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Featured Application: Development of an adaptive neuro-fuzzy inference systems (ANFIS)
for the recognition and prediction of the cutting temperature in hard turning that can meet
industrial requirements.

Abstract: The machining of hard materials with the most economical process is a challenge that is the
aim of production systems. Increasing demands of the market require a hard processing hardened
steel in order to avoid finishing grinding. This research considers the turning of hardened steel
without cooling with two types of tools: cubic boron nitride (CBN) and hard metal (HM) inserts.
To estimate the influence of machining conditions on cutting temperature, a central composition
design with three factors on five levels was used. The development of advanced models allows one to
meet the accelerated demands in terms of productivity, product quality, and reduced production costs.
Based on experimental data, three input regimes (cutting speed, feed, and depth of cut), and one
attributive factor (tool material) were used as input variables, while cutting temperature was used as
the output of the adaptive neuro-fuzzy inference systems (ANFIS). The model was trained, tested,
and validated with a combined input/output data set. The obtained ANFIS model could be applied
with high precision to determine the cutting temperature in machining of hardened steel. From an
economic point of view, the obtained model can directly affect the cost of processing because cutting
temperature and tool life are directly relieved.

Keywords: turning; hardened steel; cutting temperature; ANFIS

1. Introduction

Due to the technical and economic significance of cutting technology, numerous studies have been
carried out, all of which were in order to model the process itself to increase machining quality and
productivity, and thus reduce processing costs [1]. According to Armarego [2], in the United States,
the correct choice of tools is made in less than 50% of cases, while the nominal cutting speed is used in
58% of cases, and 38% of the tool is used up to its maximum durability.

The main objectives of process modelling treatment are to increase the productivity, efficiency,
total quality of products or individual aspects (machined surface, tool life, etc.) and reducing the
consumption of materials, energy, processing time, and processing costs per unit of product [3]. It is
difficult to theoretically use analytical models reliably to determine the processing parameters such
as tool wear, optimum geometric shape, deformation phenomena in the tool, limit deformation,
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tribological processes, and tool loads, because in each machining process, there are several influential
factors with interactions between them.

It is well known that during hard machining, because of the great influence on the final
characteristics of machining parts, cutting temperature is of significance. Cutting temperature
is also very important from the economic side and optimization of the machining process [4]. In the
manufacturing industry, there is an increased demand for high quality products, high productivity,
and overall economy by hard machining, especially in meeting global cost competitiveness. Therefore,
it is of great importance to make an initial model that will be able to determine and evaluate the cutting
temperature as one of the main output characteristics in hard machining.

In the machining processes, the significance of cutting temperature has been well accepted in the
metal processing industry from two points of view. The first reflects on the impact on tool wear and
on the processing efficiency limit. The second relates to the important effect on the integrity of the
workpiece surface, i.e., the heat affected zone, in terms of hardness and surface roughness [5,6]. In Mia
and Dhar [7], it is shown that the prediction of the cutting temperature plays an essential role in the
machining industry for the correct planning and control of processing parameters and optimizing
cutting conditions.

For specific and demanding machining operations, the ability to obtain new information is
a very important advantage [8,9]. One of the most common indicators of tool wear is cutting
temperature [10]. These findings have been confirmed by many researchers, among them Ay and
Yang [11]. They monitored the cutting temperature using an infrared camera and evaluated the
influence of heat expansion to the cutting tool. Based on this, the authors explained that increasing
the temperature of the tool accelerates the process of tool wear. This statement is of great importance
because the costs of cutting tools and their replacement must be reduced to a minimum [12,13].
From an economic point of view, the tool wear has a main role in machining processes. Also,
Jawahir et al. [14] are convinced that the identification of optimal processing parameters is essential
for economical processing.

