Essential Oil Compositions and Antifungal Activity of Sunflower (Helianthus) Species Growing in North Alabama
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Gas Chromatographic—Mass Spectral Analysis
2.3. Antifungal Screening Assays
3. Results and Discussion
3.1. Essential Oil Compositions
3.2. Antifungal Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mabberley, D.J. Mabberley’s Plant-Book, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Smith, B.D. Eastern North America as an independent center of plant domestication. Proc. Natl. Acad. Sci. USA 2006, 103, 12223–12228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lentz, D.L.; Pohl, M.D.; Alvarado, J.L.; Tarighat, S.; Bye, R. Sunflower (Helianthus annuus L.) as a pre-Columbian domesticate in Mexico. Proc. Natl. Acad. Sci. USA 2008, 105, 6232–6237. [Google Scholar] [CrossRef] [PubMed]
- Blackman, B.K.; Scascitelli, M.; Kane, N.C.; Luton, H.H.; Rasmussen, D.A.; Bye, R.A.; Lentz, D.L.; Rieseberg, L.H. Sunflower domestication alleles support single domestication center in eastern North America. Proc. Natl. Acad. Sci. USA 2011, 108, 14360–14365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moerman, D.E. Native American Ethnobotany; Timber Press, Inc.: Portland, OR, USA, 1998. [Google Scholar]
- Camazine, S.; Bye, R.A. A study of the medical ethnobotany of the Zuni Indians of New Mexico. J. Ethnopharmacol. 1980, 2, 365–388. [Google Scholar] [CrossRef]
- Mesfin, F.; Demissew, S.; Teklehaymanot, T. An ethnobotanical study of medicinal plants in Wonago Woreda, SNNPR, Ethiopia. J. Ethnobiol. Ethnomed. 2009, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.H.M.M. Medico-ethnobotany: A study on the tribal people of Rajshahi division, Bangladesh. Peak J. Med. Plant Res. 2016, 1, 1–8. [Google Scholar]
- Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Helianthus (accessed on 19 April 2019).
- Tropicos.org. Missouri Botanical Garden. Available online: www.tropicos.org (accessed on 19 April 2019).
- eFloras.org. Helianthus Strumosus Linnaeus. Available online: http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=242416641 (accessed on 24 April 2019).
- Richardson, M.; Lass-Flörl, C. Changing epidemiology of systemic fungal infections. Clin. Microbiol. Infect. 2008, 14, 5–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erjavec, Z.; Kluin-Nelemans, H.; Verweij, P.E. Trends in invasive fungal infections, with emphasis on invasive aspergillosis. Clin. Microbiol. Infect. 2009, 15, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Galimberti, R.; Torre, A.C.; Baztán, M.C.; Rodriguez-Chiappetta, F. Emerging systemic fungal infections. Clin. Dermatol. 2014, 30, 633–650. [Google Scholar] [CrossRef]
- Dean, D.A.; Burchard, K.W. Fungal infection in surgical patients. Am. J. Surg. 1996, 171, 374–382. [Google Scholar] [CrossRef]
- Miceli, M.H.; Díaz, J.A.; Lee, S.A. Emerging opportunistic yeast infections. Lancet Infect. Dis. 2011, 11, 142–151. [Google Scholar] [CrossRef]
