Analysis of Microbial Community Dynamics during the Acclimatization Period of a Membrane Bioreactor Treating Table Olive Processing Wastewater
Abstract
:Feature Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Analytical Methods
2.3. DNA Extraction, Library Construction, and Amplicon Sequencing
2.4. Sample Preparation, RNA Extraction, and Metatranscriptome Sequencing
2.5. Data Processing and Bioinformatics Analysis
2.5.1. 16S and 18S Amplicon Meta-Barcoding
2.5.2. Metatranscriptomics
2.5.3. Data Visualization
2.6. MBR Acclimatization Procedure
3. Results
3.1. MBR Performance Efficiency during Acclimatization
3.2. 16S and 18S Amplicon Meta-Barcoding
3.3. Metatranscriptomics
3.4. Phylogenetic Composition of Metatranscriptomic Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kopsidas, G.C. Wastewater from the preparation of table olives. Water Res. 1992, 26, 629–631. [Google Scholar] [CrossRef]
- Parinos, C.S.; Stalikas, C.D.; Giannopoulos, T.S.; Pilidis, G.A. Chemical and physicochemical profile of wastewaters produced from the different stages of Spanish-style green olives processing. J. Hazard. Mater. 2007, 145, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Niaounakis, M.; Halvadakis, C.P. Olive Processing Waste Management: Literature Review and Patent Survey; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Murillo, J.M.; López, R.; Fernández, J.E.; Cabrera, F. Olive tree response to irrigation with wastewater from the table olive industry. Irrig. Sci. 2000, 19, 175–180. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D.; Metcalf & Eddy, Inc.; Burton, F. Wastewater Engineering: Treatment and Reuse; McGraw-Hill Education: New York, NY, USA, 2003. [Google Scholar]
- Brenes, M.; García, P.; Romero, C.; Garrido, A. Treatment of green table olive waste waters by an activated-sludge process. J. Chem. Technol. Biotechnol. 2000, 75, 459–463. [Google Scholar] [CrossRef]
- Beltran-Heredia, J.; Torregrosa, J.; Dominguez, J.R.; Garcia, J. Aerobic biological treatment of black table olive washing wastewaters: Effect of an ozonation stage. Process. Biochem. 2000, 35, 1183–1190. [Google Scholar] [CrossRef]
- Judd, S. The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Patsios, S.I.; Papaioannou, E.H.; Karabelas, A.J. Long-term performance of a membrane bioreactor treating table olive processing wastewater. J. Chem. Technol. Biotechnol. 2016, 91, 2253–2262. [Google Scholar] [CrossRef]
- Mannina, G.; Di Bella, G. Comparing two start-up strategies for MBRs: Experimental study and mathematical modelling. Biochem. Eng. J. 2012, 68, 91–103. [Google Scholar] [CrossRef]
- Guo, W.S.; Vigneswaran, S.; Ngo, H.H.; Xing, W. Experimental investigation on acclimatized wastewater for membrane bioreactors. Desalination 2007, 207, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Crognale, S.; Pesciaroli, L.; Petruccioli, M.; D’Annibale, A. Phenoloxidase-producing halotolerant fungi from olive brine wastewater. Process. Biochem. 2012, 47, 1433–1437. [Google Scholar] [CrossRef]
- Creer, S.; Deiner, K.; Frey, S.; Porazinska, D.; Taberlet, P.; Thomas, W.K.; Potter, C.; Bik, H.M. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 2016, 7, 1008–1018. [Google Scholar] [CrossRef]
- Jin, M.; Zhao, Z.; Wang, J.; Zhiqiang, S.; Chen, Z.; Qiu, Z.; Wang, X.; Li, J. DNA extraction from activated sludge for metagenomic array. Chin. J. Appl. Environ. Biol. 2006, 15, 245–249. [Google Scholar] [CrossRef]
- Qu, Y.Y.; Zhang, Q.; Wei, L.; Ma, F.; Zhou, J.T.; Pi, W.Q.; Gou, M. Optimization of metagenomic DNA extraction from activated sludge samples. Asia Pac. J. Chem. Eng. 2009, 4, 780–786. [Google Scholar] [CrossRef]
- Johnson, P.L.; Slatkin, M. Inference of population genetic parameters in metagenomics: A clean look at messy data. Genome Res. 2006, 16, 1320–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, C.C.; Hayden, H.; Sawbridge, T.; Mele, P.; Kruger, R.H.; Rodrigues, M.V.N.; Costa, G.G.L.; Vidal, R.O.; Sousa, M.P.; Torres, A.P.R.; et al. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system. AMB Express 2012, 2, 18. [Google Scholar] [CrossRef]
