA of ANN were
implemented. The first simulation was start from a minimal structure and was compared to the NEAT
methodology. The second simulation started from a large structure. It verified that the chromosome
attachment operation was useful for auto-generating large and complex ANN structure.

3.1. Initialization

NEAT began with an initial population of uniform topology. In contrast, the proposed methodology
began with a random population. The initial populations generated 200 individuals. The average
number of chromosomes in the first generation was about 8 in the first simulation. In the second
simulation, the average number of chromosomes in the first generation was about 19 since they have
larger structures than the first simulation. The probabilities of mutation, cross-over, and attachment
were all 0.2 and the learning rate of the neural network was 0.2. This value was approximate to
NEAT [15]. The simulation was implemented for a total of 300 generations in the first simulation and
2000 generations in the second simulation.

3.2. Simulation Result

Figure 6 plots the score and the number of chromosomes of the neural network structure with
the highest score for each generation of the first simulation. The score of the highest performing
species began from 0.65 and increased to 0.95. If a score of 0.9 or higher was obtained, the generated
neural network could correctly obtain the exclusive or (XOR) value. This system found a structure for
XOR in 48 generations. This solution structure had 32 chromosomes. As the generation progressed,
the number of chromosomes gradually decreased. It took 218 generations to find the optimal form
with 11 chromosomes for the first time. Since then, it appeared to oscillate and converge.
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Figure 7 plots the results of the second simulation. In this simulation, species of the first generation
were fully connected with 5 neurons. The score of the highest performing species began from 0.97 and
decreased to 0.95, however, it increased again to 0.97. This system started from a completed ANN
structure. However, it decreased the number of chromosomes after starting. Neurons and connections
decreased together until the number of chromosomes reached 11.
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Table 1 shows a comparison between the results of structure learning with NEAT and the
proposed method about the XOR problem. The NEAT methodology found a solution faster than the
proposed methodology using VCGA. However, NEAT evolved networks with 2.35 hidden neurons
and 7.48 disabled connections, while the proposed method’s solutions used 2 hidden neurons and
0 disabled connections. Since NEAT only uses the add operation, it cannot evolve with the destructive
approach. On the other hand, the proposed methodology with VCGA allows decreasing neurons
or connections with the chromosome attachment. The result is important because it shows that a
methodology using VCGA has the potential to be applied to large and complex problems while
performing as well as NEAT.

Table 1. Comparison with NeuroEvolution of Augmenting Topologies (NEAT) in exclusive or
(XOR) problem.

Method
Average of
Generation

Finding Solution

Average Number
of Hidden Nodes

Average Number
of Disabled
Connections

Evolution
Directed to
Decreasing

NEAT 32 2.35 7.48 impossible
using variable

chromosome genetic
algorithm (VCGA)

about 40 2 0 possible

4. Conclusions

In this study, the structure learning methodology for an ANN using a VCGA with a chromosome
attachment was proposed. Previous methods including NEAT only use the constructive approach.
Thus, it only can design an ANN from a minimal structure. Due to this limit, the previous methodology
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has difficulty in designing large structures. However, the proposed method enabled the evolutionary
algorithm to destructive approach by using the chromosome attachment. As a result, the given initial
ANN could be tuned to auto-design the structure after structure learning, whether the initial ANN
was a minimum structure or not. It is important to note that the approach could learn a larger ANN.

The proposed methodology evolved the ANNs, starting with a minimal structure and completed
structure. It succeeded in finding the right answer to the XOR problem without any information as
part of a simple case study that compared it with the previous method. On the other hand, using
the proposed methodology, it was possible to generate more complex neural network structures
faster because of the bout constructive and destructive approach. It is expected that the cost of using
specialists in designing ANN structures will also reduce.

The expansion of searching space to more complex ANN such as image recognition and situation
awareness of auto driving system is the topic of our future research.
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7. Mikolov, T.; Karafiát, M.; Burget, L.; Černockỳ, J.; Khudanpur, S. Recurrent Neural Network Based Language
Model. In Proceedings of the Eleventh Annual Conference of the International Speech Communication
Association, Makuhari, Chiba, Japan, 26 September 2010.

8. Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.;
Navruzyan, A.; Duffy, N. Evolving Deep Neural Networks. In Artificial Intelligence in the Age of Neural
Networks and Brain Computing; Elsevier: Amsterdam, The Netherlands, 2019; pp. 293–312.

9. Hamanaka, M.; Goto, M.; Asoh, H.; Otsu, N. A Learning-Based Jam Session System that Imitates a Player’s
Personality Model. In Proceedings of the International Joint Conference on Artificial Intelligence, Acapulco,
Mexico, 9–15 August 2003; pp. 51–58.