- Hocking, A.D. Aspergillus and related teleomorphs. In Food Spoilange Microorganisms; Blackburn, C.d.W., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 451–487. ISBN 0-8493-9156-3. [Google Scholar]
- Shittu, O.B.; Adelaja, O.M.; Obuotor, T.M.; Sam-Wobo, S.O.; Adenaike, A.S. PCR-internal transcribed spacer (ITS) genes sequencing and phylogenetic analysis of clinical and environmental Aspergillus species associated with HIV-TB co infected patients in a hospital in Abeokuta, southwestern Nigeria. Afr. Health Sci. 2016, 16, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Paulussen, C.; Hallsworth, J.E.; Álvarez-Pérez, S.; Nierman, W.C.; Hamill, P.G.; Blain, D.; Rediers, H.; Lievens, B. Ecology of aspergillosis: Insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb. Biotechnol. 2017, 10, 296–322. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.A.; Hussain, M.A.; Ahmad, Z. Candida albicans: A model organism for studying fungal pathogens. Int. Sch. Res. Netw. Microbiol. 2012, 2012, 538694. [Google Scholar] [CrossRef] [PubMed]
- Gow, N.A.R.; Yadav, B. Microbe profile: Candida albicans: A shape-changing, opportunistic pathogenic fungus of humans. Microbiology 2017, 163, 1145–1147. [Google Scholar] [CrossRef]
- Hay, R.J. Fungal infections. Clin. Dermatol. 2006, 24, 201–212. [Google Scholar] [CrossRef]
- Paterson, D.L.; Singh, N. Cryptococcus neoformans infection. Liver Transpl. 2002, 8, 846–847. [Google Scholar] [CrossRef]
- Gaona-Flores, V.A. Central nervous system and Cryptococcus neoformans. N. Am. J. Med. Sci. 2013, 5, 492–493. [Google Scholar] [CrossRef]
- Armstrong-James, D.; Meintjes, G.; Brown, G.D. A neglected epidemic: Fungal infections in HIV/AIDS. Trends Microbiol. 2014, 22, 120–127. [Google Scholar] [CrossRef]
- Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and cytotoxic activities of sixty commercially-available essential oils. Molecules 2018, 23, 1549. [Google Scholar] [CrossRef]
- Stewart, C.D.; Jones, C.D.; Setzer, W.N. Leaf essential oil compositions of Rudbeckia fulgida Aiton, Rudbeckia hirta L., and Symphyotrichum novae-angliae (L.) G.L. Nesom (Asteraceae). Am. J. Essent. Oils Nat. Prod. 2014, 2, 36–38. [Google Scholar]
- Satyal, P.; Hieu, H.V.; Chuong, N.T.H.; Hung, N.H.; Sinh, L.H.; Van The, P.; Tai, T.A.; Hien, V.T.; Setzer, W.N. Chemical composition, Aedes mosquito larvicidal activity, and repellent activity against Triatoma rubrofasciata of Severinia monophylla leaf essential oil. Parasitol. Res. 2019, 118, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
- Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016. [Google Scholar]
- Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Thesis, University of Alabama in Huntsville, Huntsville, AL, USA, 2015. [Google Scholar]
