Reducing GPS Error for Smart Collars Based on Animal’s Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. GPS Based Smart Collars
2.2. Software Infrastructure
2.3. Behavior Based Algorithm
2.3.1. Physical Activity Classification
2.3.2. Distance Estimation Using GPS Data
3. Experiment and Its Results
3.1. Study Area
3.2. Data Collection
3.3. Analyses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bishop-Hurley, G.J.; Swain, D.L.; Anderson, D.M.; Sikka, P.; Crossman, C.; Corke, P. Virtual fencing applications: Implementing and testing an automated cattle control system. Comput. Electron. Agric. 2007, 56, 14–22. [Google Scholar] [CrossRef]
- IoT Applications in Agriculture: Written by Savaram Ravindra. Available online: https://www.iotforall.com/iot-applications-in-agriculture/ (accessed on 3 January 2018).
- Muminov, A.; Jeon, Y.C.; Na, D.; Lee, C.; Jeon, H.S. Development of a solar powered bird repeller system with effective bird scarer sounds. In Proceedings of the 2017 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2–4 November 2017. [Google Scholar]
- Kaplan, E.D.; Hegarty, C.J. Understanding GPS: Principles and Applications; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Yasuda, A. Aspect of GPS Technology. IEICE Trans. B 2001, J84-B, 2082–2091. (In Japanese) [Google Scholar]
- Arnold, L.L.; Zandbergen, P.A. Positional accuracy of the Wide Area Augmentation System in consumer-grade GPS units. Comput. Geosci. 2011, 37, 883–892. [Google Scholar] [CrossRef]
- Berber, M.; Ustun, A.; Yetkin, M. Comparison of accuracy of GPS techniques. Measurement 2012, 45, 1742–1746. [Google Scholar] [CrossRef]
- Ghilani, C.D.; Wolf, P.R. Elementary Surveying—An Introduction to Geomatics, 12th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Van Sickle, J. GPS for Land Surveyors, 3rd ed.; CRC Press: New York, NY, USA, 2008. [Google Scholar]
- Hurn, J. GPS: A Guide to the Next Utility; Trimble Navigation Limited: Sunyvale, CA, USA, 1989; 76p. [Google Scholar]
- Hurn, J. Differential GPS Explained; Trimble Navigation Limited: Sunyvale, CA, USA, 1993; 55p. [Google Scholar]
- Rutter, S.M.; Beresford, N.A.; Roberts, G. Use of GPS to identify grazing areas of hill sheep. Comput. Electron. Agric. 1997, 17, 177–188. [Google Scholar] [CrossRef]
- Rodgers, A.R.; Anson, P. Animal-borne GPS: Tracking the Habitat. GPS World 1994, 5, 20–32. [Google Scholar]
- Rodgers, A.R.; Rempel, R.S.; Abraham, K.F. A GPS-based telemetry system. Wildl. Soc. Bull. 1996, 24, 559–566. [Google Scholar]
- Agouridis, C.T.; Stombaugh, T.S.; Workman, S.R.; Koostra, B.K.; Edwards, D.R.; Vanzant, E.S. Suitability of a GPS collar for grazing studies. Trans. Am. Soc. Agric. Eng. 2004, 47, 1321–1329. [Google Scholar] [CrossRef]
- Mourao, G.; Medri, I.M. A new way of using inexpensive large-scale assembled GPS to monitor giant anteaters in short time intervals. Wildl. Soc. Bull. 2002, 30, 1029–1032. [Google Scholar]
- Ungar, E.D.; Henkin, Z.; Gutman, M.; Dolve, A.; Genizi, A.; Ganskopp, D. Inference of animal activity from GPS collar data on free-ranging cattle. Rangel. Ecol. Manag. 2005, 58, 256–266. [Google Scholar] [CrossRef]
- Pe’pin, D.; Adrodos, C.; Mann, C.; Janeau, G. Assessing real daily distance traveled by ungulates using differential GPS locations. J. Mammal. 2004, 85, 774–780. [Google Scholar] [CrossRef]
- Moen, R.; Pastor, J.; Cohen, Y.; Schwartz, C.C. 1996. Effects of moose movement and habitat use on GPS collar performance. J. Wildl. Manag. 1996, 60, 659–668. [Google Scholar] [CrossRef]
- Di Orio, A.P.; Callas, R.; Schaefer, R.J. Performance of two GPS telemetry collars under different habitat conditions. Wildl. Soc. Bull. 2003, 31, 372–379. [Google Scholar]
- Ganskopp, D.C.; Johnson, D.D. GPS error in studies addressing animal movements and activities. Rangel. Ecol. Manag. 2007, 60, 350–358. [Google Scholar] [CrossRef]
- Muminov, A.; Na, D.; Lee, C.; Kang, H.K.; Jeon, H.S. Modern Virtual Fencing Application: Monitoring and Controlling Behavior of Goats Using GPS Collars and Warning Signals. Sensors 2019, 19, 1598. [Google Scholar] [CrossRef]
- Anderson, D.M.; Hale, C.S. Animal Control System Using Global Positioning and Instrumental Animal Conditioning. U.S. Patent 6,232,880, 15 May 2001. [Google Scholar]
- Smith, D.; Rahman, A.; Bishop-Hurley, G.J.; Hills, J.; Shahriar, S.; Henry, D.; Rawnsley, R. Behavior classification of cows fitted with motion collars: Decomposing multi-class classification into a set of binary problems. Comput. Electron. Agric. 2016, 131, 40–50. [Google Scholar] [CrossRef]
- Muminov, A.; Na, D.; Lee, C.; Jeon, H.S. Virtual fences for controlling livestock using satellite-tracking and warning signals. In Proceedings of the 2016 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2–4 November 2016. [Google Scholar]
- Umstatter, C. The evolution of virtual fences: A review. Comput. Electron. Agric. 2011, 75, 10–22. [Google Scholar] [CrossRef]
- Adafruit Ultimate GPS Breakout—66 Channel w/10 Hz Updates—Version 3. Available online: https://www.adafruit.com/product/746 (accessed on 1 February, 2017).
