Clinical and Functional Characterization of a Novel URAT1 Dysfunctional Variant in a Pediatric Patient with Renal Hypouricemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient
2.2. Genetic Analysis
2.3. Functional Analysis
3. Results
3.1. Patient
3.2. Genetic Analysis
3.3. Functional Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Son, C.N.; Kim, J.M.; Kim, S.H.; Cho, S.K.; Choi, C.B.; Sung, Y.K.; Kim, T.H.; Bae, S.C.; Yoo, D.H.; Jun, J.B. Prevalence and possible causes of hypouricemia at a tertiary care hospital. Korean J. Intern. Med. 2016, 5, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Bairaktari, E.T.; Kakafika, A.I.; Pritsivelis, N.; Hatzidimou, K.G.; Tsianos, E.V.; Seferiadis, K.I.; Elisaf, M.S. Hypouricemia in individuals admitted to an inpatient hospital-based facility. Am. J. Kidney Dis. 2003, 41, 1232–1255. [Google Scholar] [CrossRef]
- Mraz, M.; Hurba, O.; Bartl, J.; Dolezel, Z.; Marinaki, A.; Fairbanks, L.; Stiburkova, B. Modern diagnostic approach to hereditary xanthinuria. Urolithiasis 2015, 43, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, B.; Stiburkova, B.; De Castro-Pretelt, M.; Beck, N.; Bodurtha, J.N.; Atta, M.G. Hereditary renal hypouricemia: A new role for allopurinol? Am. J. Med. 2014, 127, e3–e4. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Cha, S.H.; Hosoyamada, M.; Takeda, T.; Sekine, T.; Igarashi, T.; et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002, 417, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, H.; Chiba, T.; Nagamori, S.; Nakayama, A.; Domoto, H.; Phetdee, K.; Wiriyasermkul, P.; Kikuchi, Y.; Oda, T.; Nishiyama, J.; et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 2008, 83, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Iwai, N.; Mino, Y.; Hosoyamada, M.; Tago, N.; Kokubo, Y.; Endou, H. A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese. Kidney Int. 2004, 66, 935–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Choi, H.J.; Lee, B.H.; Kang, H.K.; Chin, H.J.; Yoon, H.J.; Ha, I.S.; Kim, S.; Choi, Y.; Cheong, H.I. Prevalence of hypouricaemia and SLC22A12 mutations in healthy Korean subjects. Nephrology 2008, 13, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Gabrikova, D.; Bernasovska, J.; Sokolova, J.; Stiburkova, B. High frequency of SLC22A12 variants causing renal hypouricemia 1 in the Czech and Slovak Roma population; simple and rapid detection method by allele-specific polymerase chain reaction. Urolithiasis 2015, 43, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Stiburkova, B.; Gabrikova, D.; Čepek, P.; Šimek, P.; Kristian, P.; Cordoba-Lanus, E.; Claverie-Martin, F. Prevalence of URAT1 allelic variants in the Roma population. Nucleosides Nucleotides Nucleic Acids 2016, 35, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Stiburkova, B.; Sebesta, I.; Ichida, K.; Nakamura, M.; Hulkova, H.; Krylov, V.; Kryspinova, L.; Jahnova, H. Novel allelic variants and evidence for a prevalent mutation in URAT1 causing renal hypouricemia: Biochemical, genetics and functional analysis. Eur. J. Hum. Genet. 2013, 21, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Stiburkova, B.; Ichida, K.; Sebesta, I. Novel homozygous insertion in SLC2A9 gene caused renal hypouricemia. Mol. Genet. Metab. 2011, 102, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Mancikova, A.; Krylov, V.; Hurba, O.; Sebesta, I.; Nakamura, M.; Ichida, K.; Stiburkova, B. Functional analysis of novel allelic variants in URAT1 and GLUT9 causing renal hypouricemia type 1 and 2. Clin. Exp. Nephrol. 2016, 20, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Tasic, V.; Hynes, A.M.; Kitamura, K.; Cheong, H.I.; Lozanovski, V.J.; Gucev, Z.; Jutabha, P.; Anzai, N.; Sayer, J.A. Clinical and functional characterization of URAT1 variants. PLoS ONE 2011, 6, e28641. [Google Scholar] [CrossRef] [PubMed]
