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Abstract: Rotating machinery plays a vital role in modern mechanical systems. Effective state
monitoring of a rotary machine is important to guarantee its safe operation and prevent accidents.
Traditional bearing fault diagnosis techniques rely on manual feature extraction, which in turn relies
on complex signal processing and rich professional experience. The collected bearing signals are
invariably complicated and unstable. Deep learning can voluntarily learn representative features
without a large amount of prior knowledge, thus becoming a significant breakthrough in mechanical
fault diagnosis. A new method for bearing fault diagnosis, called improved hierarchical adaptive
deep belief network (DBN), which is optimized by Nesterov momentum (NM), is presented in
this research. The frequency spectrum is used as inputs for feature learning. Then, a learning
rate adjustment strategy is applied to adaptively select the descending step length during gradient
updating, combined with NM. The developed method is validated by bearing vibration signals.
In comparison to support vector machine and the conventional DBN, the raised approach exhibits
a more satisfactory performance in bearing fault type and degree diagnosis. It can steadily and
effectively improve convergence during model training and enhance the generalizability of DBN.

Keywords: deep belief network; fault diagnosis; hierarchical structure; feature learning; bearing

1. Introduction

Mechanical equipment failures in rotating machinery, such as aircraft engines, are usually caused
by damage and malfunction of critical components. Although regular maintenance and forced
retirement can improve the safety and reliability of equipment operation, these solutions result in a
heavy economic burden and waste of resources. According to statistics, in rotating machinery that uses
rolling bearings, approximately 40% of the mechanical failures are due to bearing damage [1]. Therefore,
effective fault diagnosis of these key components can provide a strong basis for the evaluation of the
operational status of mechanical equipment, thereby reducing maintenance costs [2]. The traditional
methods based on signal processing mainly use related expertise to extract faulty components from
initial noisy signals. Currently, signal processing methods based on time–frequency analysis have
caught the attention of scholars, including empirical mode decomposition, wavelet packet transform,
short-time Fourier transform, and so forth [3–5]. Wang et al. [6] diagnosed the rubbing fault by
extending variational mode decomposition method. Wang et al. [7] combined independent component
analysis with empirical model decomposition to separate the bearing fault components in wind
turbine gearboxes. Wang et al. [8] used the square envelope analysis to study the performance
degradation evaluation under Gaussian noise. Li et al. [9] advanced a strategy that combines intrinsic
characteristic-scale decomposition and turntable Q-factor wavelet transform to detect the early bearing
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fault. Improved Local Mean Decomposition (LMD) can effectively diagnose bearing fault types by
expanding the sides of the vibration signal to suppress edge effects [10]. Fault-related features have
been revealed successfully in the aforementioned applications. However, satisfactory performance is
achieved on the basis of professional knowledge, a requirement that is sometimes difficult for field
maintenance personnel to meet.

On the basis of these considerations, the machine-learning-based approaches tailored for fault
diagnosis, such as artificial neural network (ANN) [11], decision tree [12], and support vector machine
(SVM) [13] have been gradually developed. The goal is to reduce human intervention as much as
possible and move toward an intelligent direction. As a result, deep learning methods are proposed,
inspired by the artificial intelligence and machine learning [14], which correspond to traditional shallow
machine-learning methods. Since its introduction, deep learning has shown strong capabilities in
speech recognition, image processing, and other fields. Especially, some classic networks such as
deep belief network (DBN) [15] and convolutional neural network (CNN) [16] have been successfully
ameliorated for fault detection. Qin et al. [17] presented a new model based on DBNs, with improved
logistic sigmoid units for fault identification of wind turbine gearboxes. Zhang et al. [18] used
CNN to analyze the raw bearing vibration signal, thereby achieving fault recognition successfully.
The diagnosis result was considerably better than that of the traditional ANN. Moreover, a two-layer
hierarchical detection network based on CNN was proposed in [19], for the classification of bearing
fault types and the detection of the fault severity. Lu et al. [20] suggested an unsupervised feature
learning procedure using deep denoising autoencoder for diagnosing rotating mechanical components,
as well as discussed the influence of input dimensions and hidden layer numbers on diagnostic
results. To improve the reliability of fault detection, Chen et al. [21] presented a novel multisensor
data-fusion method optimized by Sparse Autoencoder (SAE) and DBN. Tang et al. [22] proposed a
new deep learning model to realize intelligent fault identification of bearings under a strong noise
environment. Hamadache M et al. [23] comprehensively reviewed contemporary rolling bearing fault
detection, diagnostic and prediction techniques, which referred to DBN-based prognostics and health
management (PHM). By utilizing the DBN’s learning ability, Tao et al. [24] presented a method using
multivibration signals to identify various bearing faults.

