Centrifugally Spun α-Fe2O3/TiO2/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Metal-oxide/Carbon Fibrous Mats
2.3. Characterization
2.4. Electrochemical Performance Evaluation
3. Results and Discussion
3.1. Morphology
3.2. Surface Analysis: XPS
3.3. Thermogravimetric and Crystal Structure Analysis
4. Electrochemical Analysis
4.1. Cyclic Voltammetry
4.2. Electrochemical Performance
4.3. Rate Performance
4.4. Impedance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.; Chen, Y.; Zhou, L.; Mai, Y.-W.; Huang, H. Exceptional electrochemical performance of porous TiO2-carbon nanofibers for lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 3875–3880. [Google Scholar] [CrossRef]
- Xin, X.; Zhou, X.; Wu, J.; Yao, X.; Liu, Z. Scalable Synthesis of TiO2/Graphene Nanostructured Composite with High-Rate Performance for Lithium Ion Batteries. ACS Nano 2012, 6, 11035–11043. [Google Scholar] [CrossRef] [PubMed]
- Aadil, M.; Shaheen, W.; Warsi, M.F.; Shahid, M.; Khan, M.A.; Ali, Z.; Haider, S.; Shakir, I. Superior electrochemical activity of α-Fe2O3/rGO nanocomposite for advance energy storage devices. J. Alloys Compd. 2016, 689, 648–654. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Z.; Zhang, L.; Wu, H.B.; Lou, X.W. TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 122–127. [Google Scholar] [CrossRef]
- Zhang, X.; Suresh Kumar, P.; Aravindan, V.; Liu, H.H.; Sundaramurthy, J.; Mhaisalkar, S.G.; Duong, H.M.; Ramakrishna, S.; Madhavi, S. Electrospun TiO2—Graphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries. J. Phys. Chem. C 2012, 116, 14780–14788. [Google Scholar] [CrossRef]
- Ji, L.W.; Meduri, P.; Agubra, V.; Xiao, X.C.; Alcoutlabi, M. Graphene-Based Nanocomposites for Energy Storage. Adv. Energy Mater. 2016, 6, 1502159. [Google Scholar] [CrossRef] [Green Version]
- Kasap, S.; Kaya, I.I.; Repp, S.; Erdem, E. Superbat: Battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Adv. 2019, 1, 2586–2597. [Google Scholar] [CrossRef]
- Alas, M.O.; Gungor, A.; Genc, R.; Erdem, E. Feeling the power: Robust supercapacitors from nanostructured conductive polymers fostered with Mn2+ and carbon dots. Nanoscale 2019, 11, 12804–12816. [Google Scholar] [CrossRef]
- Galla, S.; Szewczyk, A.; Smulko, J.; Przygocki, P. Methods of Assessing Degradation of Supercapacitors by Using Various Measurement Techniques. Appl. Sci. 2019, 9, 2311. [Google Scholar] [CrossRef]
- Li, W.; Sun, J.; Wu, Z.; Liu, S. N-Doped Carbon Aerogels Obtained from APMP Fiber Aerogels Saturated with Rhodamine Dye and Their Application as Supercapacitor Electrodes. Appl. Sci. 2019, 9, 618. [Google Scholar] [CrossRef]
- Saravanan, K.; Ananthanarayanan, K.; Balaya, P. Mesoporous TiO2 with high packing density for superior lithium storage. Energy Environ. Sci. 2010, 3, 939–948. [Google Scholar] [CrossRef]
- Tang, K.; Yu, Y.; Mu, X.; van Aken, P.A.; Maier, J. Multichannel hollow TiO2 nanofibers fabricated by single-nozzle electrospinning and their application for fast lithium storage. Electrochem. Commun. 2013, 28, 54–57. [Google Scholar] [CrossRef]
- Wang, W.; Bu, F.-X.; Jiang, J.-S. Porous TiO2 coated α-Fe2O3 ginger-like nanostructures with enhanced electrochemical properties. Mater. Lett. 2015, 139, 89–92. [Google Scholar] [CrossRef]
- Meng, J.-K.; Zhao, Q.-Q.; Ye, W.-H.; Zheng, G.-P.; Zheng, X.-C.; Guan, X.-X.; Liu, Y.-S.; Zhang, J.-M. Facile assembly and electrochemical properties of α-Fe2O3@graphene aerogel composites as electrode materials for lithium ion batteries. Mater. Chem. Phys. 2016, 182, 190–199. [Google Scholar] [CrossRef]
