Use of Logistic Regression to Identify Factors Influencing the Post-Incident State of Occupational Injuries in Agribusiness Operations
Abstract
:1. Introduction
- Evaluate the effectiveness of LR in identifying significant predictors of the post-incident state of occupational injuries.
- Determine the contribution of occupational incident factors to the likelihood of medical versus disability post-incident states.
- Discuss the application of results in reducing the incidence of injury in the agribusiness industry.
2. Material and Methods
Logistic Regression Model
3. Results
3.1. Objective I
3.2. Objective II
3.3. Objective III
- Injured body part groups of lower extremities, multiple, neck, and trunk;
- Cause of injury groups of caught in, under, or between; fall, slip, or trip injury; and strain or injury by;
- Nature of injury groups of occupational disease and multiple injuries;
- Occupations including chauffeurs and helpers, farm machinery operations, fertilizer dry mixing, gas and oil dealers, hay grain or feed dealers, grain elevator operations, and poultry/egg production;
- Industries of grain milling plants, feed mills for livestock/pet foods, and food distributors.
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Altunkaynak, B. A Statistical Study of Occupational Accidents in the Manufacturing Industry in Turkey. Int. J. Ind. Ergon. 2018, 66, 101–109. [Google Scholar] [CrossRef]
- Boden, L.I.; O’Leary, P.K.; Applebaum, K.M.; Tripodis, Y. The Impact of Non-Fatal Workplace Injuries and Illnesses on Mortality. Am. J. Ind. Med. 2016. [Google Scholar] [CrossRef]
- Gavious, A.; Mizrahi, S.; Shani, Y.; Minchuk, Y. The Costs of Industrial Accidents for the Organization: Developing Methods and Tools for Evaluation and Cost-Benefit Analysis of Investment in Safety. J. Loss Prev. Process Ind. 2009. [Google Scholar] [CrossRef]
- Tsoukalas, V.D.; Fragiadakis, N.G. Prediction of Occupational Risk in the Shipbuilding Industry Using Multivariable Linear Regression and Genetic Algorithm Analysis. Saf. Sci. 2016, 83, 12–22. [Google Scholar] [CrossRef]
- Wurzelbacher, S.J.; Al-Tarawneh, I.S.; Meyers, A.R.; Bushnell, P.T.; Lampl, M.P.; Robins, D.C.; Tseng, C.Y.; Wei, C.; Bertke, S.J.; Raudabaugh, J.A.; et al. Development of Methods for Using Workers’ Compensation Data for Surveillance and Prevention of Occupational Injuries among State-Insured Private Employers in Ohio. Am. J. Ind. Med. 2016. [Google Scholar] [CrossRef]
- Pietilä, J.; Räsänen, T.; Reiman, A.; Ratilainen, H.; Helander, E. Characteristics and Determinants of Recurrent Occupational Accidents. Saf. Sci. 2018. [Google Scholar] [CrossRef]
- Hovden, J.; Albrechtsen, E.; Herrera, I.A. Is There a Need for New Theories, Models and Approaches to Occupational Accident Prevention? Saf. Sci. 2010. [Google Scholar] [CrossRef]
- Ciarapica, F.E.; Giacchetta, G. Classification and Prediction of Occupational Injury Risk Using Soft Computing Techniques: An Italian Study. Saf. Sci. 2009. [Google Scholar] [CrossRef]
- Robert, K.; Elisabeth, Q.; Josef, B. Analysis of Occupational Accidents with Agricultural Machinery in the Period 2008–2010 in Austria. Saf. Sci. 2015. [Google Scholar] [CrossRef]
- Salguero-Caparros, F.; Suarez-Cebador, M.; Rubio-Romero, J.C. Analysis of Investigation Reports on Occupational Accidents. Saf. Sci. 2015. [Google Scholar] [CrossRef]
- Yorio, P.L.; Wachter, J.K. The Impact of Human Performance Focused Safety and Health Management Practices on Injury and Illness Rates: Do Size and Industry Matter? Saf. Sci. 2014, 62, 157–167. [Google Scholar] [CrossRef]
- Chi, S.; Han, S.; Kim, D.Y.; Salminen, S.; Seo, H.C.; Lee, Y.S.; Kim, J.J.; Jee, N.Y.; Siu, O.L.; Phillips, D.R.; et al. Relationship between Unsafe Working Conditions and Workers’ Behavior and Impact of Working Conditions on Injury Severity in U.S. Construction Industry. Accid. Anal. Prev. 2016, 139, 1999–2011. [Google Scholar] [CrossRef]
