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Featured Application: The work presented in this paper provides methods for probabilistic energy
flow calculations and will serve as a reference for the operation and maintenance of integrated
energy systems.

Abstract: With the increasing capacity of renewable energy sources, uncertainties regarding renewable
energy and other dynamic loads in integrated energy systems (IESs) are increasing. Thus, it is necessary
to study the probabilistic energy flow (PEF) of IESs. However, existing PEF calculation methods such
as the point estimate method (PEM) are computationally inefficient when there are many random
variables and estimated points; moreover, relatively large errors can occur when the estimated points
are outside their limits. Hence, this paper presents a calculation method that addresses these problems.
Because there are correlations among the variables, the Nataf transformation is employed to control
the correlation quickly and effectively. A model for an IES that is interconnected with natural gas
and electricity systems and accounts for the uncertainties of wind plants, photovoltaic power plants,
and dynamic gas loads is presented. Correlations between wind plants and photovoltaic power
plants are handled using the Nataf transformation. Finally, a modified PEM is developed to solve the
PEF. For situations in which the estimated points exceed their boundaries, the power transformation
and equal constraint transformation methods are used. The results of time-domain simulations
demonstrate the effectiveness of the proposed approach.

Keywords: integrated energy systems; probabilistic energy flow; point estimate method; Nataf transformation

1. Introduction

The increasing demand for energy has resulted in increased concerns regarding energy sources,
and the exploration of new energy supply modes has attracted considerable interest. The concept of
integrated energy systems (IESs) challenges that of traditional energy systems. IESs, which can fully
utilize energy in various forms and optimize resource allocation, have rapidly developed in recent
years [1]. Compared with traditional energy systems, these systems have significant advantages [2,3].
For example, all types of energy are closely coupled, which makes them complementary and mutually
beneficial, and they can realize cascade utilization and collaborative optimization of energy. Presently,
research on IESs is mostly focused on three aspects: energy flow analysis and calculation [4],
multi-energy system optimization scheduling [2,3], and multi-energy system planning and multi-market
games [5,6].

The ability to integrate various types of energy structures is a compelling advantage of IESs [7,8].
However, owing to the significant amount of renewable energy sources (RESs) involved, crucial
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challenges in terms of energy uncertainties arise. The uncertainties come from the intermittency
of RESs; additionally, the volatility of the loads in different energy structures aggravate the energy
uncertainties in IESs [9], which creates significant challenges for the operation and maintenance of
IESs. We can determine the probabilistic distribution of each node state in the IESs by calculating the
probabilistic energy flow, which provides guidance to address possible risks. Therefore, the probabilistic
energy flow (PEF) in IESs must be studied.

The basis of PEF is the calculation of steady-state energy flow (SSEF), which has been studied
extensively. Because of the similarity between the SSEF model of the power system and the gas network,
Newton’s method can be used to solve the SSEF of the gas network. When the initial point of Newton’s
method is near the equilibrium point, the method has good and fast convergence. Moreover, the IES
mostly works near the equilibrium point. Therefore, Newton’s method is a commonly used method
for solving the energy flow problem. Moreover, the solutions obtained using this method for multiple
energy systems can be divided into two forms according to the Jacobian matrices used in the solution,
i.e., separate Newton iterations for each system [10] or a unified Newton iteration for all systems [11].
In [10], each energy system (e.g., power system or natural gas system) is represented by its own
Jacobian matrix and independent iterations are performed using Newton’s method. The unbalanced
quantity is iterated using the energy coupling unit until the whole energy system achieves convergence.
This method is relatively simple, but the computation speed is somewhat slow. In [11], the power and
natural gas networks are represented by a single Jacobian matrix for the unified Newton iterations. Then,
the integrated energy flow of the entire network can be obtained. This method is more complicated in
cases where there is a compressor in the gas grid, but the iterations are faster.

Presently, research on the impact of uncertainties in IESs is limited. However, the calculations
performed for these systems are similar to the probabilistic power flow (PPF) calculations in traditional
power systems. They include the Monte Carlo method [12], analytical method [13], stochastic spectral
analysis method [14], and approximation method [15].

Generally, a Monte Carlo simulation (MCS) requires several samples to obtain good precision
according to the law of large numbers; this simulation requires considerable time to compute. However,
it is possible to achieve the most accurate results with an MCS; therefore, it is used as reference to
measure the precision of other methods. The studies on MCSs mainly focus on improving sampling
efficiency to reduce the number of sampling representatives, for instance stratified sampling [16,17]
and importance sampling [18]. Others focus on improving the calculation efficiency using methods
such as parallel computing [19]. The sampling sequence can also be changed to reduce the number of
samples, such as in the quasi-Monte Carlo method [20]. This method obtains random numbers using
the Sobol sequence, which generates more uniformity than random numbers generated by the pseudo
random number technique.

The analytical method is used to solve the PPF problem with a linearized alternating current
model and convolution. The number of calculations in this method increases exponentially when the
system is relatively large and several components need to be considered. Therefore, this method is not
as widely used as the other three methods.

Stochastic spectral analysis includes the Karhunen–Loeve expansion method (KLEM) [21],
polynomial chaos expansion [22], and surrogate modelling [23]. KLEM expands the system response
into a deterministic part and a stochastic part. The stochastic part consists of a series of unrelated
random variables and deterministic coefficients (eigenvalues and eigenfunctions). The disadvantage
of KLEM is that it is not applicable to the covariance function of unknown stochastic processes.
Polynomial chaos expansion expands the structural probability using the orthogonal polynomial of
the basic variable and uses the chaotic polynomial as the basis of the expansion. Therefore, it can
be applied to both Gaussian and non-Gaussian outputs. However, when the number of uncertain
parameters increases, the number of polynomial coefficients also increase, which greatly increases the
cost of computation. Hence, stochastic spectral analysis method is a new method developed recently
and remains an on-going research.
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Currently, the approximation method is an important approach to solving the PPF problem.
This method mainly includes the first-order second-moment method (FOSMM) [24] and point estimate
method (PEM) [25]. The FOSMM is fast and precise. Because it adopts the Taylor series expansion
method, only the linear term is considered and the higher-order term is ignored; therefore, when the
system is highly nonlinear or the random variables are very asymmetrical, a large error will be caused.
PEM is now widely used for solving the PPF problem; through Gaussian interpolation, the estimated
points can be easily obtained, resulting in fewer power flow calculations. PEM is very fast. However,
the original PEM cannot deal with correlated variables [26] and the estimated points might exceed the
estimator boundary constraints, which results in a less accurate result [27]. Therefore, PEM is restricted
to specific applications.

