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Featured Application: Tracking techniques are essential for attaching an AR tag to a physical
target in 360-degree videos.

Abstract: With the availability of 360-degree cameras, 360-degree videos have become popular recently.
To attach a virtual tag on a physical object in 360-degree videos for augmented reality applications,
automatic object tracking is required so the virtual tag can follow its corresponding physical object
in 360-degree videos. Relative to ordinary videos, 360-degree videos in an equirectangular format
have special characteristics such as viewpoint change, occlusion, deformation, lighting change, scale
change, and camera shakiness. Tracking algorithms designed for ordinary videos may not work well
on 360-degree videos. Therefore, we thoroughly evaluate the performance of eight modern trackers in
terms of accuracy and speed on 360-degree videos. The pros and cons of these trackers on 360-degree
videos are discussed. Possible improvements to adapt these trackers to 360-degree videos are also
suggested. Finally, we provide a dataset containing nine 360-degree videos with ground truth of
target positions as a benchmark for future research.
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1. Introduction

Nowadays, 360-degree videos are becoming more and more popular. Omnidirectional cameras,
also called 360-degree cameras, are widely available and more lightweight, and can even be installed on
drones [1]. They are useful for recording indoor or outdoor activities to cover views in all perspectives.
Rendering 360-degree videos on a virtual reality headset can provide immersive experience for users
of education, entertainment, and tourism [2]. For augmented reality applications using 360-degree
videos, a common request is to register a virtual tag to a physical target. As shown in Figure 1, a virtual
billboard marked in red color must follow its corresponding physical target over time. For this purpose,
automatic tracking of a specific target in 360-degree videos is highly desirable. Therefore, we explore
the characteristics of 360-degree videos and compare the performance of existing tracking techniques
on 360-degree videos.

A 360-degree video consists of a sequence of 360-degree images with a fixed interval of time.
Each 360-degree image is a panorama either captured by an omnidirectional camera or combined
by multiple cameras to cover the complete horizontal field of view (i.e., 360-degree FOV). As shown
in Figure 1, a 360-degree image is typically flattened in an equirectangular format in that longitude
lines are projected to vertical straight lines of constant spacing. Similarly, latitude lines are mapped to
horizontal straight lines of constant spacing.
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Figure 1. Tagging an Augmented Reality (AR) marker on a physical target in 360-degree videos. 
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Due to the natures of the immersiveness and full field of view, 360-degree videos are ideal to be 
adopted in virtual reality applications. However, the interaction ways during playback of 360-degree 
videos are quite limited. Users cannot walk within the scene in 360-degree videos, that is, 3D 
translation is not allowed besides the passive motion caused by a moving camera. Nevertheless, users 
can freely select their point of view during playback of 360-degree videos (i.e., 3D rotation is possible). 
Conveniently, a 360-degree video can be viewed via an ordinary web browser in that a user can pan 
around by clicking and dragging. Alternatively, a 360-degree video can be observed via a head-
mounted display (HMD) in that a user can pan around simply by rotating his head. 

In ordinary monoscopic videos, real-time tracking techniques rely on either offline datasets or 
online learning to train an appearance model, then apply the trained model to track potential targets 
frame by frame. However, tracking algorithms designed for ordinary videos may not perform well 
on 360-degree videos with their unique characteristics [3,4]. For example, occlusion problems are 
almost unavoidable in panoramic 360-degree videos. Moreover, an object may disappear from the 
left but reappear on the right border, or disappear from the top then reappear on the bottom border 
in 360-degree videos. Nonrigid deformation is obvious on 360-degree videos in an equirectangular 
format. Lighting and scale changes happen frequently in 360-degree videos due to continuous change 
of viewpoints. Camera shakiness is another common problem in aerial 360-degree videos captured 
by drones. Trackers designed for ordinary videos tend to confuse or even lose the tracking target 
under these circumstances in 360-degree videos. To this end, Cai et al. [5] adapted the Kernelized 
Correlation Filter (KCF) tracking algorithm to work on 360-degree videos. Delforouzi et al. [6] 
modified the Track–Learn–Detection (TLD) tracker to fit the needs of 360-degree videos. 
Nevertheless, a thorough evaluation of state-of-the-art tracking algorithms on 360-degree videos is 
still missing. For this purpose, we implement eight popular tracking techniques and evaluate their 
performance on 360-degree videos. To make a fair comparison of both quality and time of tracking, 
we adopt the default parameters of these trackers in an open-sourced library called OpenCV. The 
experimental results are analyzed to reveal the pros and cons of these tracking algorithms on 360-
degree videos. 