- Trontin, C.; Béjean, S. Prevention of Occupational Injuries: Moral Hazard and Complex Agency Relationships. Saf. Sci. 2004, 42, 121–141. [Google Scholar] [CrossRef]
- Smith, G.S.; Veazie, M.A.; Benjamin, K.L. The Use of Sentinel Injury Deaths to Evaluate the Quality of Multiple Source Reporting for Occupational Injuries. Ann. Epidemiol. 2005, 15, 219–227. [Google Scholar] [CrossRef]
- Thepaksorn, P.; Pongpanich, S. Occupational Injuries and Illnesses and Associated Costs in Thailand. Saf. Health Work 2014. [Google Scholar] [CrossRef]
- Soltanzadeh, A.; Mohammadfam, I.; Moghimbeygi, A.; Ghiasvand, R. Exploring Causal Factors on the Severity Rate of Occupational Accidents in Construction Worksites. Int. J. Civ. Eng. 2017, 15, 959–965. [Google Scholar] [CrossRef]
- Merryweather, A.S.; Thiese, M.S.; Kapellusch, J.M.; Garg, A.; Fix, D.J.; Hegmann, K.T. Occupational Factors Related to Slips, Trips and Falls among Home Healthcare Workers. Saf. Sci. 2018, 107, 155–160. [Google Scholar] [CrossRef]
- Douphrate, D.I.; Rosecrance, J.C.; Reynolds, S.J.; Stallones, L.; Gilkey, D.P. Tractor-Related Injuries: An Analysis of Workers’ Compensation Data. J. Agromedicine 2009, 14, 198–205. [Google Scholar] [CrossRef]
- Chang, D.S.; Tsai, Y.C. Investigating the Long-Term Change of Injury Pattern on Severity, Accident Types and Sources of Injury in Taiwan’s Manufacturing Sector between 1996 and 2012. Saf. Sci. 2014. [Google Scholar] [CrossRef]
- Rezapour, M.; Moomen, M.; Ksaibati, K. Ordered Logistic Models of Influencing Factors on Crash Injury Severity of Single and Multiple-Vehicle Downgrade Crashes: A Case Study in Wyoming. J. Saf. Res. 2019. [Google Scholar] [CrossRef]
- Wang, K.; Lee, A.H.; Yau, K.K.W.; Carrivick, P.J.W. A Bivariate Zero-Inflated Poisson Regression Model to Analyze Occupational Injuries. Accid. Anal. Prev. 2003, 35, 625–629. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, G.; Liu, X.C.; Ci, Y.; Huang, H.; Ma, J.; Chen, Y.; Guan, H. Driver Injury Severity Outcome Analysis in Rural Interstate Highway Crashes: A Two-Level Bayesian Logistic Regression Interpretation. Accid. Anal. Prev. 2016, 97, 69–78. [Google Scholar] [CrossRef]
- Field, W.E.; Heber, D.J.; Riedel, S.M.; Wettschurack, S.W.; Roberts, M.J.; Grafft, L.M.J. Worker Hazards Associated with the Use of Grain Vacuum Systems. J. Agric. Saf. Health 2014. [Google Scholar] [CrossRef]
- Pawlak, H.; Nowakowicz-Dębek, B. Agriculture: Accident-Prone Working Environment. Agric. Agric. Sci. Procedia 2015. [Google Scholar] [CrossRef]
- Zylbersztajn, D. Agribusiness Systems Analysis: Origin, Evolution and Research Perspectives. Rev. Adm. 2016. [Google Scholar] [CrossRef]
- Van Fleet, D. What Is Agribusiness? A Visual Description. Amity J. Agribus. 2016, 1, 1–6. [Google Scholar]
- Scott, A.J.; Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression. Biometrics 2006. [Google Scholar] [CrossRef]
- Peng, C.Y.J.; Lee, K.L.; Ingersoll, G.M. An Introduction to Logistic Regression Analysis and Reporting. J. Educ. Res. 2002. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Whittaker, J.; Agresti, A. Analysis of Ordinal Categorical Data. J. R. Stat. Soc. Ser. A 2006. [Google Scholar] [CrossRef]
- Deeks, J.; Bracken, M.B.; Sinclair, J.C.; Davies, H.T.O.; Tavakoli, M.; Crombie, I.K. When Can Odds Ratios Mislead? BMJ. 1998. [Google Scholar] [CrossRef]
- Szumilas, M. A Comparison of Geothermal Activity in Iceland and the Mediterranean Area. J. Can. Acad. Child Adolesc. Psychiatry 2010, 19, 227–229. [Google Scholar] [PubMed]
- Garson, D.G. Logictic Resgression: Binary & Multinominal; Statistical Associates Publishers: Asheboro, NC, USA, 2013; pp. 1–52. [Google Scholar]
- Menard, S. Coefficients of Determination for Multiple Logistic Regression Analysis. Am. Stat. 2000. [Google Scholar] [CrossRef]
- Proust, M. JMP 11 Basic Analysis. Available online: https://www.jmp.com/support/help/14-2/logistic-regression-models.shtml (accessed on 1 June 2019).