- Sahm, D.H.; Washington, J.A. Antibacterial susceptibility tests: Dilution methods. In Manual of Clinical Microbiology; Balows, A., Hausler, W.J., Herrmann, K.L., Isenberg, H.D., Shamody, H.J., Eds.; American Society for Microbiology: Washington, DC, USA, 1991. [Google Scholar]
- Adams, R.P.; TeBeest, A.K.; Holmes, W.; Bartel, J.A.; Corbet, M.; Parker, C.; Thornburg, D. Geographic variation in volatile leaf oils (terpenes) in natural populations of Helianthus annuus (Asteraceae, Sunflowers). Phytologia 2017, 99, 130–138. [Google Scholar]
- Ceccarini, L.; Macchia, M.; Flamini, G.; Cioni, P.L.; Caponi, C.; Morelli, I. Essential oil composition of Helianthus annuus L. leaves and heads of two cultivated hybrids “Carlos” and “Florom 350”. Ind. Crops Prod. 2004, 19, 13–17. [Google Scholar]
- Ogunwande, I.A.; Flamini, G.; Cioni, P.L.; Omikorede, O.; Azeez, R.A.; Ayodele, A.A.; Kamil, Y.O. Aromatic plants growing in Nigeria: Essential oil constituents of Cassia alata (Linn.) Roxb. and Helianthus annuus L. Rec. Nat. Prod. 2010, 4, 211–217. [Google Scholar]
- Lima, I.O.; Oliveira, R.d.A.G.; Lima, E.d.O.; de Souza, E.L.; Farias, N.P.; Navarro, D.d.F. Inhibitory effect of some phytochemicals in the growth of yeasts potentially causing opportunistic infections. Rev. Bras. Ciênc. Farm. 2006, 41, 199–203. [Google Scholar] [CrossRef]
- Pinto, E.; Hrimpeng, K.; Lopes, G.; Vaz, S.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of Ferulago capillaris essential oil against Candida, Cryptococcus, Aspergillus and dermatophyte species. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 1311–1320. [Google Scholar] [CrossRef]
- Pinto, E.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of Thapsia villosa essential oil against Candida, Cryptococcus, Malassezia, Aspergillus and dermatophyte species. Molecules 2017, 22, 1595. [Google Scholar] [CrossRef]
- Tirillini, B.; Velasquez, E.R.; Pellegrino, R. Chemical composition and antimicrobial activity of essential oil of Piper angustifolium. Planta Med. 1996, 62, 372–373. [Google Scholar] [CrossRef]
RI a | RI b | Compound | Percent Composition c | ||
---|---|---|---|---|---|
H. annuus “Chianti” | H. annuus “Mammoth” | H. strumosus | |||
800 | 797 | (3Z)-Hexenal | 0.06 ± 0.01 | Tr d | tr |
801 | 801 | Hexanal | 0.35 ± 0.02 | 0.24 ± 0.04 | 0.41 ± 0.03 |
810 | 796 | 2-Hexanol | --- | --- | 0.07 ± 0.00 |
849 | 846 | (2E)-Hexenal | 1.13 ± 0.05 | 0.83 ± 0.05 | 1.96 ± 0.03 |
861 | 854 | (2E)-Hexenol | --- | --- | tr |
864 | 863 | 1-Hexanol | --- | --- | 0.09 ± 0.00 |
921 | 921 | Tricyclene | 0.37 ± 0.00 | 0.21 ± 0.01 | 0.18 ± 0.00 |
924 | 924 | α-Thujene | 0.17 ± 0.00 | 0.23 ± 0.01 | 0.1 |
932 | 932 | α-Pinene | 50.65 ± 0.32 | 48.91 ± 0.64 | 58.65 ± 0.14 |
946 | 945 | α-Fenchene | --- | --- | tr |
948 | 946 | Camphene | 7.26 ± 0.03 | 3.72 ± 0.03 | 3.38 ± 0.02 |
952 | 953 | Thuja-2,4(10)-diene | 0.05 ± 0.01 | --- | tr |
971 | 969 | Sabinene | 6.81 ± 0.04 | 17.01 ± 0.18 | 1.91 ± 0.00 |
977 | 974 | β-Pinene | 5.79 ± 0.04 | 3.27 ± 0.01 | 4.52 ± 0.02 |
988 | 988 | Myrcene | 0.42 ± 0.01 | 0.30 ± 0.03 | 9.79 ± 0.03 |
