Deformation Analysis of Large-Scale Rock Slopes Considering the Effect of Microseismic Events
Abstract
:1. Introduction
2. Damage Constitutive Model Considering the Rock Fracture Scale
3. Engineering Background
3.1. Project Overview
3.2. Failure Characteristics of the Left Bank Slope after Excavation
4. Numerical Simulation of the Rock Slope
4.1. Model Setup
4.2. MS Parameter Embedding
4.3. Results Analysis
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Conforti, M.; Ietto, F. An integrated approach to investigate slope instability affecting infrastructures. Bull. Eng. Geol. Env. 2019, 78, 2355–2375. [Google Scholar] [CrossRef]
- Ietto, F.; Perri, F.; Cella, F. Weathering characterization for landslides modeling in granitoid rock masses of the Capo Vaticano promontory (Calabria, Italy). Landslides 2018, 15, 43–62. [Google Scholar] [CrossRef]
- Li, B.; Li, T.; Xu, N.W.; Dai, F.; Chen, W.F.; Tan, Y.S. Stability assessment of the left bank slope of the Baihetan Hydropower Station, Southwest China. Int. J. Rock Mech. Min. Sci. 2018, 104, 34–44. [Google Scholar] [CrossRef]
- Li, S.; Tang, C.; Zhu, W.C.; Liang, Z.Z. Numerical analysis of slope stability based on the gravity increase method. Comput. Geotech. 2009, 36, 1246–1258. [Google Scholar] [CrossRef]
- Liu, F.; Tang, C.A.; Ma, T.H.; Tang, L.X. Characterizing Rockbursts Along a Structural Plane in a Tunnel of the Hanjiang-to-Weihe River Diversion Project by Microseismic Monitoring. Rock Mech. Rock Eng. 2019, 52, 1835–1856. [Google Scholar] [CrossRef]
- Xu, N.W.; Tang, C.A.; Li, L.C.; Zhou, Z.; Sha, C.; Liang, Z.Z.; Yang, J.Y. Microseismic monitoring and stability analysis of the left bank slope in Jinping first stage hydropower station in southwestern China. Int. J. Ofrock Mech. Min. Sci. 2011, 48, 950–963. [Google Scholar] [CrossRef]
- Zhang, P.H.; Yang, T.H.; Yu, Q.L.; Xu, T.; Shi, W.H. Study of a Seepage Channel Formation Using the Combination of Microseismic Monitoring Technique and Numerical Method in Zhangmatun Iron Mine. Rock Mech. Rock Eng. 2016, 49, 3699–3708. [Google Scholar] [CrossRef]
- Yang, T.H.; Zhang, F.C.; Yu, Q.L. Research situation of open-pit mining high and steep slope stability and its developing trend. Chin. J. Geotech. Eng. 2011, 32, 1437–1451. [Google Scholar]
- Ma, K.; Xu, N.W.; Liang, Z.Z. Stability Assessment of the Excavated Rock Slope at the Dagangshan Hydropower Station in China Based on Microseismic Monitoring. Adv. Civ. Eng. 2018, 104, 34–44. [Google Scholar] [CrossRef]
- Feng, X.T.; Zhou, H.; Li, S.J. System of intelligent evaluation and prediction in space-time for safety of rock engineering under hazardous environment. Chin. J. Geotech. Eng. 2008, 27, 1741–1756. [Google Scholar]
- Sheng, Q.; Xiu, X.L.; Feng, X.T. Displacement back analysis for the high slope of the Three Gorges Project considering the effect of excavation effect. Chin. J. Geotech. Eng. 2000, 19, 987–993. [Google Scholar]
- Wang, R.H.; Li, J.L.; Liu, J. Three-dimensional stability analysis of dam abutment high slope dynamic behaviors considering rock mass unloading. Chin. J. Geotech. Eng. 2007, 26, 3515–3521. [Google Scholar]
- Zhou, H.M.; Sheng, Q.; Li, W.S. Excavation-disturbed zone and weaken degree of mechanical properties for rockmass of TPG shiplockslope. Chin. J. Geotech. Eng. 2004, 7, 1078–1081. [Google Scholar]