Many researchers who participated in the modelling of cutting temperature used different
techniques. One of the possibilities is the application of an artificial intelligence tool, which proved to
be very successful in the modelling of machining processes [15,16]. Intelligent modelling techniques
have good properties for modelling complex manufacturing processes [17,18]. In recent years, a large
range of artificial intelligence (AI)-based techniques have been developed that model the correlation
between the input (process data such as cutting speed, feed, and depth of cut) and the output (tool
life, cutting temperature, surface quality, etc.) parameters of the turning process. Mia et al. have
considered the optimization of hard-turning parameters using evolutionary algorithms [19]. In their
work, the investigated machining parameters were cutting speed, feed rate, and depth-of-cut, while
the output parameters were surface roughness and cutting temperature. An example of a cutting
temperature prediction for the turning of biomedical stainless steel is carried out by Petkovic et al. [20].
These authors used a neural network with an optimization algorithm for the quick, easy, and successful
optimization of input regimes. Consequently, an intelligent model on the basis of a neural network
is a good feature for generalization and has the ability to accept non-linear variables with unknown
iterations. Mikołajczyk et al. predicted tool life in turning operations using neural networks [21].
Their results confirm that the combination image recognition software and ANN (Artificial neural
networks) modeling could potentially grow into a useful industrial tool for cheap estimation of tool
life in agile operations. One example of the application of fuzzy logic is shown by Prabhu et al. [22].
They used a fuzzy logic analysis method to predict the optimal solution, and to find out the most
influential parameter to determine the output characteristics. Also, the use of artificial intelligence
tools, such as an adaptive neural fuzzy inference system (ANFIS), enables a positive development of
the manufacturing industry [23]. ANFIS is one of the most powerful techniques used for modelling,
and is based on a fuzzy inference system and neural network, which are used to model complex
relationships in various branches of industry and engineering that are difficult or impossible to explain
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to classical models [24]. In addition to prediction and optimization, which give a fuzzy logic, neural
networks, and evolutionary algorithms, the ANFIS technique provides the ability to recognize the
significance of input parameters. This intelligence technique has been successfully used in modelling
various machining processes, such as turning, milling, and drilling [25–27]. According to literary
sources, in predicting the output characteristics of the cutting process, ANFIS models have proven to
be very efficient.

Machining of hard materials by turning has been receiving special attention because it offers
many possible benefits over grinding in machining hardened steel [28,29]. Research shows that it is
possible to perform machining on the turn while achieving a high accuracy and small roughness of the
treated surface, in contrast with the more expensive grinding, which allows for significant technical
and economic effects, the most important of which are:

• Reducing the processing time and costs (in relation to finishing grinding).
• It is feasible to handle multiple surfaces in one clamp, which is rarely possible when grinding,

avoiding the effects that occur during grinding (the appearance of structural changes due to
overheating of the surface layer, residual stresses, and cracks), and improving the exploitation
characteristics of the parts.

The use of cubic boron nitride (CBN) tools for rigid turning for rough- and semi-finishing is
recognized as a technologically and economically flexible process. Because of the poor thermal
conductivity of CBN, the heat generated during the cutting process is taken with a part separated from
the cutting zone, eliminating the use of coolants and lubricants. In addition, the dry surface finish is
most effective in the realization of the process due to more stringent regulations on the protection of
the environment and increasing the costs associated with disposing substances used for cooling and
lubrication. The use of coolants/lubricants during cutting is widely accepted as a temperature control
for improving the quality of the system and surface. However, the practice of using coolants/lubricants
is expensive and causes serious damage to the environment and human health [19]. Processing of hard
materials requires the use of special and expensive tools. The inserts of cubic boron nitride are the
most often used inserts in processing hardened steels. The main feature of these inserts is resistance to
temperature, which directly affects the economy of processing. It is known that in the turning process,
variations of the input parameters, such as cutting speed, feed, and depth of cut, affect the cutting
temperature in the same way on the wear of the tool [30].

In view of all the above, it is necessary to determine an economical method of temperature
measurement at which it can be directly controlled and allows one to determine the state of tool
wear [31]. There are many ways to measure the cutting temperature, namely using a thermograph,
thermocouple, thermistor, pyrometer, etc. In the field machining, a thermographic determination of
cutting temperature is often found. An example of this measurement is shown by Muller et a1. [32].
The authors determined the distribution of temperature on the surface of tools with a diamond coat.
They used the thermographic principle to determine the dependence between input processing
parameters and temperature distribution in the processing zone.

Because of all this, this research deals with the application of an ANFIS intelligent technique for
modelling the process of difficult-to-cut alloy EN 90MnCrV8 in order to determine the relationship
between the input parameters and cutting temperature. The advantage of this paper is reflected in the
application of the turning process for hard materials that gives better productivity and satisfactory
quality. The cutting temperature is a relevant factor in the turning process, which is influenced by the
machining parameters. It refers to tool geometry, like nose radius, edge geometry, rake angle, chamfer
thickness, etc.; machining conditions (depth of cut, cutting speed, feed, etc.); and properties of the
workpiece. Due to the poor application of ANFIS tools in hard steel turning, the contribution to the
work is not only reflected in the application of this technique, but it also presents a comparison of two
tool materials, with zero rake angle, namely cubic boron nitride and hard metal. Comparative analysis
has shown that CBN generates a lower cutting temperature than HM.
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This research covers the modelling of the cutting temperature in the turning of hard steel using
the ANFIS technique. The most important processing parameters were selected, namely cutting speed,
feed, depth of cut, and an attribute factor related to the tool material. The ANFIS model has the ability
to predict cutting temperature for both materials, which gives a relationship between the input and
output data in order to improve machining operations.