The direction of mechanical equipment fault diagnosis presents a trend of big data. For
high-dimensional or large-volume samples, the conventional deep learning model faces difficulty
in effectively guaranteeing operational efficiency [25]. As one of the classic models of deep learning
neural networks, DBN voluntarily extracts the intrinsic features of data through greedy layer-by-layer
unsupervised learning, avoiding the complexity and uncertainty caused by artificial extraction of
features, and improving classification accuracy. In the present research, the bearing fault identification
is realized on the basis of the proposed hierarchical optimization DBN algorithm. The presented
method is derived by Nesterov momentum (NM) and adjusted by an independent adaptive learning
rate algorithm, which aims to improve the convergence and fault diagnosis performance. First,
the signals are converted to a frequency domain for the input of the deep learning model. Then,
a hierarchical deep learning structure is constructed to recognize the bearing fault type and degree. NM
compensates to infer the location of the parameter drop and control the speed of parameters to reach
the optimal solution, thereby avoiding missing optimal point caused by the traditional momentum
method. Furthermore, a learning rate adjustment strategy is presented, to adaptively set the gradient
descent step size, to accelerate the model learning and enhance the generalizability of the model.
Finally, global fine-tuning is completed by Softmax classifier to constitute the entire model. Bearing
signals from various fault conditions are analyzed to prove the satisfactory performance. In terms of the
diagnostic accuracy, the proposed method achieves the highest accuracy for bearing fault identification
compared with support vector machines and the standard deep belief network. As for the operational
efficiency, the optimized model can accelerate the model training speed, improve the generalization
ability of the deep belief network, and realize bearing fault diagnosis effectively.
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The structure of this paper is presented as follows. Section 2 explains the basic theory of DBN.
Section 3 illustrates a hierarchical model based on the improvement of DBN to recognize the bearing
fault type and degrees. Section 4 describes experimental information and validates the performance of
the raised method. Finally, Section 5 concludes this paper.

2. Deep Belief Network and Its Improvement

2.1. Restricted Boltzmann Machines (RBMs)

The DBN consists of stacked multilevel RBMs, which are based on the energy function definition
and are the key preprocessing units in the field of deep learning. The RBM model is designed to fit the
input data with maximum probability and train its hidden layer to capture high-order correlations in
the input data. As shown in Figure 1, RBM consists of a hidden layer and a visible layer. A connection
exists between each neuron node in the adjacent layers, and no connection exists within the same
layer. Let v= {v1, v2, · · · , vi, · · · , vn} denote the visible neuron nodes’ states in the visible layer, and
h= {h1, h2, · · · , h j, · · · , hm

}
show the hidden neurons’ states in the hidden layer.
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Figure 1. Architecture of a Restricted Boltzmann Machine (RBM).

The neuron of an RBM is Boolean, i.e., there are only two states, 0 and 1. State 1 means that the
neuron is activated, and state 0 means that the neuron is inhibited. The energy function [26] for a
certain number of neuronal states is expressed as follows:

E(v, h;θ) = −
n∑

i=1

m∑
j=1

wi jvih j −

n∑
i=1

aivi −

m∑
j=1

b jh j (1)

where the RBM model parameters θ = {W, a, b}, ai is the offset gradient of the visible layer, b j the offset
gradient of the hidden layer. vi is the status of the ith neuron in the visual layer. h j is the status of the jth
hidden neuron. wi j is the connection weight between the ith visible neuron and the jth hidden neuron.

