

  applsci-09-03220




applsci-09-03220







Appl. Sci. 2019, 9(16), 3220; doi:10.3390/app9163220




Article



Discrete-Time First-Order Plus Dead-Time Model-Reference Trade-off PID Control Design



Ryo Kurokawa 1, Takao Sato 1,*[image: Orcid], Ramon Vilanova 2[image: Orcid] and Yasuo Konishi 1





1



Department of Mechanical Engineering, Graduate School of Engineering, University of Hyogo, Hyogo 671-2280, Japan






2



Department of Telecommunications and Systems Engineering, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain









*



Correspondence: tsato@eng.u-hyogo.ac.jp; Tel.: +81-792674983







Received: 19 July 2019 / Accepted: 5 August 2019 / Published: 7 August 2019



Abstract

:

The present study proposes a novel proportional-integral-derivative (PID) control design method in discrete time. In the proposed method, a PID controller is designed for first-order plus dead-time (FOPDT) systems so that the prescribed robust stability is accomplished. Furthermore, based on the control performance, the relationship between the servo performance and the regulator performance is a trade-off relationship, and hence, these items are not simultaneously optimized. Therefore, the proposed method provides an optimal design method of the PID parameters for optimizing the reference tracking and disturbance rejection performances, respectively. Even though such a trade-off design method is being actively researched for continuous time, few studies have examined such a method for discrete time. In conventional discrete time methods, the robust stability is not directly prescribed or available systems are restricted to systems for which the dead-time in the continuous time model is an integer multiple of the sampling interval. On the other hand, in the proposed method, even when a discrete time zero is included in the controlled plant, the optimal PID parameters are obtained. In the present study, as well as the other plant parameters, a zero in the FOPDT system is newly normalized, and then, a universal design method is obtained for the FOPDT system with the zero. Finally, the effectiveness of the proposed method is demonstrated through numerical examples.
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1. Introduction


Proportional-integral-derivative (PID) [1,2,3,4,5,6,7,8,9] control has few tuning parameters: proportional gain, integral time, and derivative time, and its structure is simple. Hence, PID control has been widely used in industry, and numerous tuning methods have been proposed.



In the model-based approach, optimal tracking and robust stability are achieved. However, the control system must be redesigned whenever the controlled system is changed. As a simple model-based optimal design method, Ziegler and Nichols proposed the step response method (ZN method) [10]. Using the ZN method, the PID parameters are decided based on the step response trajectory so that the tracking performance is optimized. However, the robust stability is not taken into account [11,12]. Therefore, robust control designs have been proposed [13,14]. Using robust design methods, robust stability is obtained, but the tracking performance is not optimized. In [15], H2 optimal design was proposed using internal model control (IMC) design, and hence, stability was assured. Although robust PID control systems are also designed in the discrete time domain [16,17], the stability margin cannot be prescribed.



The relationship between the tracking performance and the robust stability is a trade-off relationship [18]. Therefore, trade-off PID design methods have been proposed [19,20]. In the trade-off design methods, the PID parameters are decided such that the tracking performance is optimized subject to the prescribed robust stability, where servo or regulator mode is selected for performance optimization. A trade-off optimization approach has been designed in the continuous time domain that consists of a first-order plus dead-time (FOPDT) system [21,22], a second-order plus dead-time (SOPDT) system [23,24], and a two degrees-of-freedom (2DOF) system [25,26].



For a discrete time system, trade-off approaches have been proposed [27,28]. Discrete-time methods are useful for controlling discrete time systems, in which the controller is implemented with a digital computer. However, the robust stability was not assigned in [27], and the controlled plant was restricted to a non-zero system [28]. Therefore, in the present study, a new discrete time domain approach is proposed, in which the constraint is relaxed and the prescribed robust stability is accomplished. Specifically, the FOPDT model with a zero is normalized, and a universal design method is obtained. As a result, the trade-off design strategy is available for a large class of discrete time systems. Finally, the effectiveness of the proposed method is demonstrated through numerical examples.