However, studies examining cases wherein a great number of probability variables with different
marginal distributions co-exist in IESs are scarce. In practice, the probability variables, such as those
of RESs, are highly correlated with each other; for example, wind speeds and solar radiation at
different sites within the same geographical area are typically dependent owing to similar weather
conditions. Thus, large errors will occur if we ignore the correlations among different probability
variables. The commonly used approaches to deal with the correlation of random variables are
transformation methods such as the third-order polynomial normal transformation (TPNT) [28],
rotational transformation and orthogonal transformation (RTOT) [29], Rosenblatt transformation [30],
unscented transformation [26], and copula function method (CFM) [20].

TPNT transfers variables into the third-order polynomial normal space, which causes mapping
errors and low accuracy in some cases. RTOT transfers the correlation variables from the linear
correlation coefficient matrix into the generated samples. Unlike the unscented transformation, which
does not require a linear transformation and is suitable for any arbitrary nonlinear function, RTOT is
essentially a linear transformation method. CFM uses marginal distribution functions to obtain joint
distribution functions; this is a convenient method for adding relevance among variables with good
precision, so it is now widely adopted. The Nataf transformation [31], which is a type of Gaussian
copula, is one of the most important CFMs and famous for its high precision and speed; it can link
any distribution space to the normal distribution space, and this is extremely beneficial for the PEM.
The estimated points and weights can be easily obtained through the Gauss–Hermite integration.
Moreover, because the calculation of PEF is extremely time consuming, the PEM can considerably
reduce the computation time. Therefore, the combination of the Nataf transformation with PEM is an
excellent choice for PEF calculations. However, the probability variables can be bounded by constraints.
For instance, wind farms have cut-in and cut-out wind speed constraints, and when the estimated
points are outside the range of these constraints, they lose their physical significance and cause errors.
In particular, when dealing with 2-point and 3-point estimation situations, because of the small number
of estimated points, the errors can become considerable. Hence, it is necessary to limit the estimated
points to remain within the boundaries of the constraints.

The goal of this study is to solve the PEF in an IES. We comprehensively consider the uncertainty
regarding wind energy, solar energy in power systems, and gas loads in natural gas systems to
establish a model for calculating the PEF. Considering the correlation between different wind-driven
generators and solar energy generators in reality, we propose using the Nataf transformation to solve
the correlation problem accurately and efficiently. As is well known, solving the PEF in an IES is more
time consuming than solving the PPF in a power system. The Monte Carlo method is an inefficient
solution to the PEF; hence, the method developed in our study improves the solution efficiency using
the multipoint estimation method (MPEM). This paper proposes an extension to the existing MPEM
that reduces the computational complexity and cost. For cases where the estimated points are outside
of the range, the approach proposed in this paper uses the power transformation method and equality
constraint transformation to improve 2-point and 3-point estimations and reduce the calculation error.
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The remainder of this paper is organized as follows: A PEF model for IESs is described in Section 2.
A PEM based on the Nataf transformation is detailed in Section 3, and 2-point estimation methods
considering boundary constraints are discussed in Section 4. Section 5 presents a case discussing PEF
calculations, and Section 6 discusses the ideas proposed in this paper and directions of research worth
studying in future. The concluding remarks are given in Section 7. Notations and a list of abbreviations
are provided in the Appendix A.

2. PEF Model for IESs

2.1. SSEF Calculation in an IES

The SSEF calculation is the basic step in PEF calculations; similar to the power flow model of
power systems, the SSEF model can be expressed using the following equation:

p = Ps
i + Pg

i − Pl
i − Pc −

n∑
j=1

Pi j = 0

j , i,∀i = 1, · · ·, n

q = Qs
i + Qg

i −Ql
i − Pc −

n∑
j=1

Pi j = 0

j , i,∀i = 1, · · ·, n
fNG = Qi −

∑
m∈i

fim +
∑

m∈i
fin +

∑
j

Gi jF j = 0

j , i,∀i = 1, · · ·, m

(1)

Here, Ps
i and Qs

i are respectively the active and reactive power that the source injects into node i,
Pl

i and Ql
i are respectively the active and reactive power demanded by the ith node load, Pc

i and Qc
i are

respectively the active and reactive power consumed by the compressor, and Pg
i and Qg

i are respectively
the active and reactive power that the gas generator injects into node i. In addition, n represents
the number of nodes directly connected to the ith node, Qi is the injection of natural gas at the ith
node, and fim and fin represent the injections at the downstream and upstream nodes, respectively.
The gas consumption of the compressor is denoted by F j: when the compressor takes air from node i,
the correlation coefficient Gi j is 1; otherwise, Gi j is 0. If the energy required by the compressor comes
from the power system, then Gi j is also 0. Finally, p, q and fNG represent the active, reactive, and gas
flow unbalances in a node.

The specific calculation of the SSEF and parameters for a natural gas network are discussed
elsewhere [10]. This study uses separate Newton iterations to solve the SSEF problem. That is,
the SSEFs of the power and natural gas systems are each iterated independently using Newton’s
method until convergence is achieved. Then, the unbalanced quantity between these energy systems is
iterated through the energy coupling system unit until overall convergence is achieved, as shown in
Figure 1.