- Yong Jeong, B. Comparisons of Variables between Fatal and Nonfatal Accidents in Manufacturing Industry. Int. J. Ind. Ergon. 1999. [Google Scholar] [CrossRef]
- Swaen, G.M.H. Fatigue as a Risk Factor for Being Injured in an Occupational Accident: Results from the Maastricht Cohort Study. Occup. Environ. Med. 2003. [Google Scholar] [CrossRef] [PubMed]
- Unsar, S.; Sut, N. General Assessment of the Occupational Accidents That Occurred in Turkey between the Years 2000 and 2005. Saf. Sci. 2009. [Google Scholar] [CrossRef]
- Ramaswamy, S.K.; Mosher, G.A. Using Workers’ Compensation Claims Data to Characterize Occupational Injuries in the Biofuels Industry. Saf. Sci. 2018. [Google Scholar] [CrossRef]
- Alizadeh, S.S.; Mortazavi, S.B.; Sepehri, M.M. Analysis of Occupational Accident Fatalities and Injuries Among Male Group in Iran Between 2008 and 2012. Iran. Red Crescent Med. J. 2015. [Google Scholar] [CrossRef]
- Mehrdad, R.; Seifmanesh, S.; Chavoshi, F.; Aminian, O.; Izadi, N. Epidemiology of Occupational Accidents in Iran Based on Social Security Organization Database. Iran. Red Crescent Med. J. 2014. [Google Scholar] [CrossRef]
- Kaassis, B.; Badri, A. Development of a Preliminary Model for Evaluating Occupational Health and Safety Risk Management Maturity in Small and Medium-Sized Enterprises. Safety 2018, 4, 5. [Google Scholar] [CrossRef]
- Comberti, L.; Demichela, M.; Baldissone, G.; Fois, G.; Luzzi, R. Large Occupational Accidents Data Analysis with a Coupled Unsupervised Algorithm: The S.O.M. K-Means Method. An Application to the Wood Industry. Safety 2018, 4, 51. [Google Scholar] [CrossRef]
- Davoudi Kakhki, F.; Freeman, S.; Mosher, G. Analyzing Large Workers’ Compensation Claims Using Generalized Linear Models and Monte Carlo Simulation. Safety 2018, 4, 57. [Google Scholar] [CrossRef]
Predictor | Freq. | % Total | Predictor | Freq. | % Total |
---|---|---|---|---|---|
Injured body group | Occupation | ||||
Upper extremities | 4778 | 34.4 | Grain elevator operations | 2474 | 17.8 |
Trunk | 3096 | 22.3 | Farm machinery operations | 2077 | 14.9 |
Lower extremities | 3079 | 22.2 | Grain milling | 1751 | 12.6 |
Head | 1878 | 13.5 | Chauffeurs and helpers | 1470 | 10.6 |
Multiple | 529 | 3.81 | Hay grain or feed dealers | 1450 | 10.4 |
Body | 321 | 2.31 | Gas and oil dealers | 1272 | 9.17 |
Neck | 186 | 1.34 | Grocery store—retail | 1014 | 7.31 |
Auto service repair | 438 | 3.16 | |||
Cause of injury group | Store wholesale | 397 | 2.85 | ||
Strain or injury by | 3883 | 28.0 | Clerical officer | 367 | 2.64 |
Fall, slip, or trip injury | 3585 | 25.8 | Salespersons | 316 | 2.28 |
Struck or injured by | 1602 | 11.5 | Store: meat, fish, poultry | 275 | 1.98 |
miscellaneous | 1349 | 9.72 | Fertilizer dry mixing | 194 | 1.40 |
Cut, puncture, or scrape | 1235 | 8.90 | Food sundries manufacturing | 184 | 1.32 |
Vehicle | 585 | 4.21 | Poultry/egg producer | 178 | 1.28 |
Heat or cold exposure | 512 | 3.69 | |||
Caught in, under, or between | 452 | 3.26 | Industry | ||
