Effect of Load Priority Modeling on the Size of Fuel Cell as an Emergency Power Unit in a More-Electric Aircraft
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Motivation
1.2. Related Works
2. Materials and Methods
2.1. Distribution System Model
2.2. PEMFCS Model
2.3. ESS Model
2.4. Loads Priority Model
- Environmental control system (ECS) and pressurization. Compressed air produced by gas turbines or bleed air is used for cabin pressure, engine cooling, anti-icing system, and so on. The Boeing 787, uses electric compressors instead of bleed air.
- Wing anti-icing. The absence of bleed air makes it possible to use an electric heater in the anti-icing system which is embedded in the wing leading edge.
- Electrical motor pumps. Some of the hydraulic pumps in the aircraft have been replaced by electric pumps.
2.4.1. Load Criticality
2.4.2. EENS
2.4.3. Penalty of Interruption
3. Optimization Framework
3.1. Hydrogen Consumption Cost
3.2. Load Shedding Penalty
3.3. Main Objective Function
3.3.1. Power Balance
3.3.2. Generators Connection
3.3.3. Emergency Power Unit
3.4. Transformations
4. Optimization Results
4.1. Case A: Normal Mode
4.2. Case B: Abnormal Mode with Fixed Priorities
4.3. Case C: Abnormal Mode with Proposed Dynamic Priorities
5. Conclusions
- With the proposed two-objective optimization model, it is possible to establish a tradeoff between choosing the size of the fuel cell (in terms of weight and consumption of hydrogen) and load shedding in the critical modes. The output of the proposed two-objective problem is to provide a series of solutions that help the user to select the appropriate fuel cell size. The optimal solution is to reduce hydrogen consumption and load shedding during emergency condition simultaneously;
- Prioritizing loads will definitely affect the size of the fuel cell as a source of emergency power unit. By choosing a suitable model to prioritize the loads in critical situations, the optimal fuel cell size can be selected. With the proposed priority model an optimum size of fuel cell which uses lower hydrogen and reduces the load shedding is achieved;
- Paying more attention to the cost of hydrogen consumption rather than the cost of load shedding leads to better solutions. Because for or , the more appropriate solutions are achieved;
- The amount of battery capacity has a significant impact on the optimal solutions. Without considering the weight limits of the ESS, the load shedding during emergency situations will be reduced with the increase in its capacity;
- Using the transformations performed in Section 3.1, the optimization model is solved with CPLEX, which makes it possible to efficiently and quickly solve the problem. The execution time of the model in GAMS was 0.114 s.
- In future research, the degradation of ESS and PEMFCS will be considered in this model.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Indices | |
b | Battery index |
g | Generator index |
j | Load index |
q | Main bus index |
t | Time index |
Parameters | |
Coefficients of hydrogen consumption function | |
Hydrogen price ($/g) | |
Maximum fuel cell scale | |
Minimum fuel cell scale | |
Capacity of battery b (kWh) | |
Lower heating value (J/g) | |
M | Scaling constant |
Total mass of baseline PEMFCS (kg) | |
On-board hydrogen mass (kg) | |
Number of time slots (s) | |
Number of main bus | |
Number of loads | |
Maximum charging power (kW) | |
Minimum discharging power (kW) | |
Penalty of disconnection load j from main bus q | |
Penalty of disconnection generator g from main bus q | |
Charging efficiency of battery b | |
Discharging efficiency of battery b | |
Weighting parameter | |
Decision Variables | |
Charging status of battery b at main bus q at time t, 1 if charging | |
Discharging status of battery b at main bus q at time t, 1 if discharging | |
Hydrogen consumption cost ($) | |
Load shedding cost | |
PEMFCS scaling factor | |