The main steps of SSEF computation are as follows:
Step 1: Initialize the variables with the information of the natural gas network and construct its

correlation matrix.
Step 2: Using the initial pressure of the natural gas network, solve each variable of the natural gas

network (such as the pressure of each node and the gas flow of each pipeline) using Newton’s method.
Step 3: Compute the value of the energy interaction of the natural gas network with the power

system in the coupling system, which consists of the gas turbine and compressor.
Step 4: Construct the nodal admittance matrix of the power system and compute its initial values

from the energy interaction obtained in Step 3. Solve the power flow of the power system using
Newton’s method and obtain its information, which includes node voltage, active power, reactive
power, and voltage phase angle.
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Step 5: Compute the energy interaction value again from the results of Step 4 and then use it to
compute the natural gas network information using Newton’s method. Repeat Steps 2–5 until the
relative error of the current and previous energy interaction values meets the accuracy requirement
(e.g., less than a given tolerance).
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Figure 1. Steady-state energy flow calculation in an integrated energy systems. 
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Figure 1. Steady-state energy flow calculation in an integrated energy systems.

2.2. Uncertainty Analysis and Uncertainty Modeling

With the rapid development of new energy sources in recent years, the capacity for new energy and
power generation in IESs is increasing quickly, which causes considerable uncertainty in these systems.
At the same time, the demand for gas is also volatile and uncertain in some places; therefore, the
uncertainty associated with IESs mainly comprises uncertainties pertaining to wind power, solar power,
and gas load.

2.2.1. Probability Model of Wind Power Plants

The probability model of wind speed satisfies the two-parameter Weibull distribution. Wind
speed probability v can hence be computed as

f (v) =
kp

cp
(

v
cp
)

kp−1
e
−( v

cp )
kp

, (2)

where kp is the shape parameter of the Weibull distribution and cp is the scale parameter. The power
generated by wind turbines is proportional to the wind speed, as follows:

p(x) =


0 0 ≤ x < xci

Pδ(x− xci) xci ≤ x < xco

P xco ≤ x

,

δ = 1
xco−xci

(3)

where P and δ are the relevant scaling coefficients, p(x) is the power of the wind turbines, xci is the
cut-in wind speed, and xco is the cut-out wind speed.
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2.2.2. Probability Model of Photovoltaic Power Plants

The probability model of light intensity can be approximated as a beta distribution for a given
period of time. Its probability density function is

f (Gstc) =
Γ(α+ β)

Γ(α) + Γ(β)
(

Gstc(t)
Gstcmax

)
α−1

(1−
Gstc(t)
Gstcmax

)
β−1

(4)

The output characteristic of a photovoltaic power plant is as follows:

pPV
t = pstcGstc (5)

In the above formula, Gstc and pstc
j are the illumination intensity and relevant scaling coefficient,

respectively, and Gstc(t) and Gstcmax are respectively the actual light intensity and maximum light
intensity over a certain period. Parameters α and β are the shape parameters of the beta distribution.

2.2.3. Probability Model of Gas Load

The uncertainty of the gas network load can be fit using the following normal distribution function:

f (x) =
1
√

2πδ
e−

(x−µ)2

2δ2 , (6)

where µ is the mean of the load, δ is its standard deviation, and x is the gas consumed under the
gas load.

3. PEM Based on the Nataf Transformation

3.1. Nataf Transformation Theory

The Nataf transformation can transform random variables from any distribution to a normal
distribution, which is convenient for correlation control, and has high precision. This method was
proposed by Liu in [30], who provided the correlation coefficient transformation table for the Nataf
transformation, which proved extremely beneficial for researchers in this area. For ease of understanding,
the main steps of the Nataf transformation are briefly described below.

First, we set the input random variable vector X = {x1, x2 . . . xn} using{
Φ(yi) = Fi(xi)

yi = Φ−1(Fi(xi))
. (7)

Here, Y =
{
y1, y2 . . . yn

}
is the standard normal random vector, Φ(·) is the standard normal

cumulative distribution function, and Φ−1(·) is the inverse cumulative distribution function.
The joint probability density function of random vectors can be derived using the derivative rule

of implicit functions as follows:

fX(x) = f1(x1) f2(x2) . . . fn(xn)
φn(y,ρ0)

φ(y1)φ(y2) . . . φ(yn)
(8)

φn(y,ρ0) =
1√

(2π)ndet(ρ0)

exp(−
1
2

yTρ0y). (9)
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Assuming the correlation coefficient matrix of the input random vector X is ρ, the expressions for
each component of the correlation coefficient matrix can be derived as follows:

ρi j =
+∞∫
−∞

+∞∫
−∞

(
xi−µi
σi

)(
x j−µ j
σ j

) fXiX j(xi, x j)didj

=
+∞∫
−∞

+∞∫
−∞

(
F−1(Φ(yi))−µi

σi
)(

F−1(Φ(y j))−µ j
σ j

) ×φ2(yi, y j,ρ0i j)dyidy j

(10)

where ρ0i j is a component of the correlation coefficient of standard normal random vector Y. When
we obtain all the values of ρ0i j, the Cholesky decomposition of ρ0 is ρ0 = L0LT

0 . The relevant normal
random vectors Y can be transformed into independent normal random vectors U and U = L−1

0 Y.
Moreover, the following inverse transformation can be performed:

Y = L0U, (11)

xi = Fi
−1(Φ(yi)). (12)

3.2. Combining of Nataf Transformation with PEM

The m-PEM are defined according to the number of estimated points. Generally speaking,
the bigger of m, the more accurate results will be got, but the computational burden will become larger
accordingly. The PEM is a type of Gauss–Hermite integration. For integrals with a normal distribution,
the nodes and weights of the Gauss–Hermite integration can be easily obtained from tables.

In this method, the equal probability rule is used to transform the space of the normal distribution
into an arbitrary distribution G = [G1(X1), G2(X2), · · ·Gn(Xn)]. Assuming that the response function
of pointin X in any systemis h is h = h(X1, X2 · · · , Xn), we discuss two cases, considering the number
of variables X in h.