- Lv, X.M.; Shao, M.F.; Li, J.; Li, C.L. Metagenomic analysis of the sludge microbial community in a lab-scale denitrifying phosphorus removal reactor. Appl. Biochem. Biotechnol. 2015, 175, 3258–3270. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Cai, L.; Yu, Y.; Zhang, T. Metagenomic analysis reveals the prevalence of biodegradation genes for organic pollutants in activated sludge. Bioresour. Technol. 2013, 129, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Rosso, G.E.; Muday, J.A.; Curran, J.F. Tools for metagenomic analysis at wastewater treatment plants: Application to a foaming episode. Water Environ. Res. 2018, 90, 258–268. [Google Scholar] [CrossRef]
- Chao, Y.; Mao, Y.; Yu, K.; Zhang, T. Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach. Appl. Microbiol. Biotechnol. 2016, 100, 8225–8237. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, A.; Osorio, F.; Rodriguez-Sanchez, A.; Martinez-Toledo, M.V.; Gonzalez-Lopez, J.; Lotti, T.; Loosdrecht, M.C.M. Bacterial community structure of a lab-scale anammox membrane bioreactor. Biotechnol. Prog. 2015, 31, 186–193. [Google Scholar] [CrossRef]
- Leyva-Díaz, J.C.; González-Martínez, A.; Muñío, M.M.; Poyatos, J.M. Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: Nitrifying and denitrifying microbial populations and kinetic modeling. Appl. Microbiol. Biotechnol. 2015, 99, 10333–10343. [Google Scholar] [CrossRef]
- Zhu, X.; Treu, L.; Kougias, P.G.; Campanaro, S.; Angelidaki, I. Characterization of the planktonic microbiome in upflow anaerobic sludge blanket reactors during adaptation of mesophilic methanogenic granules to thermophilic operational conditions. Anaerobe 2017, 46, 69–77. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Box, J.D. Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res. 1983, 17, 511–525. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Chemidlin Prévost-Bouré, N.; Christen, R.; Dequiedt, S.; Mougel, C.; Lelièvre, M.; Jolivet, C.; Shahbazkia, H.R.; Guillou, L.; Arrouays, D.; Ranjard, L. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 2011, 6, e24166. [Google Scholar] [CrossRef] [PubMed]
- Trim Galore. Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 8 May 2019).
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef]
- Mothur. Available online: https://www.mothur.org/ (accessed on February 2009).
- Annotate DNA Sequences for Gene Ontology Terms. Available online: https://github.com/sestaton /HMMER2GO (accessed on 24 April 2019).
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2014, 12, 59. [Google Scholar] [CrossRef]
- Huson, D.H.; Auch, A.F.; Qi, J.; Schuster, S.C. MEGAN analysis of metagenomic data. Genome Res. 2007, 17, 377–386. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team, R. A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2011. [Google Scholar]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Albertsen, M.; Karst, S.M.; Ziegler, A.S.; Kirkegaard, R.H.; Nielsen, P.H. Back to Basics–The influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities. PLoS ONE 2015, 10, e0132783. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer Publishing Company, Inc.: New York, NY, USA, 2009; p. 216. [Google Scholar]
- OECD. Test No. 302A: Inherent Biodegradability: Modified SCAS Test; OECD: Paris, France, 1981. [Google Scholar] [CrossRef]
- Vorobev, A.; Jagadevan, S.; Jain, S.; Anantharaman, K.; Dick, G.J.; Vuilleumier, S.; Semrau, J.D. Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. Strain SB2 grown on methane or ethanol. Appl. Environ. Microbiol. 2014, 80, 3044–3052. [Google Scholar] [CrossRef] [PubMed]
- Terashima, M.; Yama, A.; Sato, M.; Yumoto, I.; Kamagata, Y.; Kato, S. Culture-dependent and -independent identification of polyphosphate-accumulating Dechloromonas spp. Predominating in a full-scale oxidation ditch wastewater treatment plant. Microbes Environ. 2016, 31, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Stokholm-Bjerregaard, M.; McIlroy, S.J.; Nierychlo, M.; Karst, S.M.; Albertsen, M.; Nielsen, P.H. A critical assessment of the microorganisms proposed to be important to enhanced biological phosphorus removal in full-scale wastewater treatment systems. Front. Microbiol. 2017, 8, 718. [Google Scholar] [CrossRef] [PubMed]
- Sockett, R.E. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu. Rev. Microbiol. 2009, 63, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Daims, H.; Lebedeva, E.V.; Pjevac, P.; Han, P.; Herbold, C.; Albertsen, M.; Jehmlich, N.; Palatinszky, M.; Vierheilig, J.; Bulaev, A.; et al. Complete nitrification by Nitrospira bacteria. Nature 2015, 528, 504. [Google Scholar] [CrossRef] [PubMed]
- Adl, S.M.; Simpson, A.G.; Lane, C.E.; Lukes, J.; Bass, D.; Bowser, S.S.; Brown, M.W.; Burki, F.; Dunthorn, M.; Hampl, V.; et al. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 2012, 59, 429–493. [Google Scholar] [CrossRef] [PubMed]