- Ji, L.W.; Lin, Z.; Alcoutlabi, M.; Zhang, X.W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699. [Google Scholar] [CrossRef]
- Guo, J.; Li, J.; Huang, Y.; Zeng, M.; Peng, R. Novel mesoporous TiO2 spheres as anode material for high-performance lithium-ion batteries. Mater. Lett. 2016, 181, 289–291. [Google Scholar] [CrossRef]
- Han, H.; Song, T.; Bae, J.-Y.; Nazar, L.F.; Kim, H.; Paik, U. Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries. Energy Environ. Sci. 2011, 4, 4532–4536. [Google Scholar] [CrossRef]
- Ryu, M.-H.; Jung, K.-N.; Shin, K.-H.; Han, K.-S.; Yoon, S. High Performance N-Doped Mesoporous Carbon Decorated TiO2 Nanofibers as Anode Materials for Lithium-Ion Batteries. J. Phys. Chem. C 2013, 117, 8092–8098. [Google Scholar] [CrossRef]
- Li, D.; Shi, D.Q.; Liu, Z.W.; Liu, H.K.; Guo, Z.P. TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries. J. Nanopart Res. 2013, 15. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yu, A.S. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci. Bull. 2015, 60, 823–838. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Jiao, Z.; Wang, Y.; Xu, L.; Xia, S.; Zhang, H. Eco-friendly synthesis of rutile TiO2 nanostructures with controlled morphology for efficient lithium-ion batteries. Chem. Eng. J. 2016, 304, 156–164. [Google Scholar] [CrossRef]
- Zuniga, L.; Agubra, V.; Flores, D.; Campos, H.; Villareal, J.; Alcoutlabi, M. Multichannel hollow structure for improved electrochemical performance of TiO2/Carbon composite nanofibers as anodes for lithium ion batteries. J. Alloys Compd. 2016, 686, 733–743. [Google Scholar] [CrossRef]
- Ji, L.W.; Toprakci, O.; Alcoutlabi, M.; Yao, Y.F.; Li, Y.; Zhang, S.; Guo, B.K.; Lin, Z.; Zhang, X.W. Alpha-Fe2O3 Nanoparticle-Loaded Carbon Nanofibers as Stable and High-Capacity Anodes for Rechargeable Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2012, 4, 2672–2679. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.T.; Yang, Y.; Dong, Y.H.; Zhang, Z.T.; Tang, Z.L. Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. J. Adv. Ceram. 2019, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Hu, H.; Li, G.J.; Zhu, Q.C.; Yu, Y. Hierarchical 3D TiO2@Fe2O3 nanoframework arrays as high-performance anode materials. Nanoscale 2014, 6, 6463–6467. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, M.Y.; Luo, Y.; Huang, J.G. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 17343–17351. [Google Scholar] [CrossRef]
- Dylla, A.G.; Henkelman, G.; Stevenson, K.J. Lithium Insertion in Nanostructured TiO2(B) Architectures. Acc. Chem. Res. 2013, 46, 1104–1112. [Google Scholar] [CrossRef]
- Yang, Z.; Du, G.; Meng, Q.; Guo, Z.; Yu, X.; Chen, Z.; Guo, T.; Zeng, R. Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. J. Mater. Chem. 2012, 22, 5848–5854. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, Y.F. Recent Progress of TiO2-Based Anodes for Li Ion Batteries. J. Nanomater. 2016, 2016. [Google Scholar] [CrossRef]
- Guo, S.; Liu, J.; Qiu, S.; Wang, Y.; Yan, X.; Wu, N.; Wang, S.; Guo, Z. Enhancing Electrochemical Performances of TiO2 Porous Microspheres through Hybridizing with FeTiO3 and Nanocarbon. Electrochim. Acta 2016, 190, 556–565. [Google Scholar] [CrossRef]
- Schweidler, S.; de Biasi, L.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J. Volume Changes of Graphite Anodes Revisited: A Combined Operando X-ray Diffraction and In Situ Pressure Analysis Study. J. Phys. Chem. C 2018, 122, 8829–8835. [Google Scholar] [CrossRef]