3.2.1. Univariate response function

Using Formulas (7)–(12), the following relations can be obtained:

X = G−1(Φ(Y)), (13)

where X = (x1, x2 · · · , xk), and k is the number of a set of samples. Let h = h(X) = h(x1, x2 · · · , xk);
then the probability statistic of h is

µh =

∫
h(x) f (x)dx (14)

σ2
h =

∫
(h(x) − µh)

2 f (x)dx (15)

Substituting Equation (13) into Equations (14)–(15) yields the following formula:

µh =

∫
h(G−1(Φ(y)))φ(y)dy (16)

σ2
h =

∫
(h(G−1(Φ(y))) − µh)

2φ(y)dy (17)

Because y is a variable of normal distribution, φ(y) is the probability density function of normal
distribution, and the expansion of Equations (16) and (17) using the Gauss–Hermite integration is

µh = p1h(G−1(Φ(y1))) + · · ·+ pmh((G−1(Φ(ym))) (18)
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σ2
h =

m∑
j=1

p j(h(x) − µh)
2

= p1(h(G−1(Φ(y1))) − µh)
2
+ · · ·+ pm(h(G−1(Φ(ym))) − µh)

2
(19)

Equation (19) shows that the cost of computing a univariate response function for an m-PEM is
proportional to m, where m is the number of estimation nodes. In addition, yi is the point estimated by
m-PEM and pi is the weight coefficient of yi. Hence, m-PEM is expressed as follows:

yi = µy + ξiσy, i = 1, 2 · · ·m, (20)

where ξi is a position parameter of yi, which is the point estimated by m-PEM. If y satisfies the standard
normal distribution, µy = 0. Parameters ξi and pi can be easily obtained from Table 1, which lists their
values for a Gauss–Hermite integration.

Table 1. Gauss–Hermite integration table.

Number of Nodes m Position Parameter ξi Weight Coefficient pi

2 ±1 0.5

3
0 0.66666667

±1.7320508 0.16666667

5
0 0.533333333

±1.35526179 0.22207592
±2.85697001 0.011257411

7

0 0.457142857
±3.75043972 0.0005482688587
±2.36675941 0.0307571240
±1.15440539 0.240123179

3.2.2. Multivariable Response Function

Formulas (13)–(20) are used in a single-variable point estimation algorithm. In practice, the input
of the response function usually has multiple variables. Assuming there are n variables in h with
G = [G1(X1), G2(X2), · · ·Gn(Xn)], h = h(X1, X2 · · · , Xn), then the following equations can be used:

Xi = Gi
−1(Φ(Yi)) i = 1 : n , (21)

where Xi = (xi1, xi2 · · · , xik) , i = 1 · · · n , and k is the number samples in the set. Let h = h(Xi) =

h(xi1, xi2 · · · , xik) , i = 1 · · · n . Then the variance and mean of h can be obtained from

nµh =

∫ n

1

∫
h(x) f (x)dxdi, (22)

nσ2
h =

∫ n

1

∫
(h(x) − µh)

2 f (y)dydi. (23)

Substituting Equation (21) into Equations (22) and (23) yields the following formulas:

nµh =

∫ n

1

∫
h(Gi

−1(Φ(y)))φ(y)dydi, (24)

nσ2
h =

∫ n

1

∫
h2(Gi

−1(Φ(y)) − µh)φ(y)dydi. (25)
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Because y is a variable with a normal distribution, φ(y) is the probability density function of
normal distribution. Hence, the expansion of Formula (24)–(25) by the Gauss–Hermite integration is

µh = 1
n [

m∑
j=1

p jh(G1
−1(Φ(y j)),µ(G2

−1(Φ(y))), · · · ,µ(Gn
−1(Φ(y)))) + · · ·

+
m∑

j=1
p jh(µ(G1

−1(Φ(y j))),µ
(
G2
−1(Φ(y j)

)
), · · · , Gn

−1(Φ(y j)))]
(26)

σ2
h = 1

n

m∑
j=1

p j(h(x) − µh)
2

= 1
n [

m∑
j=1

p j(h(G1
−1(Φ(y j)),µ(G2

−1(Φ(y))), · · · ,µ(Gn
−1(Φ(y))) − µh)

2
+ · · ·

+
m∑

j=1
p j(h(µ(G1

−1(Φ(y j))),µ
(
G2
−1(Φ(y j)

)
), · · · , Gn

−1(Φ(y j))) − µh)
2]

(27)

Equations (26) and (27) show that the computation cost of an n-response function for m-PEM is
proportional to m× n, where, m is the number of estimation nodes. In addition, y j denotes the points
estimated by m-PEM and p j is the weight coefficient of y j. Hence, m-PEM is expressed as follows:

y j = µy + ξiσy, j = 1 : m , (28)

where ξi is the position parameter of yi. If y satisfies the standard normal distribution, then µy = 0.
Again, ξi and pi can be easily obtained from Table 1.

3.2.3. MPEM with Less Computational Cost

Because the cost of calculating PEF is proportional to m × n using above method, this paper
proposes the following approximation method that can be used to calculate m-PEM conveniently and
the reduce number of PEF calculations to (m− 1) × n + 1:

µh = µ̃h +
n∑

i=1

(˜̃µhi − µ̃h), (29)

σ2
h =

n∑
i=1

(˜̃µhi−µ̃h)
2. (30)

where,
µ̃h = h(µG1,µG2, · · · ,µGn),

µGn = µ(Gn
−1(Φ(y))),

µGi = p1Gi
−1(Φ(y1)) + p2Gi

−1(Φ(y2)) + · · · pnGi
−1(Φ(yn)),

˜̃µhi =
m∑

k=1

pkh(µG1,µG2, · · · , Gi
−1(Φ(yk)),µGi+1, · · · ,µGn).

For 5-PEM and 7-PEM, when k = 1, we have

˜̃µhi = p1h(µG1,µG2, · · · , Gi
−1(Φ(y1)),µGi+1, · · · ,µGn) = µ̃h i = 1, · · · , m . (31)

3.2.4. Algorithm for PEM Combined with the Nataf Transformation

Step 1: Obtain i initial sets of independent normal distribution samples Y0.
Step 2: Initialize correlation matrix ρ in the original probability space and determine relevance

matrix ρ0 in the normal space using Equation (10).
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Step 3: Obtain the Cholesky decomposition of ρ0:ρ0 = L0LT
0 and obtain new normal distribution

samples with relevance Y:Y = L0Y0.
Step 4: Select the estimated numbers of each variable for the PEM corresponding to n-PEM.
Step 5: According to the Gauss–Hermite integration values in Table 1, obtain the estimation points

and weight coefficients; obtain k points in the standard normal space Y.
Step 6: Determine all values of xi in the original probability space X using the inverse

Nataf transformation.
Step 7: Obtain the response function of point x in any system h.
Step 8: Determine if h is a univariate or multivariable response function to obtain the estimated

mean and density functions using Equations (18)–(20) or Equations (29)–(31).