2. Control System


The continuous time FOPDT transfer function is described as follows:


P(s)=KTs+1e−Ls



(1)




where K is the gain, T is the time constant, and L is the dead time. In the present study, the discrete time control model is designed with sampling interval Ts, and hence, the continuous time model is expressed as follows:


Pd(z−1)=b0+b1z−11−a1z−1z−(d+1)



(2)




where a1, b0, and b1 are the coefficient parameters, d is the dead-time in the discrete time, and z−1 denotes the backward shift operator. The discrete time plant parameters correspond to the continuous time plant parameters as follows:


a1=e−TsT



(3)






b0=K1−a1eL0T



(4)






b1=Ka1eL0T−a1



(5)






d=L1



(6)




where a non-negative integer L1 satisfies the following equation:


L=L1Ts+L0(L0<Ts)











Therefore, the input/output relationship in discrete time is given as follows:


y(k)=Pd(z−1)u(k)



(7)




where y(k) is the system output (plant output) and u(k) is the control input.



The present study proposes a new trade-off design method for the following PID control law:


u(k)=Ce(z−1)e(k)−Cy(z−1)y(k)Ce(z−1)=Kp1+TsTi(1−z−1)Cy(z−1)=KpTd(1−z−1)Tse(k)=r(k)−y(k)



(8)




where r(k) is the reference input and KP, Ti, and Td are the proportional gain, the integral time, and the derivative time, respectively. A block diagram of the control system is shown in Figure 1, in which the control input is disturbed by disturbance d(k). Equation (8) is the discrete version of the next continuous time control law:


U(s)=Kp1+1TisE(s)−TdsY(s)E(s)=R(s)−Y(s)



(9)




where L[·] means the Laplace transform, U(s)=L[u(t)], Y(s)=L[y(t)], and R(s)=L[r(t)].



The closed-loop systems from r(k) and d(k) to u(k) and y(k), respectively, are obtained as follows:


u(k)=Ce(z−1)1+Cd(z−1)Pd(z−1)r(k)−Cd(z−1)Pd(z−1)1+Cd(z−1)Pd(z−1)d(k)



(10)






y(k)=Ce(z−1)Pd(z−1)1+Cd(z−1)Pd(z−1)r(k)+Pd(z−1)1+Cd(z−1)Pd(z−1)d(k)Cd(z−1)=Ce(z−1)+Cy(z−1)



(11)







From the above equations, the relationship between the reference tracking and the disturbance rejection is a trade-off relationship.




3. Design Objective


In the proposed method, the PID parameters of the discrete time control law are designed based on a constrained optimization problem. The constrained optimization problem consists of the constraint condition as the prescribed stability margin and the objective function defined by the index with respect to the servo and regulator performances, respectively. The constraint condition and the objective function are defined in Section 3.1 and Section 3.2, respectively.



3.1. Constraint Condition


The constraint condition is used to obtain the stability margin. In the proposed method, the stability margin is designed using the following sensitivity function:


Sf(z−1)=11+Cd(z−1)Pd(z−1)



(12)







Using the sensitivity function, the constraint condition is defined as follows:


|Ms−Msd|=0



(13)






Ms=maxω|Sf(e−jω)|



(14)




where Ms denotes the maximum value of the sensitivity function Sf(e−jω) and Msd is the designed value of Ms.



The design range of Msd is recommended to be from 1.4–2.0 [4]. The relationship between Msd and the stability margin is in inverse proportion.




3.2. Objective Function


The objective function is defined based on the sum of absolute errors (SAE) as follows:


Jd=∑k=1∞|r(k)−y(k)|



(15)







In a one-degree-of-freedom (1DOF) system, the relationship between the servo and regulation performances is a trade-off relationship. Therefore, the objective functions in the reference tracking optimization and the disturbance rejection optimization are given by Equations (16) and (17), respectively:


Jds=∑k=1∞rs(k)−Ce(z−1)Pd(z−1)1+Cd(z−1)Pd(z−1)r(k)



(16)






Jdr=∑k=1∞rd(k)−Pd(z−1)1+Cd(z−1)Pd(z−1)d(k)



(17)




where rs(k)=1, r(k)=1, rd(k)=0, and d(k)=1.



In the discussed control system, the stability and the tracking performance are simultaneously decided because they are in a trade-off relationship.