2. Experimental Setup

Due to the many expensive experiments carried out, in this research, turning operations were
performed without lubrication and cooling agents. During the turning of the hard steel to determine
the influence of the tools on the cutting temperature, the three-factor plan of the experiment was used
at five levels (Table 1). To determine the difference between the tool materials, two inserts were selected
for experiments, cubic boron nitride and hard metal.

Table 1. Turning conditions.

Machining Parameters Level 1 Level 2 Level 3 Level 4 Level 5

Cutting speed vc (m/min) 80 90 120 160 180
Feed f (mm/rev) 0.045 0.05 0.1 0.2 0.25

Depth of cut a (mm) 0.07 0.1 0.22 0.5 0.7

As one of the hard-working materials, EN 90MnCrV8 is known as a cold working steel.
This material has a hard-wearing hardness of 55 HRC. Steel is thermally treated in such a way
to ensure the mentioned hardness in the machining zone of each workpiece. The chemical composition
of the selected material is shown in Table 2.

Table 2. Chemical composition of EN 90MnCrV8.

C (%) Si (%) Mn (%) Cr (%) V (%)

0.9 0.25 2 0.35 0.1

Specifications of the tool insert are presented in Table 3. The same experimental plan was carried
out for both the tool materials, as shown in Table 4.

Table 3. Specifications of inserts that were used as tool material.

Inserts
Rake
Angle

Back
Angle

Inclination
Angle

Tool Cutting Edge
Angles

Nose
Radius

Side
Clearance

γ (◦) α (◦) λ (◦) κ (◦) κ1 (◦) r (mm) (◦)

CBN CNMA
120404 −6 6 −6 91 5 0.4 0

HM CNMA
120404 −6 6 −6 91 5 0.4 0

According to the experiment plan, testing was carried out by turning on a round workpiece.
By way of preparation, workpieces with a diameter of 34 mm and a length of 500 mm were machined
on the conventional lathe with a power of 10 kW. During the experiment with two types of tools,
namely CBN and HM, the cutting temperatures were monitored. For the purpose of measuring the
cutting temperature, a FLIR E50 (FLIR systems, Wilsonville, Oregon, US) thermal camera was used.
In order to ensure the measurement of accurate cutting temperatures, the thermal camera was fixed on
a tool holder (Figure 1).
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Table 4. The measurement and modelled RSM results—input parameters.

No.
Factor . . . Θi Measured Θi Model

v (m/min) f (mm/rev) a (mm) HM
Θ (◦C)

CBN
Θ (◦C)

HM
Θ (◦C)

CBN
Θ (◦C)

1. 90 0.05 0.10 230 104 232.08 102.65

2. 160 0.05 0.10 280 119 275.56 119.65

3. 90 0.20 0.10 268 121 267.65 127.43

4. 160 0.20 0.10 350 169 317.79 148.53

5. 90 0.05 0.50 242 108 246.30 110.49

6. 160 0.05 0.50 285 118 292.44 128.78

7. 90 0.20 0.50 286 143 284.05 137.16

8. 160 0.20 0.50 350 138 337.26 159.87

9. 120 0.10 0.22 277 121 279.60 128.01

10. 120 0.10 0.22 283 130 279.60 128.01

11. 120 0.10 0.22 264 131 279.60 128.01

12. 120 0.10 0.22 266 120 279.60 128.01

13. 80 0.10 0.22 245 105 247.74 114.91

14. 180 0.10 0.22 298 137 315.57 142.61

15. 120 0.045 0.22 254 113 257.56 113.02

16. 120 0.25 0.22 293 139 307.24 147.67

17. 120 0.10 0.07 290 130 268.02 121.48

18. 120 0.10 0.70 310 156 291.82 134.97

19. 80 0.10 0.22 240 115 247.74 114.91

20. 180 0.10 0.22 290 145 315.57 142.61

21. 120 0.045 0.22 250 102 257.56 113.02

22. 120 0.25 0.22 286 145 307.24 147.67

23. 120 0.10 0.07 282 130 268.02 121.48

24. 120 0.10 0.70 336 104 291.82 134.97
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Figure 1. Experiment setup: (a) a view of the thermal camera when measuring, and (b) a thermal
imaging with measurement position.