4. PEM Considering Boundary Constraints

In this study, the boundary constraints indicate if the estimated wind speed is lower than the
cut-in wind speed or exceed the cut-out wind speed. When estimated wind speed is outside of these
boundary constraints, the estimated points cannot represent the whole sample well. Especially for
2-PEM and 3-PEM, the estimated points obtained from Table 1 will cause a large error. Therefore,
the accuracy of PEM in normal space will degrade. In [32], Hong proposed 2-PEM and 3-PEM for
an arbitrary probability space; this method, unlike the PEM proposed by Zhao and Ono [33], which
should be transformed to a normal distribution space, makes it easier to constrain the estimation points
in the sample space. Using Hong’s method, this paper proposes power transformation and equality
constraint transformation methods for 2-PEM and 3-PEM when the estimated points are outside of
the range.

4.1. Hong’s 2-PEM and 3-PEM

Hong’s 2-PEM and 3-PEM are classic methods that are used widely [34,35]. To facilitate the
understanding of the proposed method, these two methods are described briefly below.

Assuming x is the sample in an arbitrary probability space, µx is the mean, and σx is the standard
deviation of x, λx,i is the ratio of the ith center distance to the ith power of the standard deviation.
In addition, f (x) is the probability of x. The value of λx,i is found using

λx,i =

∫ +∞

−∞
(x− µx)

i f (x)dx

σ
j
x

. (32)

Reference [32] has shown the entire derivation process, and the results of the 2-PEM and 3-PEM
are as follows:

x̃2,i = µx + ξ′2,iσx, i = 1, 2, (33)

x̃3,i = µx + ξ′3,iσx, i = 1, 2, 3. (34)

Here, ξ′i and p′i represent the position parameter and weight coefficients and are written as follows:
ξ′2, j =

λx,3
2 + (−1)3− j

√
1 + (

λx,3
2 )

2

ξ′2 = ξ′2,1 − ξ
′

2,2

p′2, j =
(−1) jξ′2,3− j

ξ′2
, j = 1, 2

, (35)
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ξ′3, j =
λx,3

2 + (−1)3− j
√
λx,4 − 3 ∗ (λx,3

2 )
2

ξ′3 = ξ′3,1 − ξ
′

3,2

p′3, j =
(−1) j

ξ′3,3− jξ
′

2
, j = 1, 2

ξ′3,3 = 0
p′3,3 = 1

n −
1

λx,4−λ2
x,3

. (36)

Here, n is the number of random variables. The 2-PEM and 3-PEM equations for PEF calculations
are hence as follows:

µz = p′2,1h(Z(x2,1)) + p′2,2h(Z(x2,2)), (37)

µz = p′3,1h(Z(x3,1)) + p′3,2h(Z(x3,2)) + p′3,3h(Z(x3,3)). (38)

The variances of the estimated probability density function can be derived as follows:

D(x) = E(h(Z(x))2) − µ2
z = p2,1h(Z(x2,1))

2 + p2,2h(Z(x2,2))
2
− µ2

z , (39)

D(x) = p′3,1h(Z(x3,1))
2 + p′3,2h(Z(x3,2))

2 + p′3,3h(Z(x3,3))
2
− µ2

z . (40)

If the estimated points are outside of the range when using Zhao’s or Hong’s PEM, this problem
can be solved by processing the sample space before using PEM in the sample space, which is described
in the next section.

4.2. Power Transformation Method

The power transformation method can transform an asymmetric probability distribution into a
symmetric or approximately symmetric distribution. A symmetrical distribution function can reduce
the possibility of estimated points falling outside the boundary constraints. The definition of a power
transformation is

y = xa. (41)

The skewness of y is

λy,3(a) =

∫ +∞

−∞
(xa
− µxa)

3
f (xa)dx

σ3
xa

. (42)

The wind speed samples x are discrete, so the values of y are discrete:

λ̃y,3(a) =

1
N

N∑
j=1

(xa
j −

1
N

N∑
k=1

xa
k)

3

[ 1
N

N∑
j=1

(xa
j−

1
N

N∑
k=1

Xa
k)

2]

3
2

(43)

It can be inferred that when λ̃y,3 is equal to 0, the power-transformed function is a symmetric
function. Then, the estimated points can be directly obtained as follows:

ỹi = µy + (−1)i+1σy, i = 1, 2. (44)

Substituting ỹi into function f with the range constraints to obtain f (xi) yields

f (x̃i) = f ( a√yi) = f (
a
√
µy + (−1)i+1σy), i = 1, 2. (45)

However, if xi remains outside of the range, the power transformation method will be invalid.
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Usually, it is difficult to find α such that λ̃y,3 is 0, so the following iterative method is used to find
an α such thatis within the limits:

Step 1. Calculate the variable’s original skewness λ̃y,3. Let a j = ka j−1, j ≥ 0, and a0 = 1; if λ̃y,3 is
greater than 0, set the coefficient value to k =

(
1+λ̃x,3)

−1/9 . If the skewness coefficient is less than 0,

set it to k= (1 − λ̃x,3)
1/9.

Step 2. Set the maximum number of steps j to 100; calculate each step a j to obtain yi, j(i = 1, 2)
and λ̃ j,x,3. Then, calculate yi, j and determine whether xi, j remains continuously within the limits. If it
meets this criterion, the iteration stops.

Step 3. If α cannot be determined using the above steps, find the smallest λ̃l,x,3. Let the number of
iterations used to obtain λ̃l,x,3 be l; if λ̃l,x,3 is smaller than 0.01, a suitable value for α cannot be found
such that is xi is within the limits.