Figure 1. Tagging an Augmented Reality (AR) marker on a physical target in 360-degree videos.

Due to the natures of the immersiveness and full field of view, 360-degree videos are ideal
to be adopted in virtual reality applications. However, the interaction ways during playback of
360-degree videos are quite limited. Users cannot walk within the scene in 360-degree videos, that is,
3D translation is not allowed besides the passive motion caused by a moving camera. Nevertheless,
users can freely select their point of view during playback of 360-degree videos (i.e., 3D rotation is
possible). Conveniently, a 360-degree video can be viewed via an ordinary web browser in that a user
can pan around by clicking and dragging. Alternatively, a 360-degree video can be observed via a
head-mounted display (HMD) in that a user can pan around simply by rotating his head.

In ordinary monoscopic videos, real-time tracking techniques rely on either offline datasets or
online learning to train an appearance model, then apply the trained model to track potential targets
frame by frame. However, tracking algorithms designed for ordinary videos may not perform well
on 360-degree videos with their unique characteristics [3,4]. For example, occlusion problems are
almost unavoidable in panoramic 360-degree videos. Moreover, an object may disappear from the
left but reappear on the right border, or disappear from the top then reappear on the bottom border
in 360-degree videos. Nonrigid deformation is obvious on 360-degree videos in an equirectangular
format. Lighting and scale changes happen frequently in 360-degree videos due to continuous change
of viewpoints. Camera shakiness is another common problem in aerial 360-degree videos captured by
drones. Trackers designed for ordinary videos tend to confuse or even lose the tracking target under
these circumstances in 360-degree videos. To this end, Cai et al. [5] adapted the Kernelized Correlation
Filter (KCF) tracking algorithm to work on 360-degree videos. Delforouzi et al. [6] modified the
Track–Learn–Detection (TLD) tracker to fit the needs of 360-degree videos. Nevertheless, a thorough
evaluation of state-of-the-art tracking algorithms on 360-degree videos is still missing. For this purpose,
we implement eight popular tracking techniques and evaluate their performance on 360-degree videos.
To make a fair comparison of both quality and time of tracking, we adopt the default parameters of
these trackers in an open-sourced library called OpenCV. The experimental results are analyzed to
reveal the pros and cons of these tracking algorithms on 360-degree videos.

The contribution of this paper is a thorough evaluation of eight popular tracking algorithms
on 360-degree videos. Both qualitative and quantitative comparisons are made in terms of accuracy
and speed. According to the experimental results, we discuss the strengths and weaknesses of these
trackers on 360-degree videos, and suggest potential ways to adapt them to 360-degree videos for
better tracking performance. As a basis of the comparison, we capture nine 360-degree videos in a
variety of scenarios. Three of them are captured on the ground and six of them are captured in the air.
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Positions of interesting targets in these 360-degree videos are manually marked in each frame as the
ground truth of tracking. The dataset containing these nine 360-degree videos with the ground truth is
provided (online link in supplementary materials) to be a benchmark for future research.

2. Background

With the advance of virtual reality technology in the past few years, 360-degree images and
videos have become a blooming research topic. Neng and Chambel [7] designed and evaluated
360-degree hypervideos that allow users to explore and navigate through links. Berning et al. [8]
adopted 360-degree interactive video to create evaluation scenarios where users can select their point
of view during playback. Rupp et al. [9] used 360-degree videos as a learning tool and analyzed the
effects of immersiveness of three devices: a smartphone, a Google Cardboard, and an Oculus Rift.
Pakkanen et al. [10] compared three interactive ways for 360-degree video playback: remote control,
head orientation, and hand gesture. Huang et al. [11] presented an automatic approach to generate
spatial audio for panorama images based on object detection and action recognition.

Giving the initial position of an unknown object, the purpose of tracking is to locate the object
in successive frames of a video. Mousas [12] proposed a method for controlling motions of a virtual
partner character based on a performance-capturing process using multiple inertial measurement units
(IMUs). Instead of relying on IMUs for human tracking, this paper focuses on vision-based methods
for unknown object tracking. Among all the existing online visual tracking algorithms, we choose
eight modern and popular trackers for evaluation and comparison on 360-degree videos.