The thermal camera was moved in the same area at the same time with the tool. The 0.95
parameters as the emission factor were adopted as the highest chip temperature. In the selected area,
the thermal camera simultaneously measured the minimum, maximum, and average temperature.
During the entire machining process, the cutting temperature was monitored, while the calculation
was executed every 5 s.



Appl. Sci. 2019, 9, 3739 6 of 13

3. Response Surface Methodology

The measured values of cutting temperature and determined values using three factorial models
are given in Table 4. Using the surface response methodology, Equations (1) and (2) were obtained,
which determine the cutting temperature for each individual tool material.

For HM tool :Θ = 89.7785 · v0.29845
· f 0.10286

· a0.03694 (1)

For CBN tool :Θ = 54.8983 · v0.26632
· f 0.15597

· a0.04572 (2)

4. Adaptive Neuro-Fuzzy System

The MATLAB 16 (MathWorks, US) software was used to identify the adaptive neuro-fuzzy
inference “system-ANFIS” model. This is one of the most commonly used programs for creating
intelligent models [18]. To train and create an ANFIS, the fuzzy logic toolbox in the program MATLAB
was used. The ANFIS architecture is based on the Sugeno type of fuzzy inference system [19].
This method represents an effective system for undertaking complex tasks where knowledge is
expressed through the if–then rules. With the help of the neural network and fuzzy logic, ANFIS
suggests a relationship of mapping between input and output data. For the optimal adjustment
of membership functions, the most useful hybrid learning method is used [20]. The ANFIS model
structure is based on fuzzy logic, while the neural network is only used in model training [21].

Figure 2 shows the basic architecture of the ANFIS model. In this case, a five-layer neural network
was used that simulated the operation of a fuzzy inference system (Figure 2). Every layer of the
network has its role here.
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Figure 3 shows a five-layer neural network through which the ANFIS model training was
performed. Input values (crisp signal), such as cutting speed, feed, depth of cut, and tool material,
were converted to fuzzy values through the membership functions. The key roles when creating the
ANFIS model are the membership function and the rule base. Based on experimental data, a set of
rules was generated by defining the number and type of membership functions.



Appl. Sci. 2019, 9, 3739 7 of 13

Appl. Sci. 2019, 9, x 6 of 12 

intelligent models [18]. To train and create an ANFIS, the fuzzy logic toolbox in the program 
MATLAB was used. The ANFIS architecture is based on the Sugeno type of fuzzy inference system 
[19]. This method represents an effective system for undertaking complex tasks where knowledge is 
expressed through the if–then rules. With the help of the neural network and fuzzy logic, ANFIS 
suggests a relationship of mapping between input and output data. For the optimal adjustment of 
membership functions, the most useful hybrid learning method is used [20]. The ANFIS model 
structure is based on fuzzy logic, while the neural network is only used in model training [21]. 

Figure 2 shows the basic architecture of the ANFIS model. In this case, a five-layer neural 
network was used that simulated the operation of a fuzzy inference system (Figure 2). Every layer of 
the network has its role here. 

 
Figure 2. Four inputs and one output fuzzy inference system for cutting temperature. 

Figure 3 shows a five-layer neural network through which the ANFIS model training was 
performed. Input values (crisp signal), such as cutting speed, feed, depth of cut, and tool material, 
were converted to fuzzy values through the membership functions. The key roles when creating the 
ANFIS model are the membership function and the rule base. Based on experimental data, a set of 
rules was generated by defining the number and type of membership functions. 

 
Figure 3. Adaptive fuzzy inference system. Figure 3. Adaptive fuzzy inference system.

The structure of the neuro-fuzzy model consisted of five different adaptive layers. Below is a brief
description of the Sugeno first-order model with two input variable variables.

Layer 1: The fuzzification layer, where the names of the fuzzy sets or language variables are defined.

O1
i = µAi(x2), i = 1, 2

O1
j = µBi(x2), i = 1, 2 (3)

where O1
i or j are output functions and µAi or Bi are membership functions.

Layer 2: Represents the result of layer 1. Here the weight functions wi for the next layer is defined.

O2
i = wi = µAi(x1)µBi(x2), i = 1, 2 (4)

Layer 3: In this layer, the normalization of the value from layer 2 is carried out and is transferred
to layer 4.