According to the Equation (1), the joint probability distribution of visual neurons and hidden
neurons is defined as follows:

P(v, h;θ) =
1

Z(θ)
exp(−E(v, h;θ)) (2)

Let Z(θ) denote the normalization factor, which is expressed as:

Z(θ) =
∑

v

∑
h

exp(−E(v, h;θ)) (3)
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Thus, the edge probability and conditional probability of visual and hidden neurons can be
acquired, as follows:

P(v;θ) =

∑
h

exp(−E(v,h;θ))∑
v

∑
h

exp(−E(v,h;θ))

P(v|h ;θ) = exp(−E(v,h;θ))∑
v

exp(−E(v,h;θ))

(4)

P(h;θ) =

∑
v

exp(−E(v,h;θ))∑
v

∑
h

exp(−E(v,h;θ))

P(h|v ;θ) = exp(−E(v,h;θ))∑
h

exp(−E(v,h;θ))

(5)

The jth hidden neuron is activated with the probability calculated by:

p(h j = 1|v ;θ) =

∑
hkj

p(h j=1,hkj,v;θ)∑
h

p(h,v;θ)

= σ(
∑n

i=1 wi jvi + b j)

(6)

where σ = 1/(1 + e−x) named sigmoid function is used here. Analogously, the ith visual neuron is
activated with the probability calculated by:

p(vi = 1|h ;θ) =

∑
vki

p(vi=1,vki,h;θ)∑
v

p(v,h;θ)

= σ(
∑m

j=1 wi jh j + ai)

(7)

In the training RBM process, the visible neurons’ edge probability in the Gibbs distribution should
be as close as possible to the input data distribution. Thus, the parameters θ are optimized to maximize
the edge probability P(v;θ), the related logarithmic likelihood function is shown as:

θ∗ = argmax
θ

L(θ) = argmax
θ

∑
v

ln P(v;θ) (8)

To acquire the optimal parameters θ∗, the log-likelihood function of RBM is maximized by the
stochastic gradient descent technique. The partial derivative of the log-likelihood function with respect
to the parameter is:

∂ ln p(v;θ)
∂θ

= 〈−
∂E(v, h;θ)

∂θ
〉

p(h|v;θ)
− 〈−

∂E(v, h;θ)
∂θ

〉
p(v,h;θ)

(9)

where 〈·〉p represents mathematical expectations about distribution p, and p(h|v;θ ) indicates the
probability distribution of the hidden layer, while the training data are known. The parameters w, a,
and b in θ are expressed as follows:

∂ ln p(v;θ)
∂wi j

= p(h j = 1|v;θ )vi −
∑

v
p(v;θ)p(h j = 1|v;θ )vi (10)

∂ ln p(v;θ)
∂ai

= vi −
∑

v
p(v;θ)vi (11)

∂ ln p(v;θ)
∂b j

= p(h j = 1|v;θ ) −
∑

v
p(v;θ)p(h j = 1|v;θ ) (12)

Owing to the symmetry of the RBM and the conditional independence of the neurons, a random
sample of the distribution obeying the RBM definition can be obtained using the Gibbs sampling
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method. The k-step Gibbs sampling method aims to initialize the state v(0) of the visible neuron
with a training sample (or a random state of the visible layer) and alternately perform the following
sampling steps:  h(i) = G

(
p
(
h
∣∣∣v(i−1)

))
v(i) = G

(
p
(
v
∣∣∣h(i−1)

)) , i = 1, 2, · · · , k (13)

where G(·) represents the operation of Gibbs sampling. h(i) and v(i) represent the intermediate results
of h and v, respectively. When the number of sampling steps is large enough, a sample of the Gibbs
distribution obeying the RBM representation can be obtained, and the gradient can be estimated by the
following formula:

∂ ln p(v;θ)
∂wi j

= p(h j = 1|v;θ )vi −
∑
v

p(v;θ)p(h j = 1|v;θ )vi

= p(h j = 1|v;θ )vi − p(h j = 1
∣∣∣v(k) ;θ)v(k)i

(14)

∂ ln p(v;θ)
∂ai

= vi −
∑
v

p(v;θ)vi

= vi − v(k)i

(15)

∂ ln p(v;θ)
∂b j

= p(h j = 1|v;θ ) −
∑
v

p(v;θ)p(h j = 1|v;θ )

= p(h j = 1|v;θ ) − p(h j = 1
∣∣∣v(k);θ ) (16)

Typically, the large number of sampling steps leads to low training efficiency of RBM, especially
when the characteristics of the training samples are large. Hinton [27] proposed the contrastive
divergence fast training algorithm. In this algorithm, the state of the visual neuron is first set to the
training sample, and then the binary state of all hidden layer neurons are calculated via Gibbs sampling.
Equation (7) and Gibbs sampling are applied to determine the state of the visible layer neurons to
obtain v(1). Generally, v(1) is sufficient to estimate the gradient. The update criterion for parameter
θ = {W, a, b} is the following:

W{t}i j ←W{t−1}
i j + ηw(

〈
vih j

〉0

data
−

〈
vih j

〉1

recon
)

a{t}i ← a{t−1}
i + ηa(〈vi〉

0
data − 〈vi〉

1
recon)

b{t}j ← b{t−1}
j + ηb(

〈
h j

〉0

data
−

〈
h j

〉1

recon
)

(17)

where ηw is the learning rate of connection weight w, ηa is the learning rate of visual layer deviation
value a, and ηb is the learning rate of hidden layer deviation value b, their values range from 0 to 1.
〈·〉data stands for the original distribution of the data, 〈·〉recon represents the distribution of model
definitions after a one-step Gibbs sampling.

2.2. Deep Belief Networks

Actually, efficiently simulating complex raw data using only one RBM model is difficult. Therefore,
constructing a DBN model stacked with a plurality of RBM models is necessary. Hinton et al. [28] put
forward a fast learning algorithm for DBNs, which is essentially a stack of several RBM layers. DBN is
a versatile deep learning model that can be used in unsupervised feature dimensionality reduction and
supervised pattern classification. Whether supervised or unsupervised, DBN is essentially a series
of feature learning processes to ensure improved feature representation. Similar to RBM, DBN is a
probability stochastic model that aims to learn the joint probability distribution between the data from
input and the hidden layer. Then, DBN correspondingly fits the data by adjusting the connection
weight between every two adjacent layers of neuron nodes. The characteristic information is contained
in the original input data.
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In Figure 2, a stacked DBN model consists of three RBM layers is shown. The multi-hidden DBN
model construction can be summed up as two parts: unsupervised pretraining phase and supervised
form of global fine-tuning phase. The first part is pretraining, which is also called initialization
parameters. One of the most difficult problems in traditional neural network training is how to select
the appropriate initialization parameters. Although random initialization is commonly used, once the
initialization parameters are randomly given, the final training and test results are seriously affected.
To solve this problem, a pretraining technique based on a greedy layer-by-layer unsupervised learning
algorithm is proposed. The DBN model is decomposed into a series of RBM models. The hidden layer
state of each low-level RBM model is fed to its higher-level RBM model. The lowest state of the entire
depth model is the original input data. Each parameter RBM model is trained successively to provide
improved initialization weights and offset values for the entire DBN model.
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The second part is global fine-tuning. To further enhance the diagnostic capabilities of the model,
after the unsupervised pretraining of a series of RBM models is complete, the original training data
are used as the tag data to supervise the entire deep structure. According to the maximum likelihood
function, the back propagation algorithm [29] is applied to further optimize the entire deep model
and fine-tune the parameters of each layer. The DBN model has achieved very good application
results on some public datasets, thereby proving that a suitable training technique is more conducive
to obtaining improved initialization parameter values and global optimal solutions than traditional
random initialization.

2.3. Momentum Method to Optimize Model Training

Stochastic gradient descent (SGD) and its variants may be the most widely used optimization
algorithms in general machine learning, but the learning process is sometimes slow, and its update
direction is completely dependent on the current batch. Thus, its update is highly unstable. A simple
solution is to introduce a momentum.

The momentum method, which is also called classical momentum (CM), is a technique to accelerate
gradient descent that accumulates velocity vectors in the direction where the objective lens continues
to decrease during the iterative process. CM updates the direction of the preceding renewal and uses
the gradient of the current batch to fine-tune the final update direction. Thus, stability can be increased
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to an extent, so that learning is fast. Based on the minimization of the objective function, the CM is
given as follows:

vt = γvt−1 + η∇θ J(θt−1)

θt = θt−1 − vt
(18)

where θ represents DBN model parameters, vt represents the gradient after the end of t cycles, vt−1

denotes the gradient after the end of the t-1 cycles, η denotes the learning rate of RBM, J(θ) and ∇θ
represent error function and the partial derivative of the error function compared with the model
parameters, respectively. γ ∈ [0, 1] is the momentum coefficient that is usually set to 0.9 and, η > 0 is
the learning rate.