The Boosting tracker, proposed by Grabner et al. [13], is an online version of the AdaBoost feature
selection algorithm. The online boosting algorithm maintains a global classifier pool of weak classifiers
with multiple selectors. Each new training sample is used to update each weak classifier in the pool.
A cascade system initializes the first selector with the current sample’s importance, selects the best
weak classifier with the least error, and passes the estimated importance to the next selector until all
selectors have been updated. In the end, a strong classifier is chosen from the best weak classifiers,
and the worst weak classifier is replaced with a random one. The Boosting tracker utilizes the initial
target area in the current frame as a positive example, and exploits other areas with the same size
around the target as negative examples. Then, the online-trained classifier searches the neighborhood
for potential targets in the next frame. The Boosting tracker can handle temporary occlusions as well
as complex backgrounds.

The Multiple Instance Learning (MIL) tracker, proposed by Babenko et al. [14], extends the online
boosting algorithm by using a set of image patches (called a bag) instead of a single sample for training.
A bag containing at least one positive example is called a positive bag, otherwise it is called a negative
bag. The MIL tracker collects lots of small image patches centered at the tracking object as potential
positive bags, and chooses the best one to be the positive example. This strategy not only prevents the
MIL tracker from losing important information but also avoids the mislabeling problem.

The MedianFlow tracker, proposed by Kalal et al. [15], is a bidirectional approach that combines
forward and backward tracking. The forward and backward consistency is analyzed as a quality
measure to assist the tracking. The MedianFlow tracker constructs both forward and backward
trajectories at each time instant, and their corresponding errors are estimated. The trajectory with the
minimum forward–backward error is chosen as the candidate for the succeeding tracking. As a result,
the MedianFlow tracker is more reliable to follow objects with consistent movement.

The Minimum Output Sum of Squared Error (MOSSE) tracker, proposed by Bolme et al. [16], is a
tracker based on correlation filters. It achieves high efficiency by computing correlation in time domain.
The MOSSE filter improves the ASEF filter to overcome the potential overfitting problem. The MOSSE
tracker calculates the minimum output sum of square error to find out the most possible location of the
tracking object. The benefits of using a correlation filter make the MOSSE tracker more robust to the
problems of scaling, rotation, deformation, and occlusion compared to traditional approaches. Also,
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MOSSE is more flexible than other correlation-filter-based trackers because the target is not required to
be in the center of the image in the beginning of tracking.

The TLD tracker, proposed by Kalal et al. [17], is mainly composed of three parts: a tracker,
a learner, and a detector. The job of the tracker is to follow the target through consecutive frames; the
learner relies on a P-expert and an N-expert to estimate misdetection and false alarm, respectively, then
updates the detector. The detector locates potential targets according to an appearance model, feeds
the outputs to the learner, and corrects the tracker if necessary. The TLD tracker is well known for its
ability of failure recovery at the expense of instability. Compared to other online trackers struggling
with the problem of accumulating errors, the combination of tracking and detecting modules makes
the TLD tracker more reliable for long-term tracking.

The KCF tracker, proposed by Henriques et al. [18], extends the MOSSE concept and takes
advantage of overlapping regions in multiple positive samples. The abundant data is computed in
Fourier domain to increase the learning speed. The KCF tracker emphasizes the importance of the
negative samples and tends to use more samples for better training. To this end, a cyclic shift is applied
to generate more samples from each important sample. The characteristic of circulant matrices for
regression samples is utilized to speed up the computation. Also, kernel tricks are exploited to deal
with the problem of nonlinear regression. Instead of scanning through raw pixels, the KCF tracker
extracts the Histogram of Gradient (HoG) features to improve the accuracy of tracking.

The Generic Object Tracking Using Regression Networks (GOTURN) tracker, proposed by
Held et al. [19], adopts an offline dataset to train a Convolutional Neural Network (CNN) model in
advance. Then, it relies on the generated model for online tracking. The process of pretraining takes
advantage of readily available information in offline datasets to learn both target appearance and
motion relationship. Without the requirement to update CNN weights in run-time, the GOTURN
tracker has another significant advantage of online tracking speed. Although it is not necessary to
include specific tracking targets in the dataset for pretraining, the GOTURN tracker tends to favor
objects in the training set over objects that are not in the training set. A potential issue of the GOTURN
tracker is the quality of the pretrained model that can seriously affect the performance of the online
tracking process.