F | Main objective function |
PEMFCS mass (kg) | |
Hydrogen power of scaled PEMFCS (kW) | |
PEMFCS net power (kW) | |
Charging power of battery b at main bus q at time t (kW) | |
Discharging power of battery b at main bus q at time (kW) | |
Amount of load j at main bus q at time t (kW) | |
Power generated by generator g at main bus q at time t (kW) | |
Power requirement at main bus q at time t (kW) | |
Power generated at main bus q at time t (kW) | |
State of charge of battery b at main bus q at time | |
PEMFCS commitment, 1 if commit | |
Connection status of load j to main bus q at time t | |
Lagrangian multipliers | |
Abbreviation | |
ECS | Environmental control system |
ESS | Energy storage system |
ECMS | Equivalent consumption minimization strategy |
HEV | Hybrid electric vehicle |
MIQP | Mixed-integer quadratic programming |
MEA | More-electric aircraft |
PEMFCS | Proton exchange membrane fuel cell system |
PI | Proportional integral controller |
K.K.T | Karush–Kuhn–Tucker |
References
- Ebrahimi, H.; Gatabi, J.R.; El-Kishky, H. An auxiliary power unit for advanced aircraft electric power systems. Electr. Power Syst. Res. 2015, 119, 393–406. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Li, X.; Kim, H.-J.; Wang, J. A full convolutional network based on DenseNet for remote sensing scene classification. Math. Biosci. Eng. 2019, 16, 3345–3367. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Wang, J.; Wang, L.; Yue, X.-G. Concrete Cracks Detection Based on FCN with Dilated Convolution. Appl. Sci. 2019, 9, 2686. [Google Scholar] [CrossRef]
- He, S.M.; Li, Z.Z.; Tang, Y.N.; Liao, Z.F.; Wang, J.; Kim, H.-J. Parameters Compressing in Deep Learning. Comput. Mater. Contin. 2019. accepted. [Google Scholar]
- Zhang, J.; Jin, X.; Sun, J.; Wang, J.; Sangaiah, A.K. Spatial and semantic convolutional features for robust visual object tracking. Multimedia Tools Appl. 2018, 1–21. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, X.; Sun, J.; Wang, J.; Li, K. Dual Model Learning Combined With Multiple Feature Selection for Accurate Visual Tracking. IEEE Access 2019, 7, 43956–43969. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Y.; Feng, W.; Wang, J. Spatially Attentive Visual Tracking Using Multi-Model Adaptive Response Fusion. IEEE Access 2019, 7, 83873–83887. [Google Scholar] [CrossRef]
- He, S.M.; Xie, K.; Chen, W.W.; Zhang, D.F.; Wen, J.G. Energy-aware Routing for SWIPT in Multi-hop Energy-constrained Wireless Network. IEEE Access 2018, 6, 17996–18008. [Google Scholar] [CrossRef]
- Rajashekara, K.; Grieve, J.; Daggett, D. Hybrid fuel cell power in aircraft. IEEE Ind. Appl. Mag. 2008, 14, 54–60. [Google Scholar] [CrossRef]
- Thounthong, P.; Rael, S. The benefits of hybridization. IEEE Ind. Electron. Mag. 2009, 3, 25–37. [Google Scholar] [CrossRef]
- El-Kishky, H.; Ibrahimi, H.; Abu Dakka, M.; Eid, A.; Abdel-Akher, M. Transient performance of battery/fuel cell-based APU on aircraft electric power systems with nonlinear loading. In Proceedings of the 2011 IEEE Pulsed Power Conference, Chicago, IL, USA, 19–23 June 2011; pp. 1486–1489. [Google Scholar]
- Bontour, S.; Hissel, D.; Gualous, H.; Harel, F.; Kauffmann, J. Design of a parallel fuel cell-supercapacitor auxiliary power unit (APU). In Proceedings of the Eighth International Conference on Electrical Machines and Systems, Nanjing, China, 27–29 September 2005. [Google Scholar]
- Jin, K.; Ruan, X.; Yang, M.; Xu, M. A Hybrid Fuel Cell Power System. IEEE Trans. Ind. Electron. 2009, 56, 1212–1222. [Google Scholar] [CrossRef]
- Pratt, J.W.; Klebanoff, L.E.; Munoz-Ramos, K.; Akhil, A.A.; Curgus, D.B.; Schenkman, B.L. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes. Appl. Energy 2013, 101, 776–796. [Google Scholar] [CrossRef] [Green Version]