Step 4. If λ̃l,x,3 is greater than 0.01, set n = 1 and change k =
(
1+λ̃x,3)

−1/9 to k =(
1+λ̃x,3)

−
1

9m , m = 1
3n in iteration l − 1. Calculate yi, j and then determine whether xi, j is within

the allowed range from iteration l− 1 to iteration l+3n. If xi, j is outside the limits, set n = n + 1 and
repeat the above steps until xi, j within the range; then, α is determined. However, if λ̃l,x,3 is less than
0.01, then α cannot be found.

4.3. Equal Constraint Transformation

The equal constraint transformation method either transforms the original probability space into
a space that is equivalent to the constrained probability space or it transforms the original space into
the constrained probability space directly. The advantage of this method is that the estimation points
are sure to be within the constraint, so it is a simple and more general method.

Suppose F(x) is a constraint function of x, which has the following format:

F(x) =


0 0 ≤ x < xmin

Lmaxδ(x− xmin) xmin ≤ x < xmax

Lmax xmax ≤ x

(46)

Transform x such that it is an equal constraint to F(x) as follows:

x′ =


0 0 ≤ x < kxmin

Lmaxδ(kx− kxmin) kxmin ≤ x < kxmax

kLmax kxmax ≤ kx

(47)

Then, 2-PEM and 3-PEM are used to calculate x′ to obtain the estimated points x′1 . . . , x′m; next,
an inverse transformation is performed to obtain the estimated points x1 · · · , xm in the original space
as follows:

xa =
x′a

kLmaxδ
+ xmin a = 1 · · ·m .

It is clear that when k = 1, the transformed constraint space is the original constraint space.

5. Case Study

In this study, we simulated and analyzed the IES interconnected with an IEEE 30-bus power
system and a 13-bus natural gas system. The overall diagram of the system is shown in Figure 2.
There are three wind power plants and two solar power plants in the IES. The natural gas load at
number 3 is a fluctuating load that satisfies the normal distribution. Specific data values for natural
gas systems can be found in [1]. A gas turbine is equivalent to a power source in the power system and
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a load in the natural gas network. The conversion between input gas flow and output electric power is
as follows:

Hg, j = ag,i + bg,iPG,i + cg,iP2
G,i j = 2, 3, 11 i = 23, 24, 22 , (48)

Fm, j
gas =

Hg,i

GHV
j = 2, 3, 11 i = 23, 24, 22 , (49)

where Hg,j is the input heat value of gas turbine node j, PG,i is the output power of the gas turbine, Fm,i
gas is

the equivalent gas load of gas node m in natural gas, GHV is a fixed high calorific value (GHV= 0.2275),
and ag,i, bg,i, and cg,i are determined by the heat consumption curve of the gas turbine. In this case
study, we simplify the heat consumption curve of the gas turbine and regard it as a linear relationship,
that is, ag,i = 0, bg,i = 7, and cg,i = 0.

Hence, the relationship between the gas consumed by steam turbines and the electricity supplied
to the power grid is as follows:

Fm, j
gas = 30.76923× PG,i j = 2, 3, 11 i = 23, 24, 22 . (50)

The compressor is equivalent to load for the power system, and its power consumption is
as follows:

Pi
c = BQc[(p j/pm)

k
− 1](

0.7457
105 ) i = 20 j = 10 m = 9 , (51)

where Pi
c is the power consumed by compressors, p j and pm are the pressures of nodes j and m,

respectively, Qc is the gas flow rate from node m to node j, B is a coefficient (B = 306.2746), k is the
compression ratio power, and k = 2. Hence,

Pi
c = 0.002284Qc[(p j/pm)

2
− 1] i = 20 j = 10 m = 9 . (52)
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5.1. Case 1: Estimation Points within the Limit Range

In this case, the mean of wind speed is 8.5 m/s, and each wind power plant follows the distribution
given in Equation (9), where kp = 2, cp = 10, xci = 3.5 m/s , xco = 18m/s, P = 0.315MW. Moreover,
each photovoltaic power plant follows the distribution given in Equation (10), where x is the standard

light intensity value, x = Gstc(t)/Gstcmax, α = 3, β = 2, Γ(α+β)
Γ(α)+Γ(β) = 20, and pstc = 0.5MW. The mean

of the gas load 3 is µ = 204m3/h, its standard deviation is δ = 2, We then have

f (v) =
2

10
(

v
10

)e−(
v
10 )

2
v ≥ 0 , (53)

h(v) =


0 0 ≤ v < 3.5
1

46 (v− 3.5) 3.5 ≤ v < 18

0.315 18 ≤ x

, (54)

f (x) = 20(x)2(1− x) 0 ≤ x ≤ 1. (55)

Figure 3 shows the probability density of the sampling points and probability distribution of the
power plants and photovoltaic power plants after the Nataf transformation. The appearance of this
figure noisy is because the pseudo random variables produced by the computer do not strictly satisfy
the probability density function of samples. Figure 3c,d show that the results agree well the theoretical
sampling points, indicating that the Nataf transformation has a very good precision.Appl. Sci. 2019, 9, 3291 15 of 25 
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plants. Cumulative probability distribution of (c) wind power plants and (d) photovoltaic power plants.



Appl. Sci. 2019, 9, 3291 15 of 23

Figure 4 shows the correlation between each wind power plant and photovoltaic power plant
after the Nataf transformation. The distribution of the sampling points is all concentrated in an ellipse.
A flatter ellipse indicates a stronger correlation. It can be seen that the Nataf transformation controls
the correlation well.
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Figure 4. Results for point estimate method with the Nataf transformation for Case 1. Correlations in
the wind speeds of (a) wind power plants 1 and 2, (b) wind power plants 1 and 3, and (c) wind power
plants 2 and 3. (d) Correlation in the light intensity for the photovoltaic power plants.