- Bossi, G.; Borgatti, L.; Gottardi, G.; Marcato, G. The Boolean Stochastic Generation method-BoSG: A tool for the analysis of the error associated with the simplification of the stratigraphy in geotechnical models. Eng. Geol. 2016, 203, 99–106. [Google Scholar] [CrossRef]
- Pasculli, A.; Calista, M.; Sciarra, N. Variability of local stress states resulting from the application of Monte Carlo and fnite difference methods to the stability study of a selected slope. Eng. Geol. 2018, 245, 370–389. [Google Scholar] [CrossRef]
- Calista, M.; Pasculli, A.; Sciarra, N. Reconstruction of the geotechnical model considering random parameters distributions. Eng. Geol. Soc. Territ. 2015, 2, 1347–1351. [Google Scholar]
- Pasculli, A.; Pugliese, A.; Romeo, R.W.; Sanò, T. The uncertainty in the Local Seismic Response Analysis. Seism. Eng. Int. Conf. Mercea AIP 2008, 1020, 321–328. [Google Scholar]
- Wang, J.C.; Chang, L.S.; Chen, Y.J. Study on probability damage evolutionary rule of jointed rock mass slope. Chin. J. Geotech. Eng. 2006, 25, 1396–1401. [Google Scholar]
- Xu, N.W.; Liang, Z.Z.; Tang, C.A. Three-dimensional feedback analysis of rock slope stability based on micro-seismic monitoring. Chin. J. Geotech. Eng. 2014, 33, 3093–3104. [Google Scholar]
- ITASCA Consulting Group Inc. Fast Lagrangian Analysis of Continua in Dimensions; Version 5. 0; Itasca Consulting Group Inc.: Minneapolis, MN, USA, 2012. [Google Scholar]
- Kang, Y.X. Computer software programming based on C language. Pract. Electron. 2018, 16, 53–54. [Google Scholar]
- Cai, M.; Kaiser, P.K.; Martin, C.D. Quantification of rock mass damage in underground excavations from micro-seismicevent monitoring. Int. J. Rock Mech. Min. Sci. 2001, 38, 1135–1145. [Google Scholar] [CrossRef]
- Horii, H.; Nemat-Nasser, S. Overall moduli of solids with microcracks: Load-induced anisotropy. J. Mech. Phys. Solids 1983, 31, 155–171. [Google Scholar] [CrossRef]
- Cai, M.; Horii, H. A constitutive model of highly jointed rock masses. Mech. Mater. 1992, 13, 217–246. [Google Scholar] [CrossRef]
- Wang, X.B.; Jin, K.; Yao, W. Report on Engineering Geology of Deformation Treatment of the Left Bank Dam Foundation and Dam Abutment Slope at the Elevation of 720-628 m of the Baihetan Hydropower Station Along Jinshajiangriver; PowerChina Huadong Engineering Corporation Limited: Hangzhou, China, 2015; p. 147. (In Chinese) [Google Scholar]
- Xu, N.W.; Wu, J.Y.; Dai, F. Comprehensive evaluation of the left bank slope stability at the Baihetanhy dropower station in Southwest China. Bull. Eng. Geol. Environ. 2018, 77, 1567–1588. [Google Scholar] [CrossRef]
- Dai, F.; Li, B.; Xu, N.W. Microseismicmonitoring of the left bank slope at the Baihetanhydropowerstation. Rock Mech. Rock Eng. 2017, 50, 225–232. [Google Scholar] [CrossRef]
- Hydro China Huadong Engineering Corporation. Bidding Design Report for Excavation and Supports of Left and Right Dam Spandrels above 600 m Elevation at Baihetan Hydropower Station Along Jinsha River; Hydro China Huadong Engineering Corporation: Hangzhou, China, 2013. [Google Scholar]
- General Institute of Water Conservancy and Hydropower Planning and Design. GB50287-2006 Code for Hydropower Engineering Geological Investigation; General Institute of Water Conservancy and Hydropower Planning and Design: Beijing, China, 2006. [Google Scholar]