O3
i = wi =

wi
Σiwi

i = 1, 2 (5)

Layer 4: The de-fuzzification layer. In this layer, the linear parameters pi, qi, and ri that result
from the function are defined.

O4
i = wi · fi = wi(pi · x1 + qi · x2 + ri) i = 1, 2 (6)

Layer 5: The total output layer. The total number of output signals is the output from this layer.

Q5
i = f (x1, x2) = Σ

i
wi · fi = wi · f1 + wi · f2 =

Σiwi · fi
Σiwi

. (7)

The most significant steps in identifying the ANFIS model are the training and testing steps that
defined the model’s characteristics. The total number of experimental data used to generate the ANFIS
model was 48. Approximately 70% of the data was used to successfully train the model, while the
remaining 30% is used for testing. Therefore, for this study, 36 training data points and 12 test data
points were used.

There are more possible membership functions, but for this research, the Gaussian function was
chosen. From the crisp input, the neural network passes data using the membership functions. Neural
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networks define the basic rules that are associated with system locking. The hybrid learning method
was used to train the adaptive network and the proper form of the membership function. The training
was conducted with 500 epochs. During the model training, new rules and forms of membership
functions were constantly generated to get the output with the smallest error. When the model’s error
was acceptable, the model was tested. The model was accepted when the relative errors of training
and testing were below 10%.

5. Results

The hard-turning operation with both tool materials were controlled by three factors, namely
the cutting speed, feed rate, and depth of cut. Therefore, these parameters generally affected the
possible results of the machining. For that reason, the mean behaviors of the cutting temperature
were evaluated using dispersion analysis and a main effect plot. The main effect plot shows a relative
change from the center point of the experiment.

After the dispersion analysis, the adequacy of the model (Fa) and the significance of the input
parameters (Fr0, Fr1, Fr2 and Fr3) were determined and are presented in Table 5. Based on this analysis
and the obtained statistical parameters, it can be concluded that the obtained values for the adequacy
of the empirical models and the significance of the input parameters were sufficiently reliable.

Table 5. Adequacy of models and significance of parameters.

Model Adequacy
HM Θ (◦C) CBN Θ (◦C)

Fa = 4.20467 Fa = 3.77465

Significance

Fro 679937.42 214918.52

Fr1 (v) 105.27 71.11

Fr2 (f) 72.60 35.71

Fr3 (a) 12.62 8.24

It is evident from Figure 4a that the increase in cutting speed caused an increase in the cutting
temperature. The reason for the increase in cutting temperature was due to the conversion of mechanical
energy (rotation of spindle) into heat energy. The cutting speed with the CBN tool had a similar effect
(Figure 4b). The effects of the feed on the cutting temperature for both tool material were contrary
to expectations.

For instance, an increase in feed rate caused a significant increase in cutting temperature. Lastly,
depth of cut also effected the cutting temperature, especially when turning with an HM tool, while
with CBN, it showed a smaller effect. This can be explained by the fact that the tool material of cubic
boron nitride has better thermal conductivity. This was also confirmed by experiments that showed
that generally higher temperatures occur with HM tools [12]. The maximum temperature for HM was
350 ◦C, while for CBN, it was 169 ◦C.

Compared to literature sources, the cutting temperatures obtained in this paper were lower.
This happened by adopting a medium cutting speed according to the manufacturer’s recommendations
as a way to measure temperature. The use of thermocouples gave a more realistic temperature, but on
the economic side, it is quite expensive.

It is also appreciable for HM tool that all three input parameters had a significant effect on cutting
temperature. Compared to these machining parameters, the depth of cut played a small role in defining
cutting temperature values, especially with CBN tools. Hence, during optimization, the change in
cutting speed, feed, and depth of cut were most significant to favorably align the value of the responses,
while for CBN tools, one should pay attention to only the cutting speed and feed.
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Figure 4. Main effect plot for cutting temperature with different tools: (a) HM and (b) CBN.

The main contribution of this paper is the application of ANFIS intelligent techniques in modelling
cutting temperature. The model results obtained for the cutting temperature are shown in Table 6.
In order to verify the reliability of the adopted ANFIS model, a calculation of absolute relative errors
between experimental and model data was performed. The absolute relative error was calculated for
the training, testing, and validation data. All errors were within the allowed limits, i.e., less than 10%,
and the adopted model can be used with a high reliability for the analysis and prediction of cutting
temperature, as well as the optimization of input parameters.