4. Proportional-Integral-Derivative Parameter Design


In order to obtain a universal design method for arbitrary FOPDT models, first, in Section 4.1, the plant model and the PID control law are normalized. Second, in Section 4.2, optimal PID parameters are obtained subject to the pre-established stability margin. Third, in Section 4.3, the parameter tuning rule is derived based on the optimal parameters calculated in Section 4.2. Finally, the algorithm for the proposed design method is summarized in Section 4.4.



4.1. Normalization


The plant model and the control law are normalized to obtain a universal design method. The normalization parameters for the plant model, τ0 and τa, are given as follows:


τ0=−dloga1+logb0a1+b1a1(b0+b1)



(18)






τa=−loga1



(19)







Moreover, the normalization parameters for the control law, κp, τi, and τd, are given as follows:


κp=b0+b11−a1Kp



(20)






τi=−Tiloga1Ts



(21)






τd=−Tdloga1Ts



(22)







The derivation of the normalization parameters is shown in Appendix A.



The expression of the plant model using the normalization parameters has merits for optimization analysis and controller design. Since the optimization problem is stated in terms of just two parameters τ0 and τa, the analysis and elaboration of coefficient parameters are simplified. Furthermore, the controller parameters are tuned independent of the process gain and time constant.




4.2. Optimization


The controller parameters are optimized for the servo and regulation operations, respectively, subject to the established stability margin.



As the optimization tool, the fmincon function in MathWorks MATLAB software was used, where the prescribed robust stability is set: Msd∈{1.4,1.6,1.8,2.0}, and the optimal controller parameters are calculated based on the normalization parameters for the controlled plant: τ0∈{0.3,⋯,1.7} and τa∈{0.01,⋯,0.1}. As an example, the optimized controller parameters for Msd=1.4 in the servo are shown in Figure 2.




4.3. Controller Parameter Decision


The tuning rule for the controller parameters is proposed in Section 4.3.1, and the prescribed robust stability using the proposed parameter tuning rule is evaluated in Section 4.3.2.



4.3.1. Tuning Rule


On the pair of plant parameters τ0 and τa with the established robust stability Msd, the controller parameters are expressed in terms of the normalization parameters for the plant model as:


κp=α0+α1τ0α2



(23)






τi=β0+β1τ0+β2τ02+β3τ03



(24)






τd=γ0+γ1τ0+γ2τ02



(25)




where αi(i=0,1,2), βj(j=0,1,2,3), and γk(k=0,1,2) are defined as follows:


α0=a00+a01τa



(26)






α1=a10+a11τa



(27)






α2=a20+a21τa



(28)






β0=b00+b01τa



(29)






β1=b10+b11τa



(30)






β2=b20+b21τa



(31)






β3=b30+b31τa



(32)






γ0=c00+c01τa



(33)






γ1=c10+c11τa



(34)






γ2=c20+c21τa



(35)




where the coefficient parameters in Equation (26)–Equation (35) in the servo optimization are shown in Table 1, and those in the regulation optimization are also shown in Table 2.



The controller parameters are optimized in the limited range. Although the range can be expanded, the tuning rule is redesigned when the range is changed.




4.3.2. Evaluation of the Prescribed Robust Stability


Non-obtained controller parameters are interpolated, where using the tuning rule proposed in Section 4.3.1, the controller parameters are calculated on the pair of the normalization parameters for the controlled plant: τ0∈{0.3,0.31,⋯,1.7} and τa∈{0.01,0.011,⋯,1.0}, where Msd is varied in {1.4, ⋯, 2.0}. The calculated controller parameters for Msd=1.4, merged into the preliminary calculated parameters shown in Figure 2, are shown in Figure 3. The calculated parameters using the proposed tuning rule are sufficiently close to the optimized parameters.



Next, Ms values calculated using the calculated controller parameters in the servo and regulation optimization are shown in Figure 4 and Figure 5, respectively. The minimum and maximum calculated Ms values are summarized in Table 3. Since the errors between Msd and Ms are within ±5%, the proposed tuning rule has sufficient precision.





4.4. Algorithm


The proposed design procedure is summarized as the following algorithm:




	
The plant parameters and the controller parameters are normalized.



	
For the normalized systems, the constrained optimization problem is solved such that the reference and disturbance responses are optimized, respectively, and the optimal controller parameters are obtained.



	
Based on the obtained optimized parameters, the tuning rule for the controller parameters is designed.