- Keim, M.; Kallo, J.; Friedrich, K.A.; Werner, C.; Saballus, M.; Gores, F. Multifunctional fuel cell system in an aircraft environment: An investigation focusing on fuel tank inerting and water generation. Aerosp. Sci. Technol. 2013, 29, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Barzegar, A.; Su, R.; Wen, C.; Rajabpour, L.; Zhang, Y.; Gupta, A.; Gajanayake, C.; Lee, M.Y. Intelligent power allocation and load management of more electric aircraft. In Proceedings of the 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, Australia, 9–12 June 2015; pp. 533–538. [Google Scholar]
- Zhang, W.; Li, J.; Xu, L.; Ouyang, M. Optimization for a fuel cell/battery/capacity tram with equivalent consumption minimization strategy. Energy Convers. Manag. 2017, 134, 59–69. [Google Scholar] [CrossRef]
- Motapon, S.N.; Dessaint, L.-A.; Al-Haddad, K. A Comparative Study of Energy Management Schemes for a Fuel-Cell Hybrid Emergency Power System of More-Electric Aircraft. IEEE Trans. Ind. Electron. 2014, 61, 1320–1334. [Google Scholar] [CrossRef]
- Guida, D.; Minutillo, M. Design methodology for a PEM fuel cell power system in a more electrical aircraft. Appl. Energy 2017, 192, 446–456. [Google Scholar] [CrossRef]
- Hu, Z.; Li, J.; Xu, L.; Song, Z.; Fang, C.; Ouyang, M.; Dou, G.; Kou, G. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles. Energy Convers. Manag. 2016, 129, 108–121. [Google Scholar] [CrossRef]
- Hu, X.; Johannesson, L.; Murgovski, N.; Egardt, B. Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus. Appl. Energy 2015, 137, 913–924. [Google Scholar] [CrossRef]
- Fletcher, T.; Thring, R.; Watkinson, M. An Energy Management Strategy to concurrently optimise fuel consumption & PEM fuel cell lifetime in a hybrid vehicle. Int. J. Hydrogen Energy 2016, 41, 21503–21515. [Google Scholar] [Green Version]
- Motapon, S.N.; Dessaint, L.-A.; Al-Haddad, K. A Robust H2-Consumption-Minimization-Based Energy Management Strategy for a Fuel Cell Hybrid Emergency Power System of More Electric Aircraft. IEEE Trans. Ind. Electron. 2014, 61, 6148–6156. [Google Scholar] [CrossRef]
- Schlabe, D.; Lienig, J. Energy management of aircraft electrical systems—State of the art and further directions. In Proceedings of the 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), Bologna, Italy, 16–18 October 2012; pp. 1–6. [Google Scholar]
- McAvoy, M. Aircraft Galley Systems and Methods for Managing Electricpower for Aircraft Galley Systems. U.S. Patent US20050121978A1, 23 August 2011. [Google Scholar]
- Jouper, J.; Nellis, S.; Hambley, D.T.; Peabody, M.A. Load Distributionand Management System. Patent Number CA2231618C, 8 November 2005. [Google Scholar]
- Glahn, G.D.W.; Koenig, A.; Finck, M.; Reitmann, J. Intelligent Power Distribution Management for an On-Board Galley of a Transport Vehicle such as an Aircraft. U.S. Patent US7098555B2, 29 August 2006. [Google Scholar]
- Zeng, D.; Dai, Y.; Li, F.; Sherratt, R.S.; Wang, J. Adversarial learning for distant supervised relation extraction. Comput. Mater. Contin. 2018, 55, 121–136. [Google Scholar]
- Tu, Y.; Lin, Y.; Wang, J.; Kim, J.-U. Semi-supervised learning with generative adversarial networks on digital signal modulation classification. Comput. Mater. Contin. 2018, 55, 243–254. [Google Scholar]
- Wang, J.; Gao, Y.; Liu, W.; Lim, W.W.A.S.-J. An Asynchronous Clustering and Mobile Data Gathering Schema Based on Timer Mechanism in Wireless Sensor Networks. Comput. Mater. Contin. 2019, 58, 711–725. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.-S.; Kong, L.P.; Sung, T.-W.; Tsai, P.-W.; Snášel, V. A Clustering Scheme for Wireless Sensor Networks Based on Genetic Algorithm and Dominating Set. J. Internet Technol. 2018, 19, 1111–1118. [Google Scholar]
- Pan, J.-S.; Kong, L.P.; Sung, T.-W.; Tsai, P.-W.; Snasel, V. Alpha-Fraction First Strategy for Hierarchical Wireless Sensor Networks. J. Internet Technol. 2018, 19, 1717–1726. [Google Scholar]
- Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.-J. An intelligent data gathering schema with data fusion supported for mobile sink in WSNs. Int. J. Distrib. Sens. Netw. 2019, 15, 1–10. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.; Sherratt, R.S.; Park, J.H. An improved ant colony optimization-based approach with mobile sink for wireless sensor networks. J. Supercomput. 2018, 74, 6633–6645. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Pan, J.-S.; Dao, T.-K. An Improved Flower Pollination Algorithm for Optimizing Layouts of Nodes in Wireless Sensor Network. IEEE Access 2019. [Google Scholar] [CrossRef]
- Meng, Z.Y.; Pan, J.-S.; Tseng, K.-K. PaDE: An enhanced Differential Evolution algorithm with novel control parameter adaptstion schemes for numerical optimization. Knowl. Based Syst. 2019, 168, 80–99. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Yin, X.; Li, F.; Kim, H.-J. An Enhanced PEGASIS Algorithm with Mobile Sink Support for Wireless Sensor Networks. Wirel. Commun. Mob. Comput. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- He, S.M.; Xie, K.; Xie, K.X.; Xu, C.; Wang, J. Interference-aware Multi-source Transmission in Multi-radio and Multi-channel Wireless Network. IEEE Syst. J. 2019. [Google Scholar] [CrossRef]
- Rostami, S.M.H.; Sangaiah, A.K.; Wang, J.; Kim, H.-J. Real-time obstacle avoidance of mobile robots using state-dependent Riccati equation approach. EURASIP J. Image Video Process. 2018, 2018, 79. [Google Scholar] [CrossRef]
- Rostami, S.M.H.; Ghazaani, M. State Dependent Riccati Equation Tracking Control for a Two Link Robot. J. Comput. Theor. Nanosci. 2018, 15, 1490–1494. [Google Scholar] [CrossRef]
- Rostami, S.M.H.; Ghazaani, M. Design of a Fuzzy Controller for Magnetic Levitation and Compared with Proportional Integral Derivative Controller. J. Comput. Theor. Nanosci. 2018, 15, 3118–3125. [Google Scholar] [CrossRef]
- Ghazaani, M.; Rostami, S.M.H. An Intelligent Power Control Design for a Wind Turbine in Different Wind Zones Using FAST Simulator. J. Comput. Theor. Nanosci. 2019, 16, 25–38. [Google Scholar] [CrossRef]
- Rostami, S.M.H.; Sangaiah, A.K.; Wang, J.; Liu, X. Obstacle avoidance of mobile robots using modified artificial potential field algorithm. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 70. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cao, J.; Ji, S.; Park, J.H. Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sinks. J. Supercomput. 2017, 73, 3277–3290. [Google Scholar] [CrossRef]
- Moir, I.; Seabridge, A.; Jukes, M. Civil Avionics Systems; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Pukrushpan, J.T.; Stefanopoulou, A.G.; Peng, H. Control of Fuel Cell Power Systems, Principles, Modeling, Analysis and Feedback Design; Springer: London, UK, 2004. [Google Scholar]
- Hu, X.; Jiang, J.; Egardt, B.; Cao, D. Advanced Power-Source Integration in Hybrid Electric Vehicles: Multicriteria Optimization Approach. IEEE Trans. Ind. Electron. 2015, 62, 7847–7858. [Google Scholar] [CrossRef]
- Wipke, K.; Cuddy, M.; Burch, S. ADVISOR 2.1: A user-friendly advanced powertrain simulation using a combined backward/forward approach. IEEE Trans. Veh. Technol. 1999, 48, 1751–1761. [Google Scholar] [CrossRef]
- Hu, X.; Murgovski, N.; Johannesson, L.M.; Egardt, B. Comparison of Three Electrochemical Energy Buffers Applied to a Hybrid Bus Powertrain With Simultaneous Optimal Sizing and Energy Management. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1193–1205. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Le, L.B. Risk-Constrained Profit Maximization for Microgrid Aggregators With Demand Response. IEEE Trans. Smart Grid 2015, 6, 135–146. [Google Scholar] [CrossRef]
- AlOwaifeer, M.; AlMuhaini, M. Load Priority Modeling for Smart Service Restoration. Can. J. Electr. Comput. Eng. 2017, 40, 217–228. [Google Scholar]
- Whyatt, G.A.; Chick, L.A. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells; U.S. Department of Energy: Washington, DC, USA, 2012.