Another ANFIS model for reliability confirmation is shown using the correlation diagrams.
The diagrams in Figure 5 show correlations between the experimental and model values. It can be
seen that the lines approximate to each other, confirming the good agreement of results.Appl. Sci. 2019, 9, x 10 of 12 
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Table 6. Experimental plan and results.

Input of ANFIS Temperature Θ (◦C)

Tool Material vc
(m/min)

f
(mm/rev)

a
(mm)

Experimental ANFIS

CBN HM CBN HM CBN HM

Training data

1. 19. 90 0.05 0.1 104 165 103.9 164.6

2. 20. 160 0.05 0.1 119 122 119.0 121.9

3. 21. 90 0.2 0.1 121 150 121.0 149.9

4. 22. 160 0.2 0.1 169 200 169.0 200.0

5. 23. 90 0.05 0.5 108 230 108.0 229.9

6. 24. 160 0.05 0.5 118 189 118.0 188.2

7. 25. 90 0.2 0.5 143 245 143.0 244.9

8. 26. 160 0.2 0.5 138 230 137.9 230.0

9. 27. 120 0.1 0.22 121 280 127.3 280.0

10. 28. 120 0.1 0.22 130 183 127.3 188.2

11. 29. 120 0.1 0.22 131 184 127.3 188.2

12. 30. 120 0.1 0.22 120 190 127.3 188.2

13. 31. 80 0.1 0.22 105 196 97.0 183.3

14. 32. 180 0.1 0.22 137 200 140.9 201.0

15. 33. 120 0.045 0.22 113 210 113.0 208.9

16. 34. 120 0.25 0.22 139 160 139.0 164.6

17. 35 120 0.1 0.07 130 208 129.9 183.9

18. 36. 120 0.1 0.7 156 161 130.23 161.0

Average error for training data: 2.1%

Test data

37. 41. 80 0.1 0.22 115 202 97.0 201.0

38. 42. 180 0.1 0.22 145 195 140.9 183.3

39. 43. 120 0.045 0.22 102 165 113.0 164.6

40. 44. 120 0.25 0.22 145 210 139.0 208.9

Average error for test data: 5.1%

Validation data

45. 47. 120 0.25 0.22 145 160 139.3 165.6

46. 48. 120 0.1 0.07 130 250 127.2 229.4

Average error for validation data: 4.5%

The resulting ANFIS model has the ability to display three-dimensional surfaces. From the 3D
diagrams shown in Figure 6, the influence of individual processing parameters can be determined,
such as cutting speed, cutting position, and cutting depth, in relation to cutting temperature. According
to the dispersion analysis, the depth of cut had the least influence; therefore, it was maintained at a
constant value and only the influence of the cutting speed and feed are displayed on the 3D diagrams.
Diagrams are shown for a center point with a depth of cut of 0.22 mm. Also, from these diagrams,
the optimum processing parameters can be determined to obtain the minimum cutting temperature
for both tool materials. The minimum limit temperature for both tool materials could be achieved
when the cutting speed and feed were maintained at minimum values.
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The above analysis indicates that among the three turning machining parameters and one
attributive factor discussed in this study, i.e., cutting speed, feed, depth of cut, and tool material,
the cutting speed and feed had the most substantial effect on cutting temperature, followed by the
depth of cut. The analysis of the influence of input processing parameters was confirmed using
dispersion analysis of empirical models, main effect plots, and 3D surfaces of the ANFIS model.

6. Conclusions

This paper introduces an adaptive neuro-fuzzy system that allows for the analysis and predicting
of cutting temperature, as well as the optimization of input processing parameters. The ANFIS model
was developed based on a three-factor experimental plan. The plan was developed for testing the
machining by turning EN 90MnCrV8. Dispersion analysis is an indication that high empirical models
have been obtained. Based on this analysis and main effect plot, it was determined that cutting speed
and feed has the greatest influence on temperature of all three input parameters. The slightly smaller
impact with both tool materials was shown by the depth of cut, especially with the CBN tools. It was
also deduced that a higher cutting temperature was observed when processing with the tool made
from hard material. By comparing the ANFIS model with experimental data, it can be noticed that
the ANFIS model is very reliable. The absolute relative error of the ANFIS model was within the
permissible limits. From all of this, it can be concluded that adaptive neuro-fuzzy modelling technique
is an economical and highly successful method for predicting one of the processing output variables,
which was the cutting temperature in this case. The obtained model can be significantly improved
with the expansion of input parameters and distribution, as well as new tool materials.
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