- Keppeler, M.; Shen, N.; Nageswaran, S.; Srinivasan, M. Synthesis of alpha-Fe2O3/carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: A review. J. Mater. Chem. A 2016, 4, 18223–18239. [Google Scholar] [CrossRef]
- Fu, Y.; Wei, Q.; Lu, B.; Wang, X.; Sun, S. Stem-like nano-heterostructural MWCNTs/α-Fe2O3@TiO2 composite with high lithium storage capability. J. Alloys Compd. 2016, 684, 419–427. [Google Scholar] [CrossRef]
- Fu, Y.; Wei, Q.; Wang, X.; Shu, H.; Yang, X.; Sun, S. Porous hollow [small alpha]-Fe2O3@TiO2 core-shell nanospheres for superior lithium/sodium storage capability. J. Mater. Chem. A 2015, 3, 13807–13818. [Google Scholar] [CrossRef]
- Lv, X.; Deng, J.; Sun, X. Cumulative effect of Fe2O3 on TiO2 nanotubes via atomic layer deposition with enhanced lithium ion storage performance. Appl. Surf. Sci. 2016, 369, 314–319. [Google Scholar] [CrossRef]
- Wang, H.-G.; Li, Y.-H.; Liu, W.-Q.; Wan, Y.-C.; Li, Y.-W.; Duan, Q. One-step facile synthesis of TiO2/Fe2O3 fiber-in-tube hierarchical heterostructures with improved lithium-ion battery performance. RSC Adv. 2014, 4, 23125–23130. [Google Scholar] [CrossRef]
- Lian, X.; Cai, M.; Qin, L.; Cao, Y.; Wu, Q.-H. Synthesis of hierarchical nanospheres Fe2O3/graphene composite and its application in lithium-ion battery as a high-performance anode material. Ionics 2016, 22, 2015–2020. [Google Scholar] [CrossRef]
- Meng, X.; Xu, Y.; Sun, X.; Xiong, L.; Wang, Q. Nitrogen-doped graphene assists Fe2O3 in enhancing electrochemical performance. J. Power Sour. 2016, 326, 389–396. [Google Scholar] [CrossRef]
- Balogun, M.-S.; Wu, Z.; Luo, Y.; Qiu, W.; Fan, X.; Long, B.; Huang, M.; Liu, P.; Tong, Y. High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. J. Power Sour. 2016, 308, 7–17. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Xie, Y.; Guo, J. Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@TiO2 core-shell nanorods. J. Mater. Chem. A 2014, 2, 3912–3918. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Luan, D.Y.; Madhavi, S.; Hu, Y.; Lou, X.W. Assembling carbon-coated alpha-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 2012, 5, 5252–5256. [Google Scholar] [CrossRef]
- Sides, C.R.; Li, N.C.; Patrissi, C.J.; Scrosati, B.; Martin, C.R. Nanoscale materials for lithium-ion batteries. Mrs Bull. 2002, 27, 604–607. [Google Scholar] [CrossRef]
- Lee, S.; Ha, J.; Choi, J.; Song, T.; Lee, J.W.; Paik, U. 3D Cross-Linked Nanoweb Architecture of Binder-Free TiO2 Electrodes for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2013, 5, 11525–11529. [Google Scholar] [CrossRef]
- Tammawat, P.; Meethong, N. Synthesis and Characterization of Stable and Binder-Free Electrodes of TiO2 Nanofibers for Li-Ion Batteries. J. Nanomater. 2013, 2013, 8. [Google Scholar] [CrossRef]
- Agubra, V.A.; Zuniga, L.; Flores, D.; Campos, H.; Villarreal, J.; Alcoutlabi, M. A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries. Electrochim. Acta 2017, 224, 608–621. [Google Scholar] [CrossRef] [Green Version]
- Agubra, V.; Zuniga, L.; Flores, D.; Alcoutlabi, M. Forcespinning of Microfibers and their Applications in Lithium-ion and Sodium-ion Batteries. ECS Trans. 2016, 72, 57–65. [Google Scholar] [CrossRef]
- Agubra, V.A.; De la Garza, D.; Gallegos, L.; Alcoutlabi, M. ForceSpinning of polyacrylonitrile for mass production of lithium-ion battery separators. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Agubra, V.A.; Zuniga, L.; De la Garza, D.; Gallegos, L.; Pokhrel, M.; Alcoutlabi, M. Forcespinning: A new method for the mass production of Sn/C composite nanofiber anodes for lithium ion batteries. Solid State Ion. 2016, 286, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Agubra, V.A.; Zuniga, L.; Flores, D.; Villareal, J.; Alcoutlabi, M. Composite Nanofibers as Advanced Materials for Li-ion, Li-O-2 and Li-S Batteries. Electrochim. Acta 2016, 192, 529–550. [Google Scholar] [CrossRef]