The Channel and Spatial Reliability Tracker (CSRT), proposed by Lukezic et al. [20], is based on
the Discriminative Correlation Filter (DCF) algorithm. It improves the DCF tracker by introducing
spatial and channel reliability. The spatial reliability map is used to find out the optimal filter size.
The ability to adjust filter size makes the CSRT tracker better than the traditional DCF algorithm by
excluding unrealistic samples. Another benefit from the spatial reliability map is its ability to handle
nonrectangular targets. The channel reliability is measured to weigh the importance of each channel
filter, then combine them to get the final response map. Using only the HoGs and Colorname standard
feature sets, the CSRT tracker can achieve an impressive accuracy with real-time speed.

3. Experiments

3.1. Experiment Setup

To measure the performance of eight trackers on 360-degree videos in a variety of situations,
we prepared a dataset containing nine 360-degree videos captured using a Garmin Virb 360-degree
camera. The 360-degree camera can be installed on top of a helmet for ground video capturing as shown
in Figure 2a. Alternatively, the 360-degree camera can be attached to a drone for aerial video capturing
as shown in Figure 2b. A Garmin Virb 360-degree camera contains two 12-megapixel sub-cameras that
are opposite to each other. Each sub-camera has a wide field of view (FOV) of 202 degrees. At each
time instant, the hardware inside the camera analyzes the overlap between two images captured by
sub-cameras, then aligns and stitches two images together to form a seamless 360-degree image.
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Figure 2. Two ways to set up an omnidirectional camera: (a) installed on top of a helmet for ground
video capturing, (b) attached to a drone for aerial video capturing.

One problem of 360-degree videos is the huge file size. Typically, a 360-degree video contains 30
360-degree images per second, and each 360-degree image has a resolution of 3840 × 2160 with three
color channels, resulting in a total of 746 MB per second. Video compression techniques can be applied
to effectively reduce the size of the captured video file. Smaller video size can increase the frame rate
of tracking and make the motion between two consecutive frames smaller, and hence improve the
performance of tracking. On the other hand, high compression ratio and low bit rate can reduce the
video quality, and hence degrade the accuracy of tracking. Wang et al. [21] studied the influences of
the choice of video coding parameters on the performance of visual object tracking. In default setting,
the hardware inside the Garmin Virb 360-degree camera applies the most commonly used AVC/H.264
encoding and generates a standard MP4 video file with a maximum bit rate of 120 Mbps. To make a
fair comparison of eight trackers, our experiments are made based on the same video encoding and bit
rate in all nine video sequences.

As shown in Table 1, these 360-degree video sequences cover multiple scenarios, each containing
a combination of characteristics such as viewpoint change, occlusion, deformation, lighting change,
scale change, and camera shakiness. Each 360-degree video sequence lasts 100~1000 frames with a
resolution of 3840 × 2160. For speedup purpose, all video sequences are down-sampled to 1920 × 1080
in our tracking experiments. The benchmark machine is a PC with 3.2 GHz CPU and 16 GB RAM.
The operating system is Microsoft Windows 10.

Table 1. Our dataset containing nine 360-degree videos, each with a combination of special
characteristics.

Sequences
Characteristics Viewpoint Occlusion Deformation Lighting Scale Shakiness
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3.2. Experiment Process

Our implementation of eight tracking algorithms was based on the open-sourced OPENCV
library with Version 3.4.2 (Intel Corporation, Santa Clara, CA, USA). All eight trackers were initialized
with default parameters. Among these trackers, the GOTURN tracker was the only one based on
the Convolutional Neural Network (CNN) and utilized a standard Caffe model for online tracking.
For each frame in a 360-degree video, the centroid of the tracking target was marked up manually in
advance as the ground truth of tracking. Figure 3 shows the flowchart of the proposed experiment to
evaluate eight trackers on nine 360-degree videos. Each tracker was executed on individual 360-degree
video sequences in turn to measure the tracking speed in terms of Frames Per Second (FPS). A spatial
displacement (in pixels) was computed as the absolute distance between the tracker’s output position
and the ground truth. If the displacement was smaller than a predefined tolerated threshold, the frame
was counted as a correct tracking frame. The accuracy was defined as the ratio of the number
of correct tracking frames to the number of all frames. Because only the GOTURN, TLD, CSRT,
and MedianFlow trackers could adjust and update target window size dynamically, adaptable window
size was implemented in these four trackers for qualitative evaluation. To make a fair comparison of
eight trackers, the size of the target window was not considered for quantitative evaluations. For the
same reason, the Kalman filter was not applied for all trackers in our experiments.
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3.3. Experiment Results