1004 | 1003 | p-Mentha-1(7),8-diene | --- | --- | tr |
1006 | 1002 | α-Phellandrene | --- | 0.08 ± 0.01 | 0.05 ± 0.01 |
1008 | 1008 | δ-3-Carene | --- | --- | tr |
1016 | 1014 | α-Terpinene | --- | tr | --- |
1024 | 1020 | p-Cymene | 0.06 ± 0.03 | 0.09 ± 0.01 | 0.07 ± 0.00 |
1028 | 1024 | Limonene | 7.20 ± 0.03 | 7.11 ± 0.11 | 3.79 ± 0.01 |
1030 | 1025 | β-Phellandrene | 0.24 ± 0.00 | 0.21 ± 0.14 | 0.29 ± 0.01 |
1031 | 1026 | 1,8-Cineole | 0.06 ± 0.00 | 0.07 ± 0.02 | tr |
1034 | 1032 | (Z)-β-Ocimene | --- | --- | tr |
1044 | 1044 | (E)-β-Ocimene | --- | tr | 0.41 ± 0.01 |
1057 | 1054 | γ-Terpinene | 0.10 ± 0.00 | 0.25 ± 0.01 | tr |
1069 | 1065 | cis-Sabinene hydrate | --- | --- | tr |
1084 | 1086 | Terpinolene | 0.10 ± 0.01 | 0.16 ± 0.01 | tr |
1099 | 1099 | α-Pinene oxide | 0.10 ± 0.01 | --- | tr |
1105 | 1100 | Nonanal | --- | --- | tr |
1109 | 1108 | p-Mentha-2,8-dien-1-ol | 0.36 ± 0.00 | 0.10 ± 0.02 | tr |
1112 | 1114 | (3E)-4,8-Dimethyl-1,3,7-nonatriene | 0.09 ± 0.01 | 0.13 ± 0.02 | 0.18 ± 0.00 |
1121 | 1124 | Chrysanthenone | 0.05 ± 0.00 | --- | --- |
1127 | 1122 | α-Campholenal | 0.33 ± 0.01 | 0.05 ± 0.01 | 0.06 ± 0.01 |
1140 | 1135 | trans-Pinocarveol | 0.37 ± 0.05 | tr | 0.06 ± 0.02 |
1141 | 1137 | cis-Verbenol | 0.10 ± 0.01 | --- | tr |
1145 | 1140 | trans-Verbenol | 1.50 ± 0.02 | 0.24 ± 0.02 | 0.26 ± 0.00 |
1163 | 1160 | Pinocarvone | 0.11 ± 0.01 | tr | tr |
1171 | 1165 | Borneol | 0.73 ± 0.01 | 0.07 ± 0.02 | 0.12 ± 0.00 |
1180 | 1174 | Terpinen-4-ol | 0.09 ± 0.01 | 0.19 ± 0.01 | tr |
1187 | 1179 | p-Cymen-8-ol | 0.05 ± 0.01 | --- | --- |
1195 | 1186 | α-Terpineol | --- | tr | --- |
1195 | 1195 | Myrtenal | 0.29 ± 0.02 | tr | 0.10 ± 0.01 |
1206 | 1201 | Decanal | tr | --- | --- |
1207 | 1204 | Verbenone | 0.28 ± 0.04 | 0.11 ± 0.01 | 0.07 ± 0.00 |
1219 | 1215 | trans-Carveol | 0.16 ± 0.00 | --- | tr |
1283 | 1287 | Bornyl acetate | 7.13 ± 0.04 | 3.02 ± 0.04 | 4.97 ± 0.01 |
1294 | 1298 | trans-Pinocarvyl acetate | 0.08 ± 0.01 | tr | tr |
1382 | 1387 | β-Bourbonene | 0.21 ± 0.02 | 0.18 ± 0.01 | tr |
1386 | 1387 | β-Cubebene | tr | tr | tr |
1387 | 1389 | β-Elemene | 0.05 ± 0.01 | 0.17 ± 0.01 | tr |
1392 | 1392 | (Z)-Jasmone | --- | --- | tr |
1416 | 1419 | β-Ylangene | 0.07 ± 0.01 | 0.15 ± 0.01 | tr |
1417 | 1417 | β-Caryophyllene | 0.33 ± 0.03 | 0.54 ± 0.09 | 0.84 ± 0.00 |
1427 | 1434 | γ-Elemene | --- | --- | tr |
1428 | 1431 | β-Gurjunene (=Calarene) | 0.62 ± 0.01 | 0.86 ± 0.01 | tr |
1430 | 1432 | trans-α-Bergamotene | 0.06 ± 0.00 | 0.14 ± 0.03 | tr |
1442 | 1442 | 6,9-Guaiadiene | tr | tr | --- |
1446 | 1453 | Geranyl acetone | tr | tr | --- |
1454 | 1452 | α-Humulene | 0.19 ± 0.02 | 0.29 ± 0.01 | 0.20 ± 0.00 |
1479 | 1484 | Germacrene D | 3.32 ± 0.03 | 6.84 ± 0.09 | 3.68 ± 0.02 |
1487 | 1489 | β-Selinene | 0.12 ± 0.01 | tr | tr |
1493 | 1493 | epi-Cubebol | 0.12 ± 0.04 | --- | --- |
1494 | 1500 | Bicyclogermacrene | --- | 0.16 ± 0.01 | 0.07 ± 0.01 |