- Köttgen, A.; Albrecht, E.; Teumer, A.; Vitart, V.; Krumsiek, J.; Hundertmark, C.; Pistis, G.; Ruggiero, D.; Seaghdha, M.C.O.; Haller, T.; et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 2013, 45, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, A.; Nakaoka, H.; Yamamoto, K.; Sakiyama, M.; Shaukat, A.; Toyoda, Y.; Okada, Y.; Kamatani, Y.; Nakamura, T.; Takada, T.; et al. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Ann. Rheum. Dis. 2017, 76, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Stiburkova, B.; Pavelcova, K.; Zavada, J.; Petru, L.; Simek, P.; Cepek, P.; Pavlikova, M.; Matsuo, H.; Merriman, T.R.; Pavelka, K. Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology 2017, 56, 1982–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehghan, A.; Köttgen, A.; Yang, Q.; Hwang, S.J.; Kao, W.H.L.; Rivadeneira, F.; Boerwinkle, E.; Levy, D.; Hofman, A.; Castor, B.; et al. Association of three genetic loci with uric acid concentration and risk of gout: A genome-wide association study. Lancet 2008, 372, 1953–1961. [Google Scholar] [CrossRef]
- Hurba, O.; Mancikova, A.; Krylov, V.; Pavlikova, M.; Pavelka, K.; Stiburkova, B. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: No evidence of effect on hyperuricemia and gout. PLoS ONE 2014, 9, e107902. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.K.; Farrar, J.E.; Gaucher, E.A.; Miner, J.N. Coevolution of URAT1 and Uricase during Primate Evolution: Implications for Serum Urate Homeostasis and Gout. Mol. Biol. Evol. 2016, 33, 2193–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Table Cont. | Serum UA (µmol/L) | EF-UA (%) | Serum Creatinine (µmol/L) | Identified Variants in SLC22A12 |
---|---|---|---|---|
Proband | 67–70 | 24.3–34.2 | 32 | c.973C > T (C/T); c.1300C > T (C/T) |
Father of proband | 205 | N/A | 62 | c.1300C > T (C/T) |
Reference range | 120–360 a 120–420 b | 7.3 ± 1.3 a 10.3 ± 4.2 b | 50–110 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stiburkova, B.; Bohata, J.; Minarikova, I.; Mancikova, A.; Vavra, J.; Krylov, V.; Doležel, Z. Clinical and Functional Characterization of a Novel URAT1 Dysfunctional Variant in a Pediatric Patient with Renal Hypouricemia. Appl. Sci. 2019, 9, 3479. https://doi.org/10.3390/app9173479
Stiburkova B, Bohata J, Minarikova I, Mancikova A, Vavra J, Krylov V, Doležel Z. Clinical and Functional Characterization of a Novel URAT1 Dysfunctional Variant in a Pediatric Patient with Renal Hypouricemia. Applied Sciences. 2019; 9(17):3479. https://doi.org/10.3390/app9173479
Chicago/Turabian StyleStiburkova, Blanka, Jana Bohata, Iveta Minarikova, Andrea Mancikova, Jiri Vavra, Vladimír Krylov, and Zdenek Doležel. 2019. "Clinical and Functional Characterization of a Novel URAT1 Dysfunctional Variant in a Pediatric Patient with Renal Hypouricemia" Applied Sciences 9, no. 17: 3479. https://doi.org/10.3390/app9173479
APA StyleStiburkova, B., Bohata, J., Minarikova, I., Mancikova, A., Vavra, J., Krylov, V., & Doležel, Z. (2019). Clinical and Functional Characterization of a Novel URAT1 Dysfunctional Variant in a Pediatric Patient with Renal Hypouricemia. Applied Sciences, 9(17), 3479. https://doi.org/10.3390/app9173479