- Chiandussi, G.; Codegone, M.; Ferrero, S.; Varesio, F. Comparison of multi-objective optimization methodologies for engineering applications. Comput. Math. Appl. 2012, 63, 912–942. [Google Scholar] [CrossRef] [Green Version]
- Bisschop, J. AIMMS—Optimization Modeling; AIMMS: Haarlem, Netherlands, 2006. [Google Scholar]
- Conejo, A.J.; Castillo, E.; Garcia-Bertrand, R. Decomposition Techniques in Mathematical Programming: Engineering and Science; Engineering and Science Application: New York, NY, USA, 2006. [Google Scholar]
- Mazidi, M.; Monsef, H.; Siano, P. Design of a risk-averse decision making tool for smart distribution network operators under severe uncertainties: An IGDT-inspired augment ε-constraint based multi-objective approach. Energy 2016, 116, 214–235. [Google Scholar] [CrossRef]
- Zheng, C.; Xu, G.; Park, Y.; Lim, W.; Cha, S. Prolonging fuel cell stack lifetime based on Pontryagin’s Minimum Principle in fuel cell hybrid vehicles and its economic influence evaluation. J. Power Sources 2014, 248, 533–544. [Google Scholar] [CrossRef]
- Salehpour, M.J.; Tafreshi, S.M.M. The effect of price responsive loads uncertainty on the risk-constrained optimal operation of a smart micro-grid. Int. J. Electr. Power Energy Syst. 2019, 106, 546–560. [Google Scholar] [CrossRef]
- Brooke, A.; Kendrick, D.; Meeraus, A.; Raman, R. GAMS—A User’s Guide; GAMS Development Corporation: Washington, DC, USA, 1998. [Google Scholar]
Load Type | Demand (kW) | Connected Bus | Priority | |
---|---|---|---|---|
ECS/Pressurization | 320 | 270 VDC | High | 2 |
Hydraulics | 40 | 270 VDC | High | 2 |
Equip. Cooling | 40 | 270 VDC | High | 2 |
ECS Fans | 32 | 270 VDC | High | 2 |
ICS | 40 | 115 VAC | High | 2 |
Flight Control | 14 | 28 VDC | High | 2 |
Fuel Pumps | 32 | 230 VAC | High | 2 |
Various AC Loads | 140 | 115 VAC | Medium | 1 |
Ice Protection | 60 | 230 VAC | Medium | 1 |
Forward Cargo AC | 60 | 230 VAC | Low | 0 |
Galleys | 120 | 230 VAC | Low | 0 |
Various DC Loads | 20 | 28 VDC | Low | 0 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Hydrogen price ($/g) | 0.00341 | battery capacity E (kWh) | 50 |
Hydrogen lower heating value (J/g) | 120,000 | Maximum charging power (kW) | 25 |
Baseline PEMFC mass (kg) | 223 | Maximum discharging power (kW) | 25 |
On-board hydrogen mass (kg) | 73 | Maximum battery state of charge (SoC) (%) | 30 |
Maximum PEMFC scaling | 3 | Minimum battery SoC (%) | 90 |
Minimum PEMFC scaling | 0.1 | Charging/discharging efficiency / (%) | 90/85 |
Connection Status of Loads | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | ECS | Hydraulics | Equip. Cooling | ECS Fans | ICS | Flight Control | Fuel Pumps | Various AC Loads | Ice Protection | Forward Cargo AC | Galleys | Various DC Loads |
15 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
16 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
17 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
18 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
19 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
20 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Connection Status of Loads | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | ECS | Hydraulics | Equip. Cooling | ECS Fans | ICS | Flight Control | Fuel Pumps | Various AC Loads | Ice Protection | Forward Cargo AC | Galleys | Various DC Loads |
15 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
16 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
17 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
18 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
19 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
20 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
First Outage | Second Outage | Third Outage | Fourth Outage | |||||
---|---|---|---|---|---|---|---|---|