1513 | 1514 | Cubebol | 0.14 ± 0.02 | tr | tr |
1516 | 1522 | δ-Cadinene | tr | 0.07 ± 0.00 | tr |
1547 | 1548 | Elemol | --- | tr | 0.07 ± 0.01 |
1559 | 1561 | (E)-Nerolidol | 0.10 ± 0.02 | 0.09 ± 0.03 | 0.64 ± 0.03 |
1575 | 1574 | Germacrene D-4β-ol | 0.37 ± 0.02 | 0.46 ± 0.00 | 0.46 ± 0.00 |
1581 | 1582 | Caryophyllene oxide | 0.16 ± 0.09 | tr | 0.37 ± 0.01 |
1608 | 1608 | Humulene epoxide II | --- | --- | 0.05 ± 0.01 |
1636 | 1639 | Caryophylla-4(12),8(13)-dien-5β-ol | --- | --- | tr |
1638 | 1643 | Hedycaryol | --- | --- | 0.10 ± 0.01 |
1641 | 1638 | τ-Cadinol | 0.18±0.01 | tr | 0.14 ± 0.01 |
1654 | 1649 | β-Eudesmol | 0.10 ± 0.02 | --- | 0.16 ± 0.03 |
1655 | 1652 | α-Cadinol | --- | tr | tr |
1663 | 1665 | Intermediol | tr | 0.56 ± 0.01 | --- |
1683 | 1685 | Germacra-4(15),5,10(14)-trien-1α-ol | 0.13 ± 0.04 | --- | 0.51 ± 0.01 |
1686 | 1687 | Eudesma-4(15),7-dien-1β-ol | --- | --- | 0.14 ± 0.00 |
1689 | 1690 | (Z)-trans-α-Bergamotol | --- | --- | 0.12 ± 0.01 |
1699 | 1695 | 6-epi-Shyobunol | --- | --- | 0.05 ± 0.01 |
Monoterpene hydrocarbons | 79.21 | 81.56 | 83.13 | ||
Oxygenated monoterpenoids | 11.80 | 3.85 | 5.64 | ||
Sesquiterpene hydrocarbons e | 4.97 | 9.40 | 4.79 | ||
Oxygenated sesquiterpenoids e | 1.39 | 1.11 | 2.79 | ||
Green leaf volatiles | 1.54 | 1.07 | 2.53 | ||
Others | 0.091 | 0.13 | 0.18 | ||
Total Identified | 99.01 | 97.12 | 99.05 |
Material | Fungal Species | ||
---|---|---|---|
Aspergillus niger | Candida albicans | Cryptococcus neoformans | |
H. annuus “Chianti” | 625 | 625 | 78 |
H. annuus “Mammoth” | 625 | 625 | 156 |
H. strumosus | 625 | 1250 | 78 |
(+)-α-Pinene | 625 | 313 | 20 |
(−)-α-Pinene | 156 | 625 | 39 |
(−)-β-Pinene | 156 | 625 | 39 |
(+)-Limonene | 1250 | 625 | 78 |
(−)-Limonene | 2500 | 1250 | 313 |
Amphotericin B | 0.78 | 0.78 | 1.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawson, S.K.; Sharp, L.G.; Powers, C.N.; McFeeters, R.L.; Satyal, P.; Setzer, W.N. Essential Oil Compositions and Antifungal Activity of Sunflower (Helianthus) Species Growing in North Alabama. Appl. Sci. 2019, 9, 3179. https://doi.org/10.3390/app9153179
Lawson SK, Sharp LG, Powers CN, McFeeters RL, Satyal P, Setzer WN. Essential Oil Compositions and Antifungal Activity of Sunflower (Helianthus) Species Growing in North Alabama. Applied Sciences. 2019; 9(15):3179. https://doi.org/10.3390/app9153179
Chicago/Turabian StyleLawson, Sims K., Layla G. Sharp, Chelsea N. Powers, Robert L. McFeeters, Prabodh Satyal, and William N. Setzer. 2019. "Essential Oil Compositions and Antifungal Activity of Sunflower (Helianthus) Species Growing in North Alabama" Applied Sciences 9, no. 15: 3179. https://doi.org/10.3390/app9153179
APA StyleLawson, S. K., Sharp, L. G., Powers, C. N., McFeeters, R. L., Satyal, P., & Setzer, W. N. (2019). Essential Oil Compositions and Antifungal Activity of Sunflower (Helianthus) Species Growing in North Alabama. Applied Sciences, 9(15), 3179. https://doi.org/10.3390/app9153179