To demonstrate qualitative tracking outputs of eight trackers on nine 360-degree video sequences,
six representative snapshots with a fixed interval of time in each 360-degree video sequence are shown
in detail in Figures 4–12. The tracking results of all trackers are marked as rectangular windows with
different colors in each snapshot (MOSSE:yellow; MIL:blue; MedianFlow:purple; BOOST:turquoise;
TLD:red; KCF:green; GOTURN:pink; CSRT:cyan). The video sequence 1 was captured by a moving
biker. The tracking target was another bike with huge scale change, some viewpoint change, and
minor lighting change over time. Among eight trackers, the CSRT, MIL, BOOST, and MOSSE trackers
performed quite well, but other trackers lost the target in the middle of the sequence as shown in
Figure 4. The video sequence 2 was captured by a moving motorcycle. The tracking target was a
stadium on one side of the road. The building was occasionally occluded by trees and streetlamps.
All trackers were affected by the occlusion problem and so only produced decent tracking results
as shown in Figure 5. Especially, the MedianFlow tracker confused the tracking target with other
obstacles. It suffered seriously from temporal occlusion in this sequence. The video sequence 3 was
captured by a drone with an overlooking view of a lake. The tracking target was the roof of a green
building. The shape of the target deformed dramatically due to the nature of 360-degree videos in an
equirectangular format. Luckily, some trackers could still follow the target smoothly for a short period
of time.
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The video sequence 4 was captured by a drone flying around a lake harbor. The tracking target
was a small boat docking at a pier. The scale of the target changed a lot over time as shown in Figure 7.
Though the KCF and MOSSE trackers achieved a fair accuracy at the beginning, they lost the target in
the middle of the sequence. Even worse, the GOTURN and TLD trackers got confused and tracked
the wrong objects in the early stage. The video sequence 5 was captured by a drone flying along
a lakeshore. The tracking target was a lakeside building with a red roof. The scale of the building
changed slowly over time, hence the MedianFlow tracker performed quite well. The sequence 5
contained another nature of 360-degree videos in that the tracking target disappeared from one side
and reappeared on the other side of the panoramic image. Most trackers cannot recover from this
problem. Interestingly, the TLD tracker correctly recovered the target as shown in the last snapshot of
Figure 8. The video sequence 6 was captured by a drone flying across a lake. The tracking target was a
fast-moving boat with apparent viewpoint change. With the problem of large motion in this sequence,
only the GOTURN tracker obtained great results. In comparison, the KCF and MOSSE trackers lost the
tracking target very early as shown in Figure 9.
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The video sequence 7 was captured by a moving biker. The tracking target was a large building
with slow viewpoint change, and some partial occlusion. Although several trackers received decent
scores, they were not really focused on the center of the building. Only the BOOST tracker accurately
tracked the whole building throughout this sequence as shown in Figure 10. The video sequence
8 was captured by a drone flying on windy days. The characteristic of this sequence was camera
shakiness which is a common problem on drone-recorded 360-degree videos. Even with the jittery
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motion and target deformation caused by the shaking camera, most trackers still performed quite well
throughout the sequence as shown in Figure 11. The video sequence 9 was captured by a drone flying
along a seashore. The tracking target was the summit of a mountain, and the illumination changed
dramatically over space and time. In the middle of the sequence, the sun sat just behind the mountain
top. The problem of backlighting caused tracking loss for the KCF tracker, and tracking error for the
TLD and GOTURN trackers. Surprisingly, other trackers still followed the target very well as shown in
Figure 12. In summary, Figure 13 outlines the quantitative results of eight trackers on nine sequences.
The vertical axis indicates the tracking accuracy, and the horizontal axis represents the predefined
value of the tolerated threshold.
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4. Discussion

In terms of Frames Per Second (FPS), Table 2 summarizes the speed comparison of all eight trackers
in nine video sequences. According to the experimental results, the MOSSE is the fastest tracker with an
average of 3776 FPS. The KCF is the next efficient tracker with an average of 175 FPS. The MedianFlow
tracker can also achieve 63 FPS. Among all eight trackers, The TLD is the slowest tracker. In fact, it is
about 600 times slower than the MOSSE tracker and not suitable for real-time applications.

Table 2. Speed comparison of eight trackers on nine video sequences in terms of Frames Per Second
(FPS).