Using the SGD with the momentum causes the gradients in the same direction to accumulate,
as those in various directions cancel each other, which can speed up the approach to the optimal point.
Nonetheless, the gradient of the momentum technique is sightless. The gradient drops fast but cannot
judge where the parameters will fall. As a result, the parameter still drops so fast when it is near the
optimal solution that it may miss it. In this case, NM [30] can be a potential solution. The difference
between NM and momentum is reflected in the gradient calculation. In NM, the gradient is calculated
after the current speed is applied. Therefore, NM can be explained by adding a correction factor to
the momentum method, which calculates the gradient of J(θ− γvt−1), to calculate the location of the
parameter’s next drop. This situation slows down the drop before the parameters reach their optimal
point, so that missing this point can be avoided.

vt = γvt−1 + η∇θ J(θt−1 − γvt−1)

θt = θt−1 − vt
(19)

2.4. Individual Adaptive Learning Rate to Accelerate Model Convergence

However, the NM method is sometimes extremely conservative [31]. An independent adaptive
learning rate is introduced to the RBM training to achieve the satisfactory classification and training
speed. wi j is updated by:

hi j(k) =

 hi j(k− 1) + α i f (gradk
i jgradk−1

i j ) > 0

hi j(k− 1) × (1− α) i f (gradk
i jgradk−1

i j ) < 0
(20)

∆wk
i j = η · hk

i j · ∇θ J(θt−1 − γvt−1) (21)

where gradk
i j indicates the gradient of wi j after the kth training, hi j(0) = 1. When the gradient direction

of the present weight keeps the same as the previous one, hi j(t) increases α times. Inversely, hi j(t) is
decreased 1− α times. The parameter α can be set as 0.1, so that it is small enough to guarantee that
the learning rate will not increase too fast, which may cause the miss of the optimal point. The range of
hi j(t) should be limited to [0.01, 100] to prevent gradient disappearance.

The proposed training method can avert the problem of negative acceleration of the training
speed of the model during the training process. It compensates the gradient update to a certain extent
by enhancing the falling step size to guarantee that the parameters get higher training speed without
missing the optimal solution when the NM method judges falsely.

3. Improved Hierarchical Adaptive Deep Belief Network for Bearing Fault Diagnosis

On the basis of the classical DBN model and its improvements, a hierarchical adaptive DBN is
established. Figure 4 shows the flowchart of the DBN training. The DBN initialization is done by training
each RBM through a greedy layer-by-layer unsupervised algorithm and untagged training sample
sets. The initialized Softmax classifier is connected to the top of the model as the classification layer.
The NM and independent adaptive learning rate are employed to assist the DBN model construction.
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Figure 3 shows the hierarchical fault diagnosis model. The training and testing samples are
obtained in the frequency domain by Fast Fourier Transform (FFT). The whole training samples are
utilized in the training of the improved DBN model (model 1) to classify the bearing fault type, and a
fault-type diagnostic layer is formed. Then, the improved DBN sub-models (models 2, 3, and 4) are
created for each fault type, so that the respective models can recognize the fault degree. Similarly,
a fault degree recognition layer is constructed. For each model, the testing samples are prepared for
performance validation. Figure 4 illustrates the training process of the raised model.
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4. Experimental Analysis

4.1. Test Rig and Dataset Introduction

Figure 5 shows the experimental platform including motor, inverter, normal and testing bearings,
loading regulation system, vibration acceleration sensor, and data acquisition system. The inverter
motor is the power input of the platform. The 6205-2RS SKF bearing was tested and its parameters are
listed in Table 1. The accelerometer was placed as indicated by the red box in Figure 5. The nut was
squeezed against the support seat, and a radial load could be adjusted by the nut, as Figure 6b–d shows.
The load was transmitted to the testing bearing through the visible dynamometer, buffer device, and
drive shaft. The running speed of the motor was set as 961 rpm. The load was set as 0.2 kN, and the
signal sampling frequency was 10 kHz. In order to ensure that each sample contained enough fault
information, each sample was selected to cover 1248 data points.

Spark-erosion wire cutting was conducted before the experiment, to set up multiple types of
single-point faults on the testing bearing surface. The physical object is shown in Figure 7. Experiments
under 13 health conditions were carried out, as listed in Table 2, including four fault types and four
fault degrees.