- Xu, N.W.; Li, B.; Dai, F. Stability analysis of bedding rock slope during excavation based on micro-seismic monitoring. Chin. J. Rock Mech. Eng. 2016, 35, 2089–2097. [Google Scholar]
- Brune, J.N. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 1970, 75, 4997–5009. [Google Scholar] [CrossRef] [Green Version]
- Madariaga, R. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am. 1976, 66, 639–666. [Google Scholar]
No. | Occurrence | Thickness(cm) | Extension Length (m) | |
---|---|---|---|---|
C3 | N40°–55°E, SE∠15°–20° | 10–40 | 850 | |
C3-1 | N40°–50°E,.SE∠15°–20° | 5–30 | 800 |
No. | Location | Occurrence | Width (m) | Extension Length (m) |
---|---|---|---|---|
F14 | Downstream of the arch dam | N55°–65°W, NE(SW)∠80°–90° | 0.5–1.4 | 850 |
F16 | Downstream of the arch dam | N60°–70°W, NE(SW)∠80°–90° | 0.3–1.5 | 800 |
F17 | Arch dam foundation | N35°–45°E, NW∠70°–80° | 0.5–3.0 | 1400 |
No. | Occurrence | Width (cm) | Condition |
---|---|---|---|
LS337 | N20°–45°E, SE∠18°–30° | 20–50 | The thickness is 10–40 cm, and the occurrence varies greatly |
LS331 | N47°E, SE∠16° | 2–30 | Breccia and cuttings are the main ones, and the thickness varies greatly |
LS3318 | N34°E, SE∠30° | 20–30 | The breccia and the cuttings are mainly distributed, and the top and bottom are distributed with a small amount of mud |
LS3319 | N20°–30°E, SE∠22°–28° | 20–40 | The breccia and the cuttings are mainly distributed, and the top and bottom are distributed with a small amount of mud |
Rock Mass Type | Elasticity Modulus (GPa) | Compressive Strength (MPa) | Poisson′s Ratio | Shear Strength | Density (g/cm3) | |
---|---|---|---|---|---|---|
Φ/(°) | c/(MPa) | |||||
II | 15 | 100 | 0.23 | 36 | 1.4 | 2.80 |
III1 | 12 | 70 | 0.24 | 36 | 1.1 | 2.68 |
III2 | 11 | 55 | 0.26 | 35 | 0.75 | 2.60 |
IV | 5 | 35 | 0.32 | 33 | 0.5 | 2.50 |
f110 | 0.6 | 20 | 0.35 | 28 | 0.15 | 2.22 |
f108 | 0.3 | 16 | 0.35 | 27 | 0.15 | 2.20 |
F17 | 1 | 23 | 0.34 | 28 | 0.15 | 2.13 |
C3-1 | 0.71 | 22 | 0.35 | 28 | 0.04 | 2.05 |
C3 | 0.4 | 18 | 0.34 | 28 | 0.1 | 2.13 |
LS3319 | 0.25 | 15 | 0.33 | 26 | 0.1 | 2.11 |
LS337 | 0.2 | 18 | 0.35 | 25 | 0.05 | 2.03 |
LS3318 | 0.3 | 10 | 0.35 | 26 | 0.1 | 2.14 |
LS331 | 1.3 | 23 | 0.35 | 27 | 0.06 | 2.15 |
Overburden layer | 2 | 30 | 0.22 | 32 | 1.4 | 2.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Yang, Y.; Qian, B.; Tan, Y.; Sun, H.; Xu, N. Deformation Analysis of Large-Scale Rock Slopes Considering the Effect of Microseismic Events. Appl. Sci. 2019, 9, 3409. https://doi.org/10.3390/app9163409
Dong L, Yang Y, Qian B, Tan Y, Sun H, Xu N. Deformation Analysis of Large-Scale Rock Slopes Considering the Effect of Microseismic Events. Applied Sciences. 2019; 9(16):3409. https://doi.org/10.3390/app9163409
Chicago/Turabian StyleDong, Linlu, Ying Yang, Bo Qian, Yaosheng Tan, Hailong Sun, and Nuwen Xu. 2019. "Deformation Analysis of Large-Scale Rock Slopes Considering the Effect of Microseismic Events" Applied Sciences 9, no. 16: 3409. https://doi.org/10.3390/app9163409
APA StyleDong, L., Yang, Y., Qian, B., Tan, Y., Sun, H., & Xu, N. (2019). Deformation Analysis of Large-Scale Rock Slopes Considering the Effect of Microseismic Events. Applied Sciences, 9(16), 3409. https://doi.org/10.3390/app9163409