Next, these points are used to calculate the PEF. Figure 5 shows the results of m-PEM combined
with the Nataf transformation. To show specific errors, Tables 2 and 3 show the errors in the variance
and mean. The calculation results show that this method has a very good accuracy when calculating
the mean value, especially when calculating the mean value of the grid voltage. When calculating
variance, it performs worse, which may be related to the number of Monte Carlo iterations. Because
the PEF solution to an IES is very time-consuming, the number of Monte Carlo iterations must be as
low as possible (3000). For 2-PEM, 3-PEM, 5-PEM, and 7-PEM, the computational quantities are 12, 18,
25, and 37, respectively.
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Table 2. Average relative error of the gas network. 

Relative Error 7-PEM (%) 5-PEM (%) 3-PEM (%) 2-PEM (%) 

mean 0.1164472 0.1725141 0.1930306 0.240743 

variance 14.7833333 15.873716 21.8975776 25.6881084 

Table 3. Average relative error of the power network. 

Relative Error 7-PEM (%) 5-PEM (%) 3-PEM (%) 2-PEM (%) 

mean 0.0999138 0.1050468 0.1179273 0.1408777 

variance 3.3567948 3.251768 5.6100955 14.9320411 

To compare the results of PEF with and without the Nataf transformation, we used a common 

pseudo-random sample method for wind and photovoltaic farms. Figure 6 shows the correlation of 

common pseudo-random sampling points. It can be seen that the correlation of samples is very small: 

the correlation graph of the sample is approximately distributed in a circle in the plane. If the random 

error of sampling is ignored, the samples are independent of each other. 
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Figure 5. Case 1 results. (a) Mean pressure for the natural gas network. (b) Variance in pressure for
the natural gas network. (c) Mean voltage for the power network. (d) Variance in voltage for the
power network.

Table 2. Average relative error of the gas network.

Relative Error 7-PEM (%) 5-PEM (%) 3-PEM (%) 2-PEM (%)

mean 0.1164472 0.1725141 0.1930306 0.240743
variance 14.7833333 15.873716 21.8975776 25.6881084

Table 3. Average relative error of the power network.

Relative Error 7-PEM (%) 5-PEM (%) 3-PEM (%) 2-PEM (%)

mean 0.0999138 0.1050468 0.1179273 0.1408777
variance 3.3567948 3.251768 5.6100955 14.9320411

To compare the results of PEF with and without the Nataf transformation, we used a common
pseudo-random sample method for wind and photovoltaic farms. Figure 6 shows the correlation of
common pseudo-random sampling points. It can be seen that the correlation of samples is very small:
the correlation graph of the sample is approximately distributed in a circle in the plane. If the random
error of sampling is ignored, the samples are independent of each other.
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Figure 6. Results for PEM without the Nataf transformation for Case 1. Correlations in the wind 

speeds of (a) wind power plants 1 and 2, (b) wind power plants 1 and 3, (c) wind power plants 2 and 

3, and (d) photovoltaic power plants. 

Next, the results of the two sampling methods were compared using MCS. Figure 7 shows the 

comparison results of MCS with and without the Nataf transformation. The effect of sampling 

without the Nataf transformation is even greater for the power system, because the correlation of the 

variables in this example is in the power network. The cumulative probability distributions of Figure 

7d,e strongly support this point. 

0 5 10 15 20 25 30
1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

MCS for correlation variable

MCS for no correlation variable

Node

V
o
lt
a
g

e
(p

.u
)

 

(a) 

Figure 6. Results for PEM without the Nataf transformation for Case 1. Correlations in the wind speeds
of (a) wind power plants 1 and 2, (b) wind power plants 1 and 3, (c) wind power plants 2 and 3, and (d)
photovoltaic power plants.

Next, the results of the two sampling methods were compared using MCS. Figure 7 shows the
comparison results of MCS with and without the Nataf transformation. The effect of sampling without
the Nataf transformation is even greater for the power system, because the correlation of the variables
in this example is in the power network. The cumulative probability distributions of Figure 7d,e
strongly support this point.
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Figure 7. Comparison of Monte Carlo results with and without the Nataf transformation for Case 1. 
(a) Voltage results for each node. (b) Mean pressure for the natural gas network. (c) Enlargement of 
key points. (d) Cumulative probability of node 5 in the power network. (e) Cumulative probability 
of node 5 in the gas network. 
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node 5 in the gas network.

5.2. Case 2: Estimation Points Outside the Limits

In this case study, there is no wind in the environment, so the wind speed is lower than normal
speed (mean = 7.14 m/s). Hence, the wind speed meets following conditions:

f (v) = (
v

32.5
)e−(

v
65 )

2
v ≥ 0 , (56)

h(v) =


0 0 ≤ v < 3.5
1

46 (v− 3.5) 3.5 ≤ v < 18

0.315 18 ≤ x

, (57)

where kp = 2, cp = 65, xci = 3.5m/s, xco = 18m/s, P = 0.315MW, and the photovoltaic data and gas
load 3 are the same as those in Case 1.

Just as in Case 1, the relevance between each power plant and photovoltaic power plant is added
using the Nataf transformation. Figure 8 shows the results of points that are outside of the boundary
constraints, and Tables 4 and 5 show the errors in the variance and mean. It can be seen that the
outside-of-range point has great impact on 2-PEM and 3-PEM. In these cases, the average error of the
variance is more than 20%. The impacts on 5-PEM and 7-PEM are smaller.

For 2-PEM, 3-PEM, 5-PEM, and 7-PEM, the computation quantities are 12, 18, 25, and 37, respectively.
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Figure 8. Case 2 results. (a) Mean pressure for the natural gas network. (b) Variance in pressure for
the natural gas network. (c) Mean pressure for the power network. (d) Variance in pressure for the
power network.

Table 4. Average relative error of the gas network.

Relative Error 7-PEM (%) 5-PEM (%) 3-PEM (%) 2-PEM (%)

mean 0.2399329 0.6347321 1.6014625 2.0714407
variance 13.499378 15.0755443 22.7094732 27.6881084

Table 5. Average relative error of the power network.