Sequences

Trackers
GOTURN MedianFlow TLD KCF BOOST CSRT MIL MOSSE

Sequence 1 23.7 62.8 2.6 188.9 41.6 38.9 12.8 4118.2

Sequence 2 20.5 66.0 9.5 204.8 35.8 35.6 14.3 2250.0

Sequence 3 16.0 61.8 2.8 172.9 26.7 32.8 14.3 2532.2

Sequence 4 14.3 62.8 4.9 309.5 56.9 47.6 14.9 10356.8

Sequence 5 16.4 61.4 5.6 39.0 22.7 34.8 13.0 457.0

Sequence 6 21.3 65.2 7.1 304.8 49.8 47.3 17.2 8614.0

Sequence 7 21.2 63.1 8.7 41.4 15.8 22.8 12.1 440.3

Sequence 8 23.4 63.6 8.0 104.3 23.2 31.5 12.1 1233.8

Sequence 9 19.3 64.1 4.9 210.8 37.4 37.8 12.7 3982.4

Average 19.6 63.4 6.0 175.1 34.4 36.6 13.7 3776.1

In terms of tracking quality, Table 3 summarizes the accuracy comparison of all eight trackers in
nine video sequences. The strengths and weaknesses of all eight trackers are outlined in Table 4. The
GOTURN is the only tracker based on deep learning but does not perform well in terms of accuracy
on 360-degree videos. Interestingly, it works well in some special cases. For example, it is the only
tracker that could flawlessly track a fast-moving boat in sequence 6, possibly because the pretrained
dataset contained boats. In fact, the performance of GOTURN heavily depends on the appearance
model of the tracking target. Hence, we believe the GOTURN tracker can be improved by training
specific target models for 360-degree videos in advance.

Table 3. Overall accuracy comparison of eight trackers on nine video sequences (bad: 0~20%; poor:
20~40%; ok: 40~60%; good: 60~80%; great: 80~100%).

Sequences

Trackers
GOTURN MedianFlow TLD KCF BOOST CSRT MIL MOSSE

Sequence 1 poor poor bad poor great great great great
Sequence 2 great poor poor ok ok ok poor bad
Sequence 3 bad good bad good good great great great
Sequence 4 poor great poor ok great great great poor
Sequence 5 bad great great great poor great great great
Sequence 6 great ok ok bad ok good ok bad
Sequence 7 ok good poor great great great great good
Sequence 8 great great great great good great great great
Sequence 9 bad great bad poor great great great great
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Table 4. Strengths and weaknesses of all eight trackers on 360-degree videos.

Trackers

Features
Principle Strength Weakness

Improvement
Suggestion

GOTURN Pretrained CNN
model

Recovery from
failure and
occlusion

Target not in
training data

Include specific
targets for training in

advance

MedianFlow
Min

forward–backward
error

Reliable on slow
changing target

Fast-moving
target

Support motion
detection

TLD Track, learn, and
detect

Recovery from
failure and
occlusion

High false alarm Combine with
reliable filter

KCF Kernelized
correlation filter

Report tracking
failure Fixed target size Adaptable target size

BOOST AdaBoost Decent accuracy Seldom report
tracking failure Adaptable tolerance

CSRT Discriminative
correlation filter

Robust and high
accuracy

Long-term
occlusion

Failure recovery with
spatial relationship

MIL Multi-instance
learning High accuracy Long-term

occlusion
Failure recovery with
spatial relationship

MOSSE Min square error High tracking
speed Fixed target size Adaptable target size

Generally, the MedianFlow tracker performs well on consistent and slowly changing video
sequences. However, occasional occlusion prevents it from making an agreement in bidirectional
analysis and the tracking fails as shown in video sequence 2.

The TLD is a slow tracker with high false detect rate but works well in the case of failure recovery.
Especially, the TLD tracker is a good choice to track a target that disappears from one place and
reappears in another place in 360-degree videos.

The KCF tracker performs well on ordinary videos but not on 360-degree videos due to its
fix-sized filters. The characteristics of 360-degree videos such as scale change, viewpoint change, and
deformation easily lead the KCF tracker to a track loss. Thus, it is only useable to track plain targets
that do not contain these characteristics.

The Boost tracker achieves a fair accuracy on 360-degree videos, though it does not sense tracking
failure and continues to track a wrong target as shown in video sequence 5. The parameters of tolerance
need to be adjusted accordingly to avoid false tracks for the Boost tracker.