	
Using the tuning rule, the practical PID parameters are decided.








When the tuning rule is obtained once, the PID parameters are calculated without solving the constrained optimization problem.





5. Numerical Examples


First, in Section 5.1, the trade-off design between the servo and regulator design is confirmed. The accomplished robust stability is then shown in Section 5.2. Finally, the proposed method is compared with two conventional discrete time trade-off design methods [27,28] in Section 5.3 and Section 5.4, respectively.



5.1. Trade-off Tracking Performance Comparison


As a controlled plant, the following transfer function is used:


Pd(z−1)=0.0231+0.0114z−11−0.9753z−14



(36)







The transfer function is the discrete time representation of the following continuous time system with Ts=0.03 s:


P(s)=1.41.2s+1e−0.4s



(37)







Using the proposed method, the PID parameters are decided based on Equation (36) with Msd∈{1.4,1.6,1.8,2.0}. The simulation results obtained using the PID parameters are shown in Figure 6, where the reference input is 1.0 and the control input is disturbed by a unit step signal after 15 s. Figure 6 shows that the servo design is superior to the regulator design with respect to reference tracking performance. On the other hand, the regulator design is superior to the servo design with respect to disturbance rejection.



The control performance is evaluated using Js and Jr, where Js denotes the SAE value from the start until 15 s, and Jr also denotes the SAE value from 15 s until the end. Here, Js and Jr, as well as the PID parameters and Ms in the servo and regulator, respectively, are summarized in Table 4. In the servo design, Js is smaller than Jr. In the regulator design, Jr is smaller than Js.



From both Figure 6 and Table 4, the larger Msd, the better the control performance. Therefore, the trade-off design is achieved using the proposed method.




5.2. Robust Stability


The effectiveness of the accomplished robust stability is shown. The PID controller is designed based on the nominal model Equation (36) in Section 5.1 in the servo and regulation, respectively. The scenario is that the plant is Equation (36) from the start to 30 s and is changed to Equation (38) after 30 s as the model perturbation.




Pd′(z−1)=0.05301−0.9788z−21



(38)





The transfer function is the discrete time version of the following continuous time model with the sampling interval Ts=0.03 s:


P′(s)=2.51.4s+1e−0.6s



(39)







The simulation results for the servo and regulator designs are shown in Figure 7, where the reference input is given by a unit step function, and the control input is disturbed by a unit step function after 15 s. The simulation results show that the effect of the model perturbation is suppressed by small Msd. However, note that the control performance is superior before the model perturbation when the value of Msd is large.




5.3. Comparison with the IMC-Based Method


Consider the following discrete time system:


Pd(z−1)=0.01001−0.99z−1z−25



(40)







The system is the discrete time representation of the following continuous time system with a sampling interval of 0.01 s:


P(s)=1s+1e−0.25s



(41)







In the conventional discrete time trade-off design method [27], the IMC controller is designed as:


CIMC(z−1)=(1−a1)(1−λc)b0(1−λcz−1)



(42)




where λc is the trade-off design parameter. The obtained IMC controller is approximated by the following discrete time PID control law:


CPID(z−1)=Kp1+1Ti(1−z−1)+(1−αTd)Td(1−z−1)1−αTdz−1



(43)




where λc is designed in the range of [0.8,0.99]. However, the designed control systems are unstable when λc≤0.96, and thus, the conventional control law is designed such that λc is set to 0.97, 0.98, and 0.99, respectively, where α=0.1. The designed PID parameters for the conventional method and the proposed method are shown in Table 5.



The simulations were conducted using the conventional and proposed methods, where the reference input was set to 1.0, and the control input was disturbed by a unit step function after 30 s. The conventional method is compared with the proposed servo and regulator optimization methods in Figure 8. The obtained Ms values and the evaluated values Js and Jr are also summarized in Table 5, where Js denotes the SAE value from the start until 30 s, and Jr also denotes the SAE value from 30 s until the end. Table 5 shows that the conventional method provides a trade-off design by selecting λc even though no value is assigned to Ms. Moreover, the tracking performances obtained using the proposed method are superior to those obtained using the conventional method.




5.4. Comparison with the Conventional Discrete-Time Method


The conventional discrete time design method [28] is compared with the proposed method. Here, two scenarios are conducted, in which a non-zero plant and a zero-included plant, respectively, are controlled.