Weighting Factor | Load Shedding at the Moment of Outage (kW) | PEMFC Power (kW) | Load Shedding at the Moment of Outage (kW) | PEMFC Power (kW) | Load Shedding at the Moment of Outage (kW) | PEMFC Power (kW) | Load Shedding at the Moment of Outage (kW) | PEMFC Power (kW) |
0 | 300 | 120 | 300 | 440 | 300 | 640 | 300 | |
0 | 179 | 120 | 300 | 440 | 300 | 640 | 300 | |
0 | 179 | 120 | 300 | 440 | 300 | 640 | 300 | |
0 | 144 | 180 | 256 | 440 | 300 | 640 | 300 | |
120 | 45 | 180 | 256 | 500 | 295 | 640 | 300 | |
120 | 45 | 180 | 256 | 500 | 180 | 640 | 300 | |
120 | 45 | 320 | 101 | 500 | 145 | 660 | 279 | |
120 | 45 | 320 | 101 | 500 | 111 | 720 | 212 | |
120 | 25 | 320 | 66 | 640 | 23 | 720 | 212 | |
120 | 11 | 340 | 31 | 640 | 18 | 760 | 168 | |
918 | 0 | 918 | 0 | 918 | 0 | 918 | 0 |
Connection Status of Loads | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | ECS | Hydraulics | Equip. Cooling | ECS Fans | ICS | Flight Control | Fuel Pumps | Various AC Loads | Ice Protection | Forward Cargo AC | Galleys | Various DC Loads |
15 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
16 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
17 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
18 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
19 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
20 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
Connection Status of Loads | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | ECS | Hydraulics | Equip. Cooling | ECS Fans | ICS | Flight Control | Fuel Pumps | Various AC Loads | Ice Protection | Forward Cargo AC | Galleys | Various DC Loads |
15 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
16 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
17 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
18 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
19 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
20 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
First Outage | Second Outage | Third Outage | Fourth Outage | |||||
---|---|---|---|---|---|---|---|---|
Weighting Factor | Load Shedding at the Moment of Outage (kW) | PEMFC Power (kW) | Load Shedding at the Moment of Outage (kW) | PEMFC Power (kW) | Load Shedding at the Moment of Outage (kW) | PEMFC Power (kW) | Load Shedding at the Moment of Outage (kW) | PEMFC Power (kW) |
0 | 300 | 120 | 300 | 352 | 300 | 640 | 300 | |
0 | 179 | 120 | 300 | 352 | 300 | 640 | 300 | |
0 | 179 | 120 | 300 | 352 | 300 | 640 | 300 | |
0 | 179 | 120 | 300 | 352 | 300 | 640 | 300 | |
0 | 179 | 120 | 300 | 352 | 300 | 640 | 300 | |
0 | 172 | 120 | 293 | 352 | 300 | 640 | 300 | |
0 | 158 | 180 | 228 | 352 | 295 | 672 | 265 | |
0 | 131 | 212 | 200 | 500 | 150 | 672 | 265 | |
120 | 45 | 320 | 72 | 532 | 103 | 732 | 199 | |
120 | 26 | 352 | 45 | 640 | 23 | 732 | 194 | |
918 | 0 | 918 | 0 | 918 | 0 | 918 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehpour, M.J.; Radmanesh, H.; Hosseini Rostami, S.M.; Wang, J.; Kim, H.-J. Effect of Load Priority Modeling on the Size of Fuel Cell as an Emergency Power Unit in a More-Electric Aircraft. Appl. Sci. 2019, 9, 3241. https://doi.org/10.3390/app9163241
Salehpour MJ, Radmanesh H, Hosseini Rostami SM, Wang J, Kim H-J. Effect of Load Priority Modeling on the Size of Fuel Cell as an Emergency Power Unit in a More-Electric Aircraft. Applied Sciences. 2019; 9(16):3241. https://doi.org/10.3390/app9163241
Chicago/Turabian StyleSalehpour, Mohammad Javad, Hamid Radmanesh, Seyyed Mohammad Hosseini Rostami, Jin Wang, and Hye-Jin Kim. 2019. "Effect of Load Priority Modeling on the Size of Fuel Cell as an Emergency Power Unit in a More-Electric Aircraft" Applied Sciences 9, no. 16: 3241. https://doi.org/10.3390/app9163241
APA StyleSalehpour, M. J., Radmanesh, H., Hosseini Rostami, S. M., Wang, J., & Kim, H. -J. (2019). Effect of Load Priority Modeling on the Size of Fuel Cell as an Emergency Power Unit in a More-Electric Aircraft. Applied Sciences, 9(16), 3241. https://doi.org/10.3390/app9163241