- Flores, D.; Villarreal, J.; Lopez, J.; Alcoutlabi, M. Production of carbon fibers through Forcespinning (R) for use as anode materials in sodium ion batteries. Mater. Sci. Eng. B 2018, 236, 70–75. [Google Scholar] [CrossRef]
- De la Garza, D.; De Santiago, F.; Materon, L.; Chipara, M.; Alcoutlabi, M. Fabrication and characterization of centrifugally spun poly(acrylic acid) nanofibers. J. Appl. Polym. Sci. 2019, 136. [Google Scholar] [CrossRef]
- Leng, X.; Wei, S.; Jiang, Z.; Lian, J.; Wang, G.; Jiang, Q. Carbon-Encapsulated Co3O4 Nanoparticles as Anode Materials with Super Lithium Storage Performance. Sci. Rep. 2015, 5, 16629. [Google Scholar] [CrossRef]
- Wu, C.Y.; Li, X.P.; Li, W.S.; Li, B.; Wang, Y.Q.; Wang, Y.T.; Xu, M.Q.; Xing, L.D. Fe2O3 nanorods/carbon nanofibers composite: Preparation and performance as anode of high rate lithium ion battery. J. Power Sour. 2014, 251, 85–91. [Google Scholar] [CrossRef]
- Qin, T.G.; Zeng, M.; Wu, X.; Wen, J.W.; Li, J. Fabrication of Fe2O3@TiO2 core-shell nanospheres as anode materials for lithium-ion batteries. J. Mater. Sci.-Mater. Electron. 2018, 29, 12944–12950. [Google Scholar] [CrossRef]
- Zhong, Y.; Ma, Y.F.; Guo, Q.B.; Liu, J.Q.; Wang, Y.D.; Yang, M.; Xia, H. Controllable Synthesis of TiO2@Fe2O3 Core-Shell Nanotube Arrays with Double-Wall Coating as Superb Lithium-Ion Battery Anodes. Sci. Rep. 2017, 7, 40927. [Google Scholar]
- Yang, Y.; Liu, Q.Y.; Cao, M.; Ju, Q.; Wang, H.Y.; Fu, R.Z.; Ji, H.M.; Yang, G. Enhanced electrochemical performance of alpha-Fe2O3 grains grafted onto TiO2-Carbon nanofibers via a Vapor-Solid reaction as anode materials for Li-Ion batteries. Appl. Surf. Sci. 2019, 463, 322–330. [Google Scholar] [CrossRef]
- Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144, L208–L210. [Google Scholar] [CrossRef]
- Jezowski, P.; Fic, K.; Crosnier, O.; Brousse, T.; Beguin, F. Lithium rhenium(VII) oxide as a novel material for graphite pre-lithiation in high performance lithiumion capacitors. J. Mater. Chem. A 2016, 4, 12609–12615. [Google Scholar] [CrossRef]
- Agubra, V.A.; Fergus, J.W. The formation and stability of the solid electrolyte interface on the graphite anode. J. Power Sour. 2014, 268, 153–162. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuniga, L.; Gonzalez, G.; Orrostieta Chavez, R.; Myers, J.C.; Lodge, T.P.; Alcoutlabi, M. Centrifugally Spun α-Fe2O3/TiO2/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries. Appl. Sci. 2019, 9, 4032. https://doi.org/10.3390/app9194032
Zuniga L, Gonzalez G, Orrostieta Chavez R, Myers JC, Lodge TP, Alcoutlabi M. Centrifugally Spun α-Fe2O3/TiO2/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries. Applied Sciences. 2019; 9(19):4032. https://doi.org/10.3390/app9194032
Chicago/Turabian StyleZuniga, Luis, Gabriel Gonzalez, Roberto Orrostieta Chavez, Jason C. Myers, Timothy P. Lodge, and Mataz Alcoutlabi. 2019. "Centrifugally Spun α-Fe2O3/TiO2/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries" Applied Sciences 9, no. 19: 4032. https://doi.org/10.3390/app9194032
APA StyleZuniga, L., Gonzalez, G., Orrostieta Chavez, R., Myers, J. C., Lodge, T. P., & Alcoutlabi, M. (2019). Centrifugally Spun α-Fe2O3/TiO2/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries. Applied Sciences, 9(19), 4032. https://doi.org/10.3390/app9194032