The CSRT tracker is a good choice for tracking on 360-degree videos because it detects target
objects using the HoG features instead of raw pixels. It can adjust the size of target window dynamically
as well. Nonetheless, it still has a hard time recovering from a temporarily disappearing target as
shown in video sequence 2, or tracking a fast-moving target as shown in video sequence 6.

The MIL tracker can properly handle most of the cases on 360-degree videos. Its weakness is the
problem of occlusion caused by change of viewpoints. The MIL tracker tends to fail in recovering the
tracking target even after the occlusion.

For applications with high-speed demand or large motion, the MOSSE tracker is the best choice
since its tracking speed is significantly higher than other trackers, though the fix-sized tracking window
could be a problem for video sequences with huge scale change.

A typical example of 360-degree videos in an equirectangular format is shown in Figure 14.
An ideal tracker should be able to tackle the problems in 360-degree videos such as viewpoint change,
occlusion, deformation, lighting change, scale change, and camera shakiness. For viewpoint change
caused by a moving camera, a motion model is helpful to assist tracking. To handle occlusion problems,
the ability to recover the temporarily missing target is essential. To alleviate the nonrigid deformation,
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trackers must learn and update the appearance model in run-time. To accommodate lighting change,
extracting illumination-robust features is critical. To solve the problem of scale change, adaptable and
dynamic target window size is beneficial. To deal with a shaking camera, trackers should measure and
compensate the global motion.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 16 
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modules, and the target appearance is prone to drift in the presence of occasional occlusions. In video 
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a result, most trackers are unstable and achieve low tracking accuracy in this case.  
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360-degree videos. Alternatively, the MOSSE is the most efficient tracker in terms of speed. For future 
work, an ideal tracker that can deal with these problems in 360-degree videos is crucial. We believe 
that a multimodal fusion is beneficial in combining abilities of failure recovery, robustness, and 
adaptable target size for online tracking on 360-degree videos. A Kalman filter can also be applied 
for better prediction and stabilization of unknown object tracking in 360-degree videos. Our dataset 
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Figure 14. A typical example of 360-degree videos in an equirectangular format with several
characteristics: seashore deformation, island scale change, building occlusion, mountain summit
lighting change.

An inherent problem of 360-degree videos in an equirectangular format is the image distortion,
especially for the northern and southern polar areas in a panoramic image. The distortion problem
affects the performance of tracking in two aspects. First, the motion of the tracking target is distorted
after an equirectangular projection [22]. In video sequence 6, a boat moving in a straight line looks like
it is moving in a curve in the 360-degree video in an equirectangular format. The distortion of trajectory
degrades the accuracy of all trackers, especially for fast-moving targets. Nevertheless, the GOTURN
tracker can handle this problem properly as long as it includes the training samples with distorted
motions in the process of pretraining. Second, the tracking target suffers from nonrigid deformations in
an equirectangular format. In video sequence 2, the deformation of the target building makes straight
lines become curves. Thus, it tends to cause a track loss for trackers using a static target appearance
model. Surprisingly, most trackers survive the slow target deformation in this case except the TLD
tracker. The deformed target triggers frequent reinitialization in the TLD modules, and the target
appearance is prone to drift in the presence of occasional occlusions. In video sequence 3, the tracking
target is accompanied by both motion distortion and target deformation. As a result, most trackers are
unstable and achieve low tracking accuracy in this case.

5. Conclusions

The problems of viewpoint change, occlusion, deformation, lighting change, scaling change,
and shakiness occur frequently in 360-degree videos. According to our experiments with maximum
tolerated threshold, the CSRT achieves the best overall accuracy and is the most robust tracker on
360-degree videos. Alternatively, the MOSSE is the most efficient tracker in terms of speed. For future
work, an ideal tracker that can deal with these problems in 360-degree videos is crucial. We believe that
a multimodal fusion is beneficial in combining abilities of failure recovery, robustness, and adaptable
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target size for online tracking on 360-degree videos. A Kalman filter can also be applied for better
prediction and stabilization of unknown object tracking in 360-degree videos. Our dataset containing
nine 360-degree videos with ground truth is accessible through the link at the end of the paper. It can
be utilized as a benchmark for future research.

Supplementary Materials: The dataset is available online at: https://drive.google.com/open?id=
1Ybp0G6yWXYCsP06nzEMRJR-exK0DSos8.
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