10. Anderson, M. Using AI to Make Better AI. Available online: https://spectrum.ieee.org/tech-talk/computing/

networks/using-ai-to-make-better-ai (accessed on 12 April 2019).
11. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1–21.
12. Poza, M.; Yurramendi, Y.; Murga, R.; Kuijpers, C.; Larrañaga, P. Structure learning of Bayesian networks by

genetic algorithms: A performance analysis of control parameters. IEEE Trans. Pattern Anal. Mach. Intell.
1996, 18, 912–926.

13. Kwok, T.Y.; Yeung, D.Y. Constructive algorithms for structure learning in feedforward neural networks for
regression problems. IEEE Trans. Neural Netw. 1997, 8, 630–645. [CrossRef] [PubMed]

14. Yao, X. Evolving artificial neural networks. Proc. IEEE 1999, 87, 1423–1447.

http://dx.doi.org/10.1016/j.procs.2015.03.145
http://dx.doi.org/10.3390/app8122632
https://www.researchgate.net/publication/324476862_Survey_of_neural_networks_in_autonomous_driving
https://www.researchgate.net/publication/324476862_Survey_of_neural_networks_in_autonomous_driving
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/72.554195
http://www.ncbi.nlm.nih.gov/pubmed/18255614
https://spectrum.ieee.org/tech-talk/computing/networks/using-ai-to-make-better-ai
https://spectrum.ieee.org/tech-talk/computing/networks/using-ai-to-make-better-ai
http://dx.doi.org/10.1109/72.572102
http://www.ncbi.nlm.nih.gov/pubmed/18255666


Appl. Sci. 2019, 9, 3176 9 of 9

15. Stanley, K.O.; Miikkulainen, R. Evolving Neural Networks through Augmenting Topologies. Evol. Comput.
2002, 10, 99–127. [CrossRef] [PubMed]

16. Yang, S.H.; Chen, Y.P. An evolutionary constructive and pruning algorithm for artificial neural networks and
its prediction applications. Neurocomputing 2012, 86, 140–149. [CrossRef]

17. Miller, G.F.; Todd, P.M.; Hegde, S.U. Designing Neural Networks using Genetic Algorithms. Proc. ICGA
1989, 89, 379–384.

18. Kandasamy, K.; Neiswanger, W.; Schneider, J.; Poczos, B.; Xing, E.P. Neural architecture search with bayesian
optimisation and optimal transport. Proc. Adv. Neural Inf. Process. Syst. 2018, 31, 2016–2025.

19. Kwok, T.Y.; Yeung, D.Y. Constructive feedforward neural networks for regression problems: A survey.
HKUST-CS95 1995, 43, 1–29.

20. Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking
using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998,
19, 1639–1662. [CrossRef]

21. Park, K.M.; Shin, S.H.; Chi, S.D. The Genetic Algorithm using Variable Chromosome with Chromosome
Attachment for decision making model. J. Korea Soc. Simul. 2017, 26, 1–9.

22. Berg, J.M.; Tymoczko, J.L.; Stryer, L. Mutations Involve Changes in the Base Sequence of DNA. In Biochemistry,
5th ed.; W. H. Freeman and Company: Bethesda MD, USA, 2002.

23. Rieder, C.L. Kinetochores are transported poleward along a single astral microtubule during chromosome
attachment to the spindle in newt lung cells. J. Cell Biol. 1990, 110, 81–95. [CrossRef] [PubMed]

24. Shonn, M.A. Requirement of the Spindle Checkpoint for Proper Chromosome Segregation in Budding Yeast
Meiosis. Science 2000, 289, 300–303. [CrossRef] [PubMed]

25. Minsky, M.L.; Papert, S.A.; Perceptrons, F. Mass, rev. ed.; The MIT Press: Cambridge, MA, USA, 1969.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1162/106365602320169811
http://www.ncbi.nlm.nih.gov/pubmed/12180173
http://dx.doi.org/10.1016/j.neucom.2012.01.024
http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14&lt;1639::AID-JCC10&gt;3.0.CO;2-B
http://dx.doi.org/10.1083/jcb.110.1.81
http://www.ncbi.nlm.nih.gov/pubmed/2295685
http://dx.doi.org/10.1126/science.289.5477.300
http://www.ncbi.nlm.nih.gov/pubmed/10894778
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Structure Learning Based on Variable Chromosome Genetic Algorithm 
	Chromosome Type of Artificial Neural Network 
	Application of Genetic Operation 

	Case Study: XOR Problem 
	Initialization 
	Simulation Result 

	Conclusions 
	References