In the first simulation, we consider the following non-zero discrete time plant:


Pd1(z−1)=0.05127z−11−0.9486z−1z−10



(44)




where Equation (44) is the discrete time representation of Equation (45) with a sampling interval of Ts=0.05 s.


P1(s)=10.95s+1e−0.5s



(45)







Equation (44) has no zero since the continuous time dead-time is an integer multiple of the sampling interval.



In the second simulation, the controlled discrete time system is given as follows:


Pd2(z−1)=0.0201+0.02473z−11−0.9552z−1z−7



(46)




where Equation (46) is the discrete time version of the continuous time system given by Equation (47) with a sampling interval of Ts=0.061 s.


P2(s)=11.33s+1e−0.4s



(47)







Equation (46) has a zero since the dead-time in the continuous time model is not an integer multiple of the sampling interval. Since the discrete time system has a zero, the conventional method is not directly used. Therefore, Equation (46) is hereby approximated by the next discrete time system, and the conventional method is used:


Pd2′(z−1)=0.04483z−11−0.9552z−1z−7



(48)







In the simulations, the reference input is set to 1.0. Furthermore, the control input is disturbed by a unit step function signal after 10 s. The obtained PID parameters are shown in Table 6, Table 7, Table 8 and Table 9. Using the obtained parameters, the discrete time models Equations (44) and (46) are controlled, respectively, and the output results are plotted in Figure 9 and Figure 10. Furthermore, the obtained Ms value and index values Js and Jr are also shown in Table 6, Table 7, Table 8 and Table 9, where Js denotes the SAE value while the control is not disturbed, and Jr denotes the SAE value while the control input is disturbed.



In the case of the non-zero system Equation (44), Js, Jr, and Ms obtained using the conventional method were close to those obtained using the proposed method. On the other hand, when the controlled plant was a zero-included system, Equation (46) was out of range of the conventional method. Therefore, the tracking performances using the conventional method were inferior to those using the proposed method, and hence, the SAE values using the conventional method were larger than those using the proposed method. Furthermore, the prescribed robust stabilities Msd were achieved using the proposed method, while on the other hand, the Ms values obtained using the conventional method were insufficient.



The simulation results showed that both the conventional and proposed methods were useful for the non-zero plants. However, when the zero-included plant was controlled, the design objective was achieved using the proposed method even though the conventional method was not available. Therefore, the proposed method is a more general method of the conventional discrete time design method.





6. Conclusions


The present study proposed a new trade-off PID control design method for discrete time FOPDT systems including a zero. In the proposed method, the regulator- or servo-optimal PID controller was designed in discrete time. In the proposed method, since robust stability was a design parameter, it was adjustable depending on the model perturbation.



In the conventional discrete time design method [28], the designable class was restricted such that the dead-time in the continuous time system must be an integer multiple of the sampling interval, and hence, no zero appeared. On the other hand, in the proposed method, the constraint condition was relaxed.
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Appendix A. Derivation of Normalization Parameters


In the same way as the conventional continuous time design, the normalization parameters are obtained.



Here, τ0 is derived as follows:


τ0=LT=TsTd+L0T



(A1)







In this equation, TsT is derived using Equation (3):


TsT=−loga1



(A2)




and L0T is also derived by eliminating K from Equations (4) and (5):


L0T=logb0+a1(b0+b1)a1



(A3)







Equations (A2) and (A3) are substituted into Equation (A1), and Equation (18) is then obtained.



From Equation (A2), τa is derived as:


τa=TsT=−loga1



(A4)







Since K is the steady-state gain, κp is obtained as:


κp=KKp=b0+b11−a1Kp



(A5)







From Equation (A2), τi and τd are calculated as follows:


τi=TiT=−Tiloga1Ts



(A6)