- Coxeter, H.S.M. Quaternions and Reflections. Am. Math. Mon. 1946, 53, 136–146. [Google Scholar] [CrossRef]
- I2Cdevlib: Arduino Library. Available online: https://github.com/jrowberg/i2cdevlib (accessed on 15 October 2018).
- Chang, C.; Lin, C. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Fan, R.E.; Chang, K.W. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res. 2008, 9, 1871–1874. [Google Scholar]
- Van Rijsbergen, C.J. Information Retrieval; Butterworth: London, UK, 1979. [Google Scholar]
- Wikipedia. Precision and Recall. Available online: https://en.wikipedia.org/wiki/Precision_and_recall (accessed on 30 July 2019).
- Wikipedia. F1 Score. Available online: https://en.wikipedia.org/wiki/F1_score (accessed on 1 August 2019).
- Hartanto, S.; Furqan, M.; Siahaan, A.P.U.; Fitriani, W. Haversine Method in Looking for the Nearest Masjid. Int. J. Recent Trends Eng. Res. 2017, 3, 187–195. [Google Scholar]
- Wikipedia. Haversine Formula. Available online: https://en.wikipedia.org/wiki/Haversine_formula (accessed on 10 July 2019).
Class | Description |
---|---|
Standing | A goat is normally standing |
Walking | A moving goat taking steps with head in an upright position |
Running | A faster-moving goat with frequent body shakes |
Grazing | The goat’s head is tilted downward and positioned near the ground. The goat is either eating or searching for pasture |
Lying | A goat laying down |
Evaluation Report | Standing | Walking | Running | Grazing | Lying | Total Accuracy |
---|---|---|---|---|---|---|
Precision | 0.93 | 0.75 | 1 | 0.9 | 1 | 0.92 |
Recall | 0.7 | 0.9 | 0.95 | 1 | 1 | 0.91 |
F-score | 0.8 | 0.81 | 0.97 | 0.95 | 1 | 0.91 |
Experiment Day | Total Collected Data | ||
---|---|---|---|
Running | Walking | Resting | |
1 | 107 | 290 | 189 |
2 | 121 | 372 | 250 |
3 | 118 | 305 | 221 |
4 | 110 | 314 | 254 |
5 | 125 | 301 | 201 |
6 | 116 | 335 | 195 |
7 | 119 | 342 | 210 |
Behaviors | GPS Unfiltered Distance (m) | GPS Filtered Distance (m) | Actual Distance (m) |
---|---|---|---|
running | 493.8 | 361.2 | 345 |
walking | 527.7 | 350 | 345 |
resting | 136.2 | 0 | 0 |
Behaviors | Maximum Error Distance (m) | Mean Error Distance (m) | ||
---|---|---|---|---|
Unfiltered Bias (m) | Filtered Bias (m) | Unfiltered Bias (m) | Filtered Bias (m) | |
running | 153 | 20 | 148.8 | 16.2 |
walking | 190 | 8 | 182.7 | 5 |
resting | 162 | 0 | 136.2 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muminov, A.; Sattarov, O.; Lee, C.W.; Kang, H.K.; Ko, M.-C.; Oh, R.; Ahn, J.; Oh, H.J.; Jeon, H.S. Reducing GPS Error for Smart Collars Based on Animal’s Behavior. Appl. Sci. 2019, 9, 3408. https://doi.org/10.3390/app9163408
Muminov A, Sattarov O, Lee CW, Kang HK, Ko M-C, Oh R, Ahn J, Oh HJ, Jeon HS. Reducing GPS Error for Smart Collars Based on Animal’s Behavior. Applied Sciences. 2019; 9(16):3408. https://doi.org/10.3390/app9163408
Chicago/Turabian StyleMuminov, Azamjon, Otabek Sattarov, Cheol Won Lee, Hyun Kyu Kang, Myeong-Cheol Ko, Ryumduck Oh, Junho Ahn, Hyung Jun Oh, and Heung Seok Jeon. 2019. "Reducing GPS Error for Smart Collars Based on Animal’s Behavior" Applied Sciences 9, no. 16: 3408. https://doi.org/10.3390/app9163408
APA StyleMuminov, A., Sattarov, O., Lee, C. W., Kang, H. K., Ko, M. -C., Oh, R., Ahn, J., Oh, H. J., & Jeon, H. S. (2019). Reducing GPS Error for Smart Collars Based on Animal’s Behavior. Applied Sciences, 9(16), 3408. https://doi.org/10.3390/app9163408