Table 1. Specifications of testing bearing.

Contact
Angle

(◦)

Roller
Diameter

(mm)

Roller
Number

Pitch
Diameter

(mm)

Inner
Diameter

(mm)

Outer
Diameter

(mm)

0 7.938 9 38.5 25 52
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For analysis, part of the whole samples were selected for testing, and the other samples were used
for training. Corresponding labels for various fault-state sample sets were defined to construct the
recognition models. Table 2 summarizes the dataset details.
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Table 2. Description of dataset for hierarchical fault diagnosis model.

Identification Label Number of
Training
Samples

Number of
Testing

SamplesFault Type Fault Degree

Normal: 1 \ 64 16

Outer fault: 2

0.2 mm: 1
0.3 mm: 2
0.4 mm: 3
0.5 mm: 4

75 25

Inner fault: 3

0.2 mm: 1
0.3 mm: 2
0.4 mm: 3
0.5 mm: 4

75 25

Roller fault: 4

0.2 mm: 1
0.3 mm: 2
0.4 mm: 3
0.5 mm: 4

75 25

For the hierarchical fault diagnosis, each model included a visible layer and two hidden layers.
Among them, there were 624 neurons in the visible layer and 500 neurons in the first hidden layer.
The number of hidden layer neurons in the second layer was 200, in which the numbers of diagnostic
layers of fault types and the degrees were 4. The connection weights W of each layer, W ∼ N(0, 0.01)
were initialized. The learning rates in these two RBMs were initialized to 0.1 and 0.0025. To reduce the
impact of random factors and achieve enhanced results, various iterations were conducted on the four
improved DBN models, and the selected parameters are listed in Table 3.

Table 3. Selection of parameters for hierarchical fault diagnosis model.

Network Model Network Structure
Initial Learning Rate

1st RBM 2nd RBM

Model 1 624-500-200-4 0.1 0.0025

Model 2 624-500-200-5 0.1 0.0025

Model 3 624-500-200-5 0.1 0.0025

Model 4 624-500-200-5 0.1 0.0025

4.2. Experimental Validation

Tables 4–7 show the testing results of the hierarchical fault diagnosis model. Table 4 presents the
fault-type identified results. According to Table 4, model 1 can accurately identify the bearing fault type.
The average test accuracy of the 10 experiments was 99.95%. Figure 8 shows the specific fault-type
identification results of experiments 2 and 6. In experiment 2, a roller fault sample was misclassified as
an inner fault. Experiment 6 exhibited the same result. Tables 5–7 show the fault-degree identification
results in outer race, roller, and inner race, respectively.

For the bearing faults, models 2, 3, and 4 can identify the fault degree satisfactorily. The accuracy
of the 10 experimental tests of outer and roller fault degrees reached 100%. In the 10 experiments for
the inner fault size identification, the testing accuracy of the first experiment was 99%, and that of
the other 9 experiments was 100%. Figure 9 shows the results of the inner fault size identification of
experiment 1, in which an inner fault of size 0.4 mm was classified as 0.5 mm.
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Table 4. Testing results of model 1 in hierarchical fault diagnosis.

Experiment
Number

Fault Type

Inner Fault Outer Fault Roller Fault Normal Average

1 100% 100% 100% 100% 100%

2 100% 100% 99% 100% 99.75%

3 100% 100% 100% 100% 100%

4 100% 100% 100% 100% 100%

5 100% 100% 100% 100% 100%

6 100% 100% 99% 100% 99.75%

7 100% 100% 100% 100% 100%

8 100% 100% 100% 100% 100%

9 100% 100% 100% 100% 100%

10 100% 100% 100% 100% 100%

Table 5. Testing results of outer fault degree recognition by hierarchical fault diagnosis model.

Experiment
Number

Fault Degree Recognition (mm)

0.2 0.3 0.4 0.5 Average

1 100% 100% 100% 100% 100%

2 100% 100% 100% 100% 100%

3 100% 100% 100% 100% 100%

4 100% 100% 100% 100% 100%

5 100% 100% 100% 100% 100%

6 100% 100% 100% 100% 100%

7 100% 100% 100% 100% 100%

8 100% 100% 100% 100% 100%

9 100% 100% 100% 100% 100%

10 100% 100% 100% 100% 100%

Table 6. Testing results of roller fault degree recognition by hierarchical fault diagnosis model.