- Mechichi, T.; Stackebrandt, E.; Gad’on, N.; Fuchs, G. Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch. Microbiol. 2002, 178, 26–35. [Google Scholar] [CrossRef]
- Kim, J.M.; Le, N.T.; Chung, B.S.; Park, J.H.; Bae, J.-W.; Madsen, E.L.; Jeon, C.O. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-Xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol. 2008, 74, 7313–7320. [Google Scholar] [CrossRef]
- Shchegolkova, N.M.; Krasnov, G.S.; Belova, A.A.; Dmitriev, A.A.; Kharitonov, S.L.; Klimina, K.M.; Melnikova, N.V.; Kudryavtseva, A.V. Microbial community structure of activated sludge in treatment plants with different wastewater compositions. Front. Microbiol. 2016, 7, 90. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, A.; Leyva-Diaz, J.; Muñoz-Palazon, B.; Rivadeneyra, M.; Hurtado-Martinez, M.; Martin-Ramos, D.; Gonzalez-Martinez, A.; Poyatos, J.; Gonzalez-Lopez, J. Biofouling formation and bacterial community structure in hybrid moving bed biofilm reactor-membrane bioreactors: Influence of salinity concentration. Water 2018, 10, 1133. [Google Scholar] [CrossRef]
- Papadelli, M.; Roussis, A.; Papadopoulou, K.; Venieraki, A.; Chatzipavlidis, I.; Katinakis, P.; Ballis, K. Biochemical and molecular characterization of an Azotobacter vinelandii strain with respect to its ability to grow and fix nitrogen in olive mill wastewater. Int. Biodeterior. Biodegrad. 1996, 38, 179–181. [Google Scholar] [CrossRef]
- Baker, S.C.; Ferguson, S.J.; Ludwig, B.; Page, M.D.; Richter, O.-M.H.; van Spanning, R.J.M. Molecular genetics of the Genus Paracoccus: Metabolically versatile bacteria with bioenergetic flexibility. Microbiol. Mol. Biol. Rev. 1998, 62, 1046–1078. [Google Scholar] [PubMed]
- Helbling, D.E.; Ackermann, M.; Fenner, K.; Kohler, H.P.; Johnson, D.R. The activity level of a microbial community function can be predicted from its metatranscriptome. ISME J. 2012, 6, 902–904. [Google Scholar] [CrossRef] [PubMed]
- Vyrides, I.; Stuckey, D.C. Fouling cake layer in a submerged anaerobic membrane bioreactor treating saline wastewaters: Curse or a blessing? Water Sci. Technol. 2011, 63, 2902–2908. [Google Scholar] [CrossRef] [PubMed]
- Awata, T.; Goto, Y.; Kindaichi, T.; Ozaki, N.; Ohashi, A. Nitrogen removal using an anammox membrane bioreactor at low temperature. Water Sci. Technol. 2015, 72, 2148–2153. [Google Scholar] [CrossRef] [PubMed]
Component | Concentration (g/L) |
---|---|
Crude Sugar | 75.0 |
Peptone | 8.00 |
Meat Extract | 5.50 |
Urea | 1.50 |
NaHCO3 | 10.5 |
K2HPO4 | 1.40 |
NaCl | 0.35 |
CaCl2·2H2O | 0.20 |
Mg2SO4·7H2O | 0.10 |
Amplicon | Sample | Raw Reads | Number of Sequencesafter OTU Picking | No OTUs |
---|---|---|---|---|
16S | Day0 | 221,672 | 126,360 | 12,597 |
Day16 | 218,040 | 140,229 | 13,890 | |
Day58 | 290,839 | 207,649 | 15,357 | |
Day87 | 291,227 | 213,719 | 16,755 | |
18S | Day0 | 221,664 | 147,664 | 1472 |
Day16 | 269,715 | 182,962 | 876 | |
Day58 | 255,537 | 169,154 | 1038 | |
Day87 | 213,397 | 151,733 | 673 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patsios, S.I.; Michailidou, S.; Pasentsis, K.; Makris, A.M.; Argiriou, A.; Karabelas, A.J. Analysis of Microbial Community Dynamics during the Acclimatization Period of a Membrane Bioreactor Treating Table Olive Processing Wastewater. Appl. Sci. 2019, 9, 3647. https://doi.org/10.3390/app9183647
Patsios SI, Michailidou S, Pasentsis K, Makris AM, Argiriou A, Karabelas AJ. Analysis of Microbial Community Dynamics during the Acclimatization Period of a Membrane Bioreactor Treating Table Olive Processing Wastewater. Applied Sciences. 2019; 9(18):3647. https://doi.org/10.3390/app9183647
Chicago/Turabian StylePatsios, Sotiris I., Sofia Michailidou, Konstantinos Pasentsis, Antonios M. Makris, Anagnostis Argiriou, and Anastasios J. Karabelas. 2019. "Analysis of Microbial Community Dynamics during the Acclimatization Period of a Membrane Bioreactor Treating Table Olive Processing Wastewater" Applied Sciences 9, no. 18: 3647. https://doi.org/10.3390/app9183647
APA StylePatsios, S. I., Michailidou, S., Pasentsis, K., Makris, A. M., Argiriou, A., & Karabelas, A. J. (2019). Analysis of Microbial Community Dynamics during the Acclimatization Period of a Membrane Bioreactor Treating Table Olive Processing Wastewater. Applied Sciences, 9(18), 3647. https://doi.org/10.3390/app9183647