τd=TdT=−Tdloga1Ts



(A7)
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Figure 1. Discrete-time PID control system. 
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Figure 2. Relationships among optimized controller parameters and the normalized parameters τ0 and τa in servo design. 
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Figure 3. Relationship between approximated controller parameters in servo design. 
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Figure 4. Relationships among the obtained Ms, τ0, and τa in servo design. 
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Figure 5. Relationships among the obtained Ms, τ0, and τa in regulation design. 
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Figure 6. Output and input responses obtained using the proposed method in both servo and regulator design, where the system is disturbed by a unit step disturbance after 15 s. 
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Figure 7. Output and input responses obtained using the proposed method for each Msd with model perturbation, where the system is disturbed after 15 s; left: servo optimization; right: regulator optimization. 
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Figure 8. Results of the IMC-based method and the proposed servo and regulator optimization methods, where the system is disturbed by a unit step disturbance after 10 s; left: servo optimization; right: regulator optimization. 
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Figure 9. Output and input trajectories for the proposed and conventional designs for Equation (44), where the system is disturbed by a unit step disturbance after 10 s; left: servo optimization; right: regulator optimization. 
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Figure 10. Output and input trajectories for the proposed and conventional designs for Equation (46), where the system is disturbed by a unit step disturbance after 10 s; left: servo optimization; right: regulator optimization. 
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Table 1. Coefficient parameters in Equations (26)–(35) in servo design.
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	Msd
	1.4
	1.6
	1.8
	2.0





	a00
	0.2130
	0.2778
	0.3281
	0.3098



	a01
	−0.4643
	−0.6376
	−0.8185
	−0.7722



	a10
	0.4361
	0.5803
	0.6932
	0.8100



	a11
	−0.3767
	−0.4236
	−0.3308
	−0.4577



	a20
	−1.0067
	−1.0169
	−1.0150
	−0.9861



	a21
	1.7509
	1.7951
	1.9003
	1.8503



	b00
	1.1368
	1.1451
	1.2097
	1.3995



	b01
	−1.6140
	−1.1310
	−0.7911
	−1.9403



	b10
	−0.0394
	0.3152
	0.4516
	0.1364



	b11
	1.4393
	0.0802
	−1.2593
	2.0622



	b20
	0.1724
	−0.0447
	−0.1094
	0.1498



	b21
	−0.9219
	0.3521
	1.6861
	−1.2358



	b30
	−0.0326
	0.0265
	0.0354
	−0.0201



	b31
	0.2070
	−0.1725
	−0.5677
	0.2429



	c00
	−0.0190
	0.000066
	0.0047
	0.0091



	c01
	−0.1314
	−0.0898
	−0.0615
	−0.0129



	c10
	0.3193
	0.2819
	0.3377
	0.3596



	c11
	0.3330
	0.0381
	0.0363
	0.0514



	c20
	0.0056
	−0.0100
	−0.0242
	−0.0090



	c21
	−0.0527
	−0.0124
	0.0078
	−0.0046
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Table 2. Coefficient parameters in Equations (26)–(35) in regulator design.
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	Msd
	1.4
	1.6
	1.8
	2.0





	a00
	0.2085
	0.2718
	0.2999
	0.3672



	a01
	−0.6075
	−0.8871
	−0.6490
	−1.4148



	a10
	0.4445
	0.5897
	0.7267
	0.7914



	a11
	−0.3597
	−0.3261
	−0.7568
	−0.1116



	a20
	−1.0048
	−1.0010
	−0.9840
	−1.0107



	a21
	2.4219
	2.5022
	2.1738
	2.7688



	b00
	0.2175
	0.1208
	0.1676
	0.1793



	b01
	1.0142
	1.4350
	0.5152
	0.5668



	b10
	1.3058
	1.5359
	1.4478
	1.3845



	b11
	−4.3025
	−4.9006
	−1.6551
	−1.4977



	b20
	−0.7838
	−0.8310
	−0.6531
	−0.4397



	b21
	3.7862
	4.0734
	0.9992
	0.8169



	b30
	0.2250
	0.2067
	0.1519
	0.0589



	b31
	−1.0977
	−1.1117
	−0.2245
	−0.1967



	c00
	−0.0031
	0.0139
	0.0152
	0.0314



	c01
	0.0802
	0.1103
	0.0765
	0.1761



	c10
	0.4456
	0.3783
	0.3607
	0.3006



	c11
	0.3391
	0.0800
	−0.0139
	−0.3791



	c20
	−0.0467
	−0.0296
	−0.0374
	−0.0100



	c21
	−0.1076
	−0.0107
	0.0186
	0.2333
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Table 3. Maximum and minimum values of obtained Ms.
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Msd