Relative Error 7-PEM (%) 5-PEM (%) 3-PEM (%) 2-PEM (%)

mean 0.0730304 0.1605961 0.8888845 0.9123241
variance 3.101779 7.9219449 8.9828336 17.1722688

To limit points that are outside of the boundary constraints, the power transformation and equality
constraints transformation methods are used to recalculate Case 2. Tables 6–8 show the results of
limiting the wind speed estimation points. It can be seen when the power transformation method
works, the two methods have similar accuracy, but the equality constraint transformation method has
wider applicability. In general, both methods effectively improve the accuracy of calculation.
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Table 6. Comparison of estimation points for different methods.

Method Original Method Power Transformation Equality Constraint
Transformation

2-PEM (m/s) 10.939 9.1205 9.0384
3.351 5.3445 5.2664

3-PEM (m/s)
14.3745

invalid
10.285

6.7123 4.0934
1.6625 3.5

Table 7. Average relative error of gas network after constraining estimation points.

Relative Error 3-PEM(%) 2-PEM(%)

mean / 0.8347321
variance / 16.034543

(a) Power transformation method

Relative Error 3-PEM(%) 2-PEM(%)

mean 0.8222351 0.8123421
variance 14.983132 16.854671

(b) Equal constraint transformation method

Table 8. Average relative error of power network after constraining estimation points.

Relative Error 3-PEM(%) 2-PEM(%)

mean / 0.2566954
variance / 7.1256984

(a) Power transformation method

Relative Error 3-PEM(%) 2-PEM(%)

mean 0.8888845 0.9123241
variance 7.9845636 7.16879958

(b) Equal constraint transformation method

6. Discussion

Liu presented a correlation coefficient transformation table for the Nataf transformation [30],
which was convenient for Zhao and Ono’s MPEM. This study uses the work of these researchers to
solve PEF. On the one hand, for 2-PEM and 3-PEM based on Zhao and Ono’s MPEM, estimated points
outside of the range will cause a relatively large error. This study utilized the space conversion concept
to overcome this limitation. The results show that spatial transformation is an important and effective
method for solving PEF. One study [26] provided a good example of this transformation. Its aim was to
link the probability space of an elliptic space with the probability space of the sample; the PPF was then
solved. On the other hand, for 5-PEM and 7-PEM based on Zhao and Ono’s MPEM, direct calculations
will lead to an exponential growth in the computation cost; therefore, we developed a modified MPEM.

Future research on probabilistic methods will focus more on accuracy and less on the cost of
computation. As for the work discussed in this paper, the question as to whether 5-PEM and 7-PEM can
allow estimation points outside the limit range without affecting accuracy is worth further investigation.
In addition, combining PEF problems with economic dispatch, market operations, and optimization
will also be directions for future research.

7. Conclusions

A PEM based on the Nataf transformation for computing PEF in an IES was proposed in this
paper. This method is appropriate for large-scale electricity, gas, and thermal power interconnected
systems because the energy flow calculations for such systems are complicated and time consuming;
therefore, it is essential to reduce the cost of computation. From the results of the case studies, the
following conclusions can be drawn:
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1. The proposed modified MPEM is effective in situations where the numbers of estimation points
and variables are relatively large. The combination of the Nataf transformation with MPEM can
obtain good accuracy. The proposed method makes the computational cost of m-PEM equal to
that of (m − 1)-PEM, thus improving the computational efficiency.

2. The power transformation and equality constraint transformation methods are used to reduce
the large errors when the estimation points are outside of the boundary constraints. Simulation
results show the effectiveness of the proposed methods.

Note that these methods are not only suitable for IESs but also for other scientific applications,
such as the reliability analysis of structures and geotechnical reliability analysis.
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Appendix A

Table A1. Nomenclature and abbreviations.

Integrated energy systems IESs
Probabilistic energy flow PEF

Point estimate method PEM
Monte Carlo simulation MCS
Probabilistic power flow PPF

Karhunen–Loeve expansion method KLEM
First-order second-moment method FOSMM

Third-order polynomial normal transformation TPNT
Rotational transformation and orthogonal

transformation RTOT

Copula function method CFM
Multipoint estimation method MPEM

Table A2. Naming conventions.

Ps
i Active power injected from the source into node i

Qs
i Reactive power injected from the source into node i

Pl
i Active power demand of the ith node load

Ql
i Reactive power demand of the ith node load

Pc
i Active power consumed by the compressor

Qc
i Reactive power consumed by the compressor

Pg
i Active power injected from the gas generator into node i

Qg
i Reactive power injected from the gas generator into node i

Qi Injection of natural gas at the ith node
fim Injection to the downstream node
fin Injection to the upstream node
F j Gas consumption of the compressor
Gi j Correlation coefficient
p Active unbalance
q Reactive unbalance

fNG Gas flow unbalance
P and δ Relevant scaling coefficients

p(x) Power of the wind turbines
xci Cut-in wind speed
xco Cut-out wind speed
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Table A2. Cont.

Gstc Illumination intensity
pstc

j Relevant scaling coefficient
Gstc(t) Actual light intensity
Gstcmax Maximum light intensity
α and β Shape parameters of the beta distribution
µ Mean load
δ Load standard deviation

Y = {Y1, Y2 . . .Yn} Standard normal random vector
Φ(.) Standard normal cumulative distribution function

Φ−1(.) Inverse cumulative distribution function
ρ0i j Component of the correlation coefficient of the standard normal distribution vector

G = [G1(X1), G2(X2), · · · , Gn(Xn)] Arbitrary probability distribution space
h = h(X1, X2 · · · , Xn) Response function

φ(y) Probability density function of normal distribution
m Point number of PEM
yi Point estimated by m-PEM
pi Weight coefficient of yi
k Number of samples in a set
ξi Position parameter of yi
p j Weight coefficient of y j

λ̃y,3 Skewness of y
l Number of iterations to obtain λ̃y,3

Hg, j Input heat value of gas turbine node j
PG,i Output power of gas turbine
Fm,i

gas Equivalent gas load of gas node m in natural gas
GHV Fixed high calorific value

ag,i, bg,i, cg,i Coefficient determined by the heat consumption curve of a gas turbine
Pi

c Power consumed by compressors
p j Pressure of node j
pm Pressure of node m
Qc Gas flow rate from node m to node j
B Coefficient of compressors
k Compression ratio power
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