Striking against/stepping on | 436 | 3.14 | Grain elevators | 6966 | 50.2 |
lifting or handling | 228 | 1.64 | Refined fuels | 2460 | 17.7 |
Feed mills for livestock/pet foods | 1490 | 10.7 | |||
Nature of injury group | Food distributors | 1156 | 8.33 | ||
Specific injury | 13,655 | 98.4 | Fertilizer blending and distribution | 1154 | 8.32 |
Occupational disease | 158 | 1.13 | Poultry hatchery/grower/processor | 402 | 2.89 |
Multiple injuries | 54 | 0.389 | Grain milling plants | 239 | 1.72 |
Test | χ2 | p-Value |
---|---|---|
Whole model test | 1168.84 | <0.0001 * |
Likelihood ratio test | 27.61 | <0.0001 * |
Term | No. of Parameters | DF | Wald χ2 | p-Value |
---|---|---|---|---|
Cause of injury group | 9 | 9 | 321.25 | <0.0001 * |
Body part group | 6 | 6 | 196.03 | <0.0001 * |
Age at accident date | 1 | 1 | 138.67 | <0.0001 * |
Occupation | 14 | 14 | 103.92 | <0.0001 * |
Industry | 6 | 6 | 35.76 | <0.0001 * |
Years of experience | 1 | 1 | 32.11 | <0.0001 * |
Nature of injury group | 1 | 1 | 10.36 | <0.0056 * |
Actual Post-Incident State | Predicted Post-Incident State | ||
---|---|---|---|
Disability | Medical | % Correct | |
Disability | 65 | 3123 | 2.04% [65/(65 + 3123)] |
Medical | 90 | 10,579 | 99.08% [10,579/(90 + 10,579)] |
Overall % correct (n = 13,867) | 76.75% [(10,579 + 65)/n] |
Term | β | SE | Wald χ2 | p-Value | 95% LCI *** | 95% UCI **** | Exp (β) |
---|---|---|---|---|---|---|---|
Intercept | −2.21 | 0.15 | 229.18 | <0.0001 * | −2.50 | −1.92 | 0.11 |
BPG [upper extremities] | |||||||
BPG [body] | −0.40 | 0.15 | 7.59 | 0.0059 * | −0.70 | −0.12 | 0.67 |
BPG [head] | −0.75 | 0.09 | 71.96 | <0.0001* | −0.92 | −0.58 | 0.47 |
BPG [lower extremities] | 0.49 | 0.06 | 78.94 | <0.0001 * | 0.39 ** | 0.60 | 1.63 |
BPG [multiple] | 0.10 | 0.10 | 1.10 | 0.2949 | −0.09 | 0.29 | 1.11 |
BPG [neck] | 0.09 | 0.16 | 0.30 | 0.5869 | −0.23 | 0.39 | 1.09 |
BPG [trunk] | 0.07 | 0.06 | 1.48 | 0.2235 | −0.04 | 0.19 | 1.07 |
CG [vehicle] | |||||||
CG [caught in, under, or between] | 0.45 | 0.10 | 19.42 | <0.0001 * | 0.25 ** | 0.65 | 1.57 |
CG [cut, puncture, or scrape] | −1.15 | 0.11 | 112.97 | <0.0001 * | −1.37 | −0.94 | 0.32 |
CG [fall, slip, or trip injury] | 0.62 | 0.05 | 157.89 | <0.0001 * | 0.53 ** | 0.72 | 1.86 |
CG [heat or cold exposure] | −0.02 | 0.12 | 0.04 | 0.8358 | −0.26 | 0.20 | 0.98 |
CG [lifting or handling] | −0.19 | 0.16 | 1.37 | 0.2416 | −0.52 | 0.12 | 0.83 |
CG [miscellaneous] | −0.17 | 0.09 | 3.86 | 0.0493 * | −0.35 | 0.00 | 0.84 |
CG [strain or injury by] | 0.40 | 0.05 | 61.55 | <0.0001 * | 0.30 ** | 0.50 | 1.49 |
CG [striking against/stepping on] | −0.40 | 0.14 | 8.45 | 0.0037 * | −0.68 | −0.14 | 0.67 |
CG [struck or injured by] | −0.08 | 0.07 | 1.37 | 0.2413 | −0.22 | 0.06 | 0.92 |
NG [specific injuries] | |||||||
NG [multiple injuries] | 0.21 | 0.21 | 1.01 | 0.3156 | −0.21 | 0.61 | 1.23 |
NG [occupational disease] | 0.15 | 0.16 | 0.83 | 0.3615 | −0.17 | 0.46 | 1.16 |
Occupation [store: meat, fish, poultry] | |||||||
Occupation [auto service repair] | −0.04 | 0.13 | 0.08 | 0.7798 | −0.30 | 0.22 | 0.96 |