	
Servo

	
Regulator




	
min

	
max

	
min

	
max






	
1.4

	
1.3923

	
1.4088

	
1.3904

	
1.4216




	
1.6

	
1.5836

	
1.6130

	
1.5819

	
1.6183




	
1.8

	
1.7725

	
1.8256

	
1.7738

	
1.8266




	
2.0

	
1.9518

	
2.0359

	
1.9527

	
2.0356
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Table 4. Proportional-integral-derivative parameter, Ms, and index values.
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Msd

	
Kp

	
Ti

	
Td

	
Ms

	
Js

	
Jr






	
Servo Optimization

	
1.4

	
1.0217

	
1.3331

	
0.1048

	
1.3998

	
0.9576

	
1.2253




	
1.6

	
1.3709

	
1.4633

	
0.1090

	
1.5964

	
0.7638

	
1.1531




	
1.8

	
1.6359

	
1.5879

	
0.1360

	
1.7937

	
0.7064

	
1.0688




	
2.0

	
1.8093

	
1.7116

	
0.1537

	
1.9936

	
0.6970

	
1.0274




	
Regulator Optimization

	
1.4

	
1.0159

	
0.6876

	
0.1737

	
1.4052

	
1.3048

	
0.8667




	
1.6

	
1.3430

	
0.6641

	
0.1681

	
1.5944

	
1.0673

	
0.6466




	
1.8

	
1.6065

	
0.7020

	
0.1597

	
1.7913

	
0.9705

	
0.5302




	
2.0

	
1.8217

	
0.7174

	
0.1589

	
1.9922

	
0.9458

	
0.4565
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Table 5. Proportional-integral-derivative parameters, Ms, and sum of absolute errors (SAE) values using the proposed and internal model control (IMC)-based methods for Equation (40).






Table 5. Proportional-integral-derivative parameters, Ms, and sum of absolute errors (SAE) values using the proposed and internal model control (IMC)-based methods for Equation (40).





	

	

	
Kp

	
Ti

	
Td

	
Ms

	
Js

	
Jr






	
IMC-based method [27]

	
λc=0.99

	
0.8248

	
103.10

	
4.6696

	
1.1625

	
1.2500

	
1.2493




	
λc=0.98

	
1.3978

	
104.83

	
7.5346

	
1.2937

	
0.7533

	
0.7500




	
λc=0.97

	
1.8184

	
106.07

	
9.4658

	
1.5659

	
0.5919

	
0.5833




	
Proposed Servo

	
Msd=1.4

	
1.9120

	
1.1242

	
0.0606

	
1.4014

	
0.5936

	
0.5878




	
Msd=1.6

	
2.5724

	
1.2107

	
0.0690

	
1.5919

	
0.4733

	
0.4705




	
Msd=1.8

	
3.0641

	
1.3062

	
0.0871

	
1.7869

	
0.4367

	
0.4260




	
Msd=2.0

	
3.3823

	
1.4277

	
0.0984

	
1.9851

	
0.4313

	
0.4216




	
Proposed Regulator

	
Msd=1.4

	
1.9193

	
0.5000

	
0.1070

	
1.3999

	
0.8079

	
0.3352




	
Msd=1.6

	
2.5319

	
0.4605

	
0.1079

	
1.5858

	
0.7646

	
0.2432




	
Msd=1.8

	
3.0234

	
0.4928

	
0.1038

	
1.7778

	
0.6951

	
0.1975




	
Msd=2.0

	
3.4407

	
0.5012

	
0.1069

	
1.9940

	
0.6642

	
0.1689
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Table 6. Proportional-integral-derivative parameters, Ms, and SAE values in the servo design using Equation (44).
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Msd

	
Kp

	
Ti

	
Td

	
Ms

	
Js

	
Jr






	
Proposed method

	
1.4

	
0.9373

	
1.0470

	
0.1445

	
1.4002

	
1.1737

	
1.1171




	
1.6

	
1.2529

	
1.1866

	
0.1346

	
1.6009

	
0.9489

	
0.9465




	
1.8

	
1.5008

	
1.2976

	
0.1649

	
1.8023

	
0.8833

	
0.8638




	
2.0

	
1.6595

	
1.3763

	
0.1867

	
2.0043

	
0.8703

	
0.8282




	
Conventional method

	
1.4

	
0.9732

	
1.0888

	
0.1367

	
1.4224

	
1.1427

	
1.1186




	
1.6

	
1.2996

	
1.2398

	
0.1376

	
1.6311

	
0.9539

	
0.9531




	
1.8

	
1.5332

	
1.3585

	
0.1682

	
1.8363

	
0.8955

	
0.8846




	
2.0

	
1.6849

	
1.4374

	
0.1894

	
2.0442

	
0.8802

	
0.8513











[image: Table]