Experiment
Number

Fault Degree Recognition (mm)

0.2 0.3 0.4 0.5 Average

1 100% 100% 96% 100% 99%

2 100% 100% 100% 100% 100%

3 100% 100% 100% 100% 100%

4 100% 100% 100% 100% 100%

5 100% 100% 100% 100% 100%

6 100% 100% 100% 100% 100%

7 100% 100% 100% 100% 100%

8 100% 100% 100% 100% 100%

9 100% 100% 100% 100% 100%

10 100% 100% 100% 100% 100%
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Table 7. Testing results of inner fault degree recognition by hierarchical fault diagnosis model.

Experiment
Number

Fault Degree Recognition (mm)

0.2 0.3 0.4 0.5 Average

1 100% 100% 100% 100% 100%

2 100% 100% 100% 100% 100%

3 100% 100% 100% 100% 100%

4 100% 100% 100% 100% 100%

5 100% 100% 100% 100% 100%

6 100% 100% 100% 100% 100%

7 100% 100% 100% 100% 100%

8 100% 100% 100% 100% 100%

9 100% 100% 100% 100% 100%

10 100% 100% 100% 100% 100%
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Tables 8 and 9 list the comparisons among three methods. It can be seen that the proposed
approach achieved better performance. The generalizability of the DBN model has been improved,
to guarantee the convergence speed effectively and achieve an optimal point, thereby achieving
increased precision. As illustrated in Table 9, the raised approach also obtained outstanding results.
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Table 8. Training accuracy results of various methods.

Methods Normal Outer
Fault

Roller
Fault

Inner
Fault

Average Training
Accuracy

Support Vector Machine (SVM)+FFT 100% 100% 98.688% 100% 99.672%
Standard DBN+FFT 90.159% 100% 99.034% 100% 97.298%

The proposed method 100% 100% 99.167% 100% 99.790%

Table 9. Testing accuracy results of various methods.

Methods Normal Outer
Fault

Roller
Fault

Inner
Fault

Average Testing
Accuracy

SVM+FFT 91.154% 100% 91.250% 98.750% 95.290%
Standard DBN+FFT 98.900% 100% 99.500% 99.600% 99.500%

The proposed method 99.950% 100% 100% 99.900% 99.960%

Taking the fault type identification as an example, Figure 10 depicts the errors’ trends of training
and testing models in the global fine-tuning iterations and shows satisfactory convergence trends.
Figure 11 shows the training and testing accuracy trends of fault type recognition in the global
fine-tuning iterations. It can be clearly seen that the proposed method can achieve faster convergence
and higher accuracy, compared with standard DBN. Similarly, Figure 12 generally exhibits desirable
accuracy improvements of the proposed method for roller fault degree recognition.

Principal component analysis (PCA) is a typical method for dimensionality reduction and has been
widely used in fields such as data noise cancellation and data compression to eliminate redundancy.
As shown in Figures 13–16, PCA was used to visualize features obtained by the proposed method.
The clustering performance of the original signal was not good, and the characteristics of each fault type
were mixed and difficult to distinguish. The reason for these improvements may be that the proposed
adaptive DBN based on the NM method has stronger classification ability than the traditional SVM
shallow layer network, thereby effectively realizing bearing fault diagnosis. The independent adaptive
learning rate can effectively optimize the generalizability of the DBN and ensure the representativeness
of the deep features of the extracted data. Generally, the hierarchical fault diagnosis network gets
desirable outcomes and performs better than traditional methods.
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5. Conclusions

Motivated by the fact that conventional fault diagnosis methods rely on the representational
capacity of the manually extracted features, and the parameters selection may affect the performance
of models, this research presents a new hierarchical bearing fault diagnosis method. The NM is
adapted to the DBN training process to directly extract deep data features from frequency domain
signals. Besides, a learning rate adjustment strategy is introduced to complete the optimization
process of parameter updating. These improvements can effectively enhance the generalizability of
the DBN, ensure representativeness of the learned features, and finally, achieve the bearing fault type
identification as well as its degree. Through experimental verification, the improved hierarchical
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adaptive DBN can learn from data to obtain deep features automatically and achieve satisfactory
accuracies of fault diagnosis at a more efficient speed than those obtained by traditional methods.
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