Occupation [chauffeurs and helpers] | 0.08 | 0.08 | 1.16 | 0.2818 | −0.07 | 0.23 | 1.08 |
Occupation [clerical officer] | −0.37 | 0.14 | 7.29 | 0.0069 * | −0.65 | −0.11 | 0.69 |
Occupation [farm machinery operations] | 0.04 | 0.07 | 0.28 | 0.5983 | −0.11 | 0.18 | 1.04 |
Occupation [fertilizer dry mixing] | 0.08 | 0.19 | 0.18 | 0.671 | −0.31 | 0.45 | 1.08 |
Occupation [food sundries mfg.] | −0.40 | 0.20 | 4.12 | 0.0425 * | −0.79 | −0.03 | 0.67 |
Occupation [gas and oil dealers] | 0.41 | 0.08 | 24.95 | <0.0001 * | 0.25 ** | 0.57 | 1.51 |
Occupation [grain elevator operations] | 0.32 | 0.07 | 20.53 | <0.0001 * | 0.18 ** | 0.46 | 1.38 |
Occupation [grain milling] | −0.05 | 0.08 | 0.36 | 0.5483 | −0.20 | 0.11 | 0.95 |
Occupation [grocery store—retail] | −0.15 | 0.10 | 2.09 | 0.1478 | −0.35 | 0.05 | 0.86 |
Occupation [hay grain or feed dealers] | 0.14 | 0.08 | 3.31 | 0.0687 | −0.01 | 0.29 | 1.15 |
Occupation [poultry/egg producer] | 0.48 | 0.24 | 3.90 | 0.0484 * | −0.01 | 0.95 | 1.62 |
Occupation [salespersons] | −0.60 | 0.15 | 15.05 | 0.0001 * | −0.91 | −0.30 | 0.55 |
Occupation [store wholesale] | −0.39 | 0.15 | 6.79 | 0.0092 * | −0.69 | −0.10 | 0.68 |
Industry [fuel refining] | |||||||
Industry [livestock/pet foods feed mill] | 0.27 | 0.07 | 13.93 | 0.0002 * | 0.13 ** | 0.42 | 1.31 |
Industry [fertilizer blending/distribution] | −0.07 | 0.09 | 0.57 | 0.451 | −0.25 | 0.11 | 0.93 |
Industry [food distributors] | 0.33 | 0.10 | 12.17 | 0.0005 * | 0.15 ** | 0.52 | 1.39 |
Industry [grain elevators] | −0.05 | 0.06 | 0.70 | 0.4026 | −0.18 | 0.07 | 0.95 |
Industry [grain milling plants] | 0.18 | 0.15 | 1.42 | 0.2337 | −0.13 | 0.48 | 1.20 |
Industry [poultry hatchery/grower/processor] | −0.60 | 0.24 | 6.10 | 0.0135 * | −1.08 | −0.12 | 0.55 |
Years of experience | −0.02 | 0.00 | 32.11 | <0.0001 * | −0.02 | −0.01 | 0.98 |
Age at accident day | 0.02 | 0.00 | 138.67 | <0.0001 * | 0.02 | 0.02 | 1.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davoudi Kakhki, F.; Freeman, S.A.; Mosher, G.A. Use of Logistic Regression to Identify Factors Influencing the Post-Incident State of Occupational Injuries in Agribusiness Operations. Appl. Sci. 2019, 9, 3449. https://doi.org/10.3390/app9173449
Davoudi Kakhki F, Freeman SA, Mosher GA. Use of Logistic Regression to Identify Factors Influencing the Post-Incident State of Occupational Injuries in Agribusiness Operations. Applied Sciences. 2019; 9(17):3449. https://doi.org/10.3390/app9173449
Chicago/Turabian StyleDavoudi Kakhki, Fatemeh, Steven A. Freeman, and Gretchen A. Mosher. 2019. "Use of Logistic Regression to Identify Factors Influencing the Post-Incident State of Occupational Injuries in Agribusiness Operations" Applied Sciences 9, no. 17: 3449. https://doi.org/10.3390/app9173449
APA StyleDavoudi Kakhki, F., Freeman, S. A., & Mosher, G. A. (2019). Use of Logistic Regression to Identify Factors Influencing the Post-Incident State of Occupational Injuries in Agribusiness Operations. Applied Sciences, 9(17), 3449. https://doi.org/10.3390/app9173449