Table 7. Proportional-integral-derivative parameters, Ms, and SAE values in the regulator design using Equation (44).
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Msd

	
Kp

	
Ti

	
Td

	
Ms

	
Js

	
Jr






	
Proposed method

	
1.4

	
0.9239

	
0.6663

	
0.2190

	
1.4009

	
1.3680

	
0.8922




	
1.6

	
1.2254

	
0.6837

	
0.2020

	
1.6017

	
1.2768

	
0.6949




	
1.8

	
1.4660

	
0.7268

	
0.1886

	
1.8026

	
1.2042

	
0.5834




	
2.0

	
1.6614

	
0.7538

	
0.1796

	
2.0054

	
1.1653

	
0.5092




	
Conventional method

	
1.4

	
0.9608

	
0.6652

	
0.2151

	
1.4227

	
1.3553

	
0.8618




	
1.6

	
1.2648

	
0.6865

	
0.2002

	
1.6322

	
1.2685

	
0.6745




	
1.8

	
1.4886

	
0.7154

	
0.1818

	
1.8314

	
1.2143

	
0.5733




	
2.0

	
1.7045

	
0.7580

	
0.1789

	
2.0559

	
1.1583

	
0.4945
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Table 8. Proportional-integral-derivative parameters, Ms, and SAE values in the servo design using Equations (46) and (48), respectively.
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Msd

	
Kp

	
Ti

	
Td

	
Ms

	
Js

	
Jr






	
Proposed method

	
1.4

	
1.4664

	
1.4390

	
0.1009

	
1.4026

	
1.0088

	
0.9796




	
1.6

	
1.9725

	
1.5788

	
0.1066

	
1.6010

	
0.8020

	
0.7978




	
1.8

	
2.3577

	
1.7146

	
0.1354

	
1.8014

	
0.7412

	
0.7236




	
2.0

	
2.6043

	
1.8463

	
0.1550

	
2.0010

	
0.7320

	
0.7037




	
Conventional method [28]

	
1.4

	
1.3144

	
1.5050

	
0.1075

	
1.3571

	
1.1449

	
1.1407




	
1.6

	
1.7619

	
1.6841

	
0.1194

	
1.5024

	
0.9553

	
0.9495




	
1.8

	
2.0745

	
1.8297

	
0.1473

	
1.6576

	
0.8813

	
0.8737




	
2.0

	
2.2804

	
1.9491

	
0.1662

	
1.8076

	
0.8537

	
0.8441
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Table 9. Proportional-integral-derivative parameters, Ms, and SAE values in the regulator design using Equation (46) and (48), respectively.
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Msd

	
Kp

	
Ti

	
Td

	
Ms

	
Js

	
Jr






	
Proposed method

	
1.4

	
1.4332

	
0.7274

	
0.1790

	
1.4026

	
1.2958

	
0.6457




	
1.6

	
1.8980

	
0.7008

	
0.1744

	
1.6030

	
1.2111

	
0.4786




	
1.8

	
2.2724

	
0.7352

	
0.1645

	
1.8028

	
1.1244

	
0.3915




	
2.0

	
2.5759

	
0.7527

	
0.1659

	
2.0076

	
1.0778

	
0.3375




	
Conventional method [28]

	
1.4

	
1.2922

	
0.7535

	
0.1982

	
1.3571

	
1.3330

	
0.7262




	
1.6

	
1.6990

	
0.7295

	
0.1833

	
1.5124

	
1.2267

	
0.5433




	
1.8

	
2.0191

	
0.7328

	
0.1731

	
1.6620

	
1.1631

	
0.4495




	
2.0

	
2.2923

	
0.7810

	
0.1659

	
1.8111

	
1